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Postural Orthostatic Tachycardia Syndrome (POTS) is a chronic autonomic disorder
characterized by chronic (> 3 months) orthostatic intolerance and an increase in heart
rate (HR) of ≥ 30 beats per minute (bpm) without orthostatic hypotension. Traditional
diagnostic approaches, such as the active standing or tilt-table test, are typically conducted
under controlled clinical conditions, limiting their ability to capture the natural variability
of symptoms and the intricate physiological responses occurring in daily life. These tests
may cause patient discomfort, dizziness, nausea, or syncope. Furthermore, they are time-
consuming and cannot be used as a screening tool for POTS. To address these limitations,
this study explored wearable devices that continuously collect physiological data-specifically,
electrocardiogram (ECG) and accelerometer (ACC)-derived metrics-from POTS patients
and healthy controls during routine daily activities. Physiological features around posture-
change events identified in the data were processed and used to train and test a baseline deep
learning model. The model demonstrated promising performance in accurately differentiating
POTS patients from healthy controls in a relatively small cohort (66 from POTS patients and
20 from controls), indicating its potential as a feasibility study for clinical decision support.
Future studies involving larger and more diverse samples under varying clinical conditions
would be necessary to enhance the robustness and viability of our diagnostic model.

.
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1. Introduction

Postural Orthostatic Tachycardia Syndrome (POTS) is a chronic autonomic disorder charac-
terized by chronic (> 3 months) orthostatic intolerance and an increase in heart rate (HR) of
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≥30 beats per minute (bpm) without orthostatic hypotension during orthostatic tests.1 It is
frequently associated with dizziness, fatigue, palpitations, syncope, presyncope, and multiple
other symptoms. POTS was estimated to have a prevalence of 0.2%,1 but its incidence dra-
matically increased during the COVID-19 pandemic2,3 and persists to this date. It is estimated
that 2% to 14% of COVID-19 survivors develop POTS, and 9% to 61% experience POTS-like
symptoms.3 POTS can also occur after receiving mRNA vaccines for COVID-19.4,5 The com-
bined effects of COVID-19 infection and vaccination exposures have substantially broadened
the at-risk population. Currently, the diagnosis of POTS primarily relies on clinical evaluations
like the tilt-table test or active standing tests, conducted in controlled laboratory or clinical
settings.6 However, these traditional methods have notable limitations, as they are typically
performed under artificial testing conditions, often failing to accurately represent the genuine
variability of symptoms and the complex physiological responses patients experience daily.7,8

The abrupt postural changes and prolonged upright positioning required during the tilt-table
test may cause considerable patient discomfort, including dizziness, nausea, headache, and
in some cases, temporary loss of consciousness. These tests are time-consuming and cannot
be used as a screening tool in the general population. It is therefore highly desirable to de-
velop alternative diagnostic approaches that are less burdensome and more comfortable for
patients.9,10

To overcome these diagnostic constraints, the present study aims to evaluate the diagnostic
potential of data derived from wearable technology. This technology collects physiological data
from patients while they are engaged in their routine daily activities. This data serves as
the foundation for developing and evaluating deep learning models intended to aid clinical
decision support in POTS by detecting physiological changes occurring naturally in daily life
with wearable technology.

This study introduces a novel approach that automatically identifies posture-change points
and leverages ECG- and ACC-derived features from these event windows in combination with
deep learning architectures to classify POTS.

2. Methods

The study includes 66 POTS patient measurements and 20 control measurements. Participants
were provided with wearable monitoring devices, specifically the Faros 180 ECG monitor, ca-
pable of continuously collecting ECG and ACC data.6 Based on ECG and ACC data, we ex-
tracted features that identify posture-change events (referred to as changepoints or CPs) that
reflect physiological characteristics —including Heart Rate Change (HRC), Skin Sympathetic
Nerve Activity (SKNA), and movement intensity. These features were organized into longitudi-
nal datasets reflecting physiological state changes of each participant over time, and were used
as input data for artificial intelligence (AI) models. Fig. 1 provides an overview of the proposed
data-driven diagnostic framework, highlighting key stages: accelerometer-based orientation-
invariant transformation (OIT)11,12 feature extraction, changepoint detection, ECG and ACC
feature extraction, sequential data preparation, and model-based classification and visualiza-
tion.
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2.1. Study Population and Data Collection

This study analyzed data from 66 POTS and 20 control measurements and was conducted
with approval of the Institutional Review Board (IRB) at Cedars-Sinai Medical Center. All
participants provided informed written consent prior to participation. Physiological data were
recorded using a wearable biosignal monitor (Faros 180, Bittium Corp., Finland), placed on
the participants’ chest.13 This device continuously captured ECG signals sampled at 1 kHz and
triaxial ACC data sampled at 25 Hz along three perpendicular axes (X, Y, Z), enabling the
assessment of body posture and movement over at least 24 hours. Participants were advised
to perform their usual daily activities without any restrictions to ensure that the collected
physiological data accurately reflected their typical daily routines.

OIT Features
Extraction

Changepoint
Detection

ECG & ACC
Feature Extraction

Sequential Data

ModelClassification
Control/POTS

2D Visualization
Dim. Reduction

X ∈ RN×T×D

Z ∈ RN×2

Fig. 1. Overview of our diagnostic framework. N: total number of subjects, T: sequence length,
D: dimensionality of combined ECG and ACC features, X: input data representing sequential ECG
and ACC features, and Z: 2D visualization coordinates after dimensionality reduction. The model
performs end-to-end learning for both classification and representation learning.

2.2. Data Preprocessing and Feature Extraction

The data processing pipeline in this study can be divided into four stages: (1) noise reduction
of ECG and accelerometer signals, (2) orientation-invariant transformation of accelerometer
signals, (3) detection of posture-change events, and (4) extraction of ECG and ACC features
around detected events.

The data collected from wearable sensors was preprocessed using already established algo-
rithms6,11,12,14,15 to extract features from physiological signals and to reduce noise and enhance
signal quality. ECG- and ACC-based features were extracted after preprocessing, as summa-
rized in Table 1.

For accelerometer signals, preprocessing involved applying a moving average filter with
a 31-sample window to remove high-frequency noise. Subsequently, orientation-invariant
ACC features were derived using the heuristic orientation-invariant transformation (Heuristic
OIT).11,12 The Heuristic OIT transforms raw three-dimensional accelerometer data into nine
orientation-robust descriptors, including vector magnitudes, temporal difference norms (first-
and second-order), angles between successive vectors, and angular changes computed from
vector cross products. This transformation ensures robustness against variations in sensor ori-
entation. Thus, employing Heuristic OIT features as input to the PELT (Pruned Exact Linear
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Time) algorithm,14 which identifies changepoints based on statistical shifts within time-series
data, facilitates a more reliable detection of movement-related changepoints by minimizing
interference from sensor orientation changes or arbitrary rotations. For ECG signals, noise re-
duction involved applying a 0.5–150 Hz bandpass filter to mitigate both low-frequency baseline
drift and high-frequency artifacts, following the method described by Lee et al. (2022).6

Feature Category Key Characteristics
ECG-based Features

Statistical Amplitude statistics, autocorrelation, trend analysis, Hjorth parameters
Spectral Power spectrum, frequency entropy, wavelet decomposition
Morphological Zero crossings, peak-trough metrics, waveform shape
Physiological Heart rate change, SKNA burst

ACC-based Features
Movement Intensity Magnitude, jerk, SMA, RMS, energy metrics
Postural Stability measures, dynamic acceleration, OIT statistics
Spatial Rotation vector, trajectory curvature, movement patterns
Temporal Decay time, spectral entropy, windowed analysis

Table 1: Summary of Feature Categories

Based on these Heuristic OIT features, postural transition-related changepoints were iden-
tified using the PELT algorithm.14 This method detects changepoints by optimizing a prede-
fined cost function that balances segmental statistical fidelity with model complexity through
a penalty term. Analysis windows, varying from tens of seconds to several minutes, were subse-
quently defined around each detected changepoint, and physiological response characteristics
were extracted from segments meeting established signal quality standards. The comprehen-
sive methodological process employed for changepoint detection is outlined in Algorithm 1.

Measure Formula Description
SNR 10 log10(Psignal/Pnoise) Signal-to-noise ratio (power ratio in dB)
TM

∑
(xi−x̄)(yi−ȳ)√∑

(xi−x̄)2
∑

(yi−ȳ)2
Morphological similarity (template xi, beat yi)

RMSSD
√

1
N−1

∑N−1
i=1 (RRi+1 −RRi)2 RR variability (successive RR intervals)

SDNN
√

1
N−1

∑N
i=1(RRi −RR)2 RR variability (standard deviation)

PE −
∑

i pi ln(pi) Complexity entropy (pi: ordinal probability)

Table 2: ECG Signal Quality and Variability Metrics

Orphanidou et al. (2014)15 introduced a signal quality index (SQI) designed to quanti-
tatively evaluate ECG signals obtained from wearable sensors, aiming to ensure the reliable
extraction of heart rates. Their approach combined physiological plausibility assessments with
template matching techniques to determine the reliability of ECG signal segments. Inspired
by this method, our study evaluated ECG segments within patient-specific datasets using
signal quality metrics commonly employed in ECG research, including signal-to-noise ratio
(SNR),16 template matching (TM),15 and permutation entropy (PE).17 Additionally, the root
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mean square of successive differences (RMSSD)18,19 and the standard deviation of NN inter-
vals (SDNN)18,19 were also utilized. The ECG signal quality and physiological metrics used
for evaluating ECG segments in this study are summarized in Table 2 and were calculated fol-
lowing the procedure outlined in Algorithm 2. Algorithm 2 filters dataset D of ECG segments
sj,k from subjects Pj using threshold Θ to produce Dfiltered.

Algorithm 1 Change Point Detection via OIT11-PELT14

Require: A ∈ R3×M ▷ Triaxial ACC data
Require: W ▷ Moving average window size
Ensure: C = {τ1, . . . , τK} ▷ Change points
1: I: Ã = FMA(A,W ) ▷ Smoothing with window W

2: II: FOIT = fOIT(Ã) ▷ OIT feature extraction
3: III: C = fPELT(FOIT) ▷ PELT detection
4: return C

For these selected ECG segments, statistical metrics, Hjorth parameters, autocorrelation,
linear trends, spectral characteristics, wavelet-based features, and heart rate changes were
subsequently extracted. Additionally, features related to SKNA derived from ECG signals6

were calculated. These included metrics such as burst frequency, amplitude, duration, mean
area, threshold, maximum burst amplitude, and baseline statistics.

Algorithm 2 Multi-Criteria ECG Quality Assessment
Require: D = {Pj}Nj=1, Pj = {sj,k}

Mj

k=1 ⊂ RT

Require: Θ = {θSNR, θcorr, θ
min
RMSSD, θ

max
RMSSD, θ

min
SDNN, θ

max
SDNN, θPE}

Ensure: Dfiltered = {P filtered
j }Nj=1

1: for all Pj ∈ D do
2: P filtered

j ← ∅
3: for all sj,k ∈ Pj do
4: π1(sj,k) := I[SNR(sj,k) > θSNR]

5: π2(sj,k) := I[ρtemplate(sj,k) > θcorr]

6: π3a(sj,k) := I[RMSSD(sj,k) ∈ [θmin
RMSSD, θ

max
RMSSD]]

7: π3b(sj,k) := I[SDNN(sj,k) ∈ [θmin
SDNN, θ

max
SDNN]]

8: π3(sj,k) := π3a(sj,k) ∧ π3b(sj,k) ▷ Both HRV metrics valid
9: π4(sj,k) := I[Hperm(sj,k) < θPE]

10: if
∏4

i=1 πi(sj,k) = 0 then
11: P filtered

j ← P filtered
j ∪ {sj,k}

12: end if
13: end for
14: end for
15: return Dfiltered

ACC-derived features were extracted, encompassing movement intensity, motion metrics,
movement patterns, acceleration magnitude, jerk magnitude, signal magnitude area (SMA),
zero-crossing rate (ZCR), energy, decay time, spectral entropy, rotation vector, wavelet-
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based descriptors, maximum movement intensity, and overall statistics derived from Heuris-
tic OIT.11,12 Algorithm 3 performs multimodal feature extraction around change points
C = {τi}Ni=1 using multiple window sizes W = {w1, w2, ..., wK}. For each change point τi, it
creates pre-change (W− = [τi−w, τi)) and post-change (W+ = [τi, τi+w]) windows from 3-axis
accelerometer data Ã ∈ R3×T , OIT features FOIT ∈ R9×T , and ECG signals e ∈ RT . The
algorithm applies the feature extraction functions ΦACC, ΦOIT, and ΦECG to extract respective
features, and then combines these features into comprehensive feature vectors F .

Algorithm 3 ECG & ACC Feature Extraction
Require: Ã ∈ R3×T , FOIT ∈ R9×T , e ∈ RT ▷ ACC, OIT, ECG signals
Require: C = {τi}Ni=1, W = {w1, w2, ..., wK} ▷ Change points, window sizes
Ensure: F = {f−

i,w,f
+
i,w}i,w ▷ Multimodal features

1: for all (τi, w) ∈ C ×W do
2: W− = [τi − w, τi), W+ = [τi, τi + w]

3: for all W ∈ {W−,W+} do
4: ACC features: fACC = ΦACC(Ã|W )

5: OIT features: fOIT = ΦOIT(FOIT|W )

6: ECG features: fECG = ΦECG(e|W )

7: fW = [fACC,fOIT,fECG] ▷ Concatenate all features
8: end for
9: end for

10: return F

2.3. Model Development and Training

Recent studies have investigated the application of various artificial intelligence methodologies
to ACC and ECG data across multiple tasks. These approaches have demonstrated their utility
for anomaly detection and activity classification.11,12,20–28 In line with these advancements, this
study implemented and evaluated two baseline deep learning models to classify patients with
POTS from healthy controls using wearable-derived ECG and accelerometer (ACC) features.

The first model was a Transformer-based classifier29 employing the Attention with Lin-
ear Biases (ALiBi) mechanism.30 This model consisted of six transformer layers, each layer
having a hidden dimension of 128, eight attention heads, and a dropout rate of 0.3. Gradient
checkpointing was applied for memory optimization.

The second model was a hybrid architecture combining Convolutional Neural Networks
(CNN), Bidirectional Long Short-Term Memory (BiLSTM), and self-attention mechanisms
(CNN-BiLSTM-Attention).31,32 The CNN layer contained 64 filters with kernel size 3, followed
by two layers of Bidirectional LSTM units, each with a hidden size of 128. A self-attention
layer was included to emphasize important temporal segments. The packed sequence method
was employed to handle variable sequence lengths.

All models were optimized using Adam with a learning rate of 1 × 10−4, weight decay
of 1 × 10−4, and coefficients set as β1 = 0.9, β2 = 0.999. To mitigate issues related to class
imbalance, Focal Loss was applied with parameters γ = 2.0 and α = 0.25. Training proceeded
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using batches of size 8 for up to 100 epochs.
Data augmentation strategies—including jittering (σ=0.01), scaling (σ=0.1), and permu-

tation (n=4 segments)—were applied to improve model generalization. Additionally, gradient
clipping with a threshold of 1.0 and a ReduceLROnPlateau learning rate scheduler were em-
ployed to ensure stable model training.

To evaluate model performance, a 10-fold stratified cross-validation was performed. The
ratio of POTS patients and control subjects was kept consistent within each fold.

During training in each fold, outliers were identified and handled. Criteria for handling
outliers were determined exclusively from each fold’s training data and consistently applied
to validation data. The standardization process followed the same method.

Performance metrics, including balanced accuracy, sensitivity, specificity, precision, recall,
F1-score, and AUC, were recorded at each training epoch. Confusion matrices for the best-
performing model in each fold were saved. Results from all folds were summarized using means
and standard deviations.

In the holdout evaluation, the model was trained using approximately 70% of the total
dataset, which included data from both POTS patients and control subjects. Additionally,
around 10% of the dataset was separately allocated for validation purposes. Finally, model
performance was assessed using a test dataset comprising roughly 20% of the total data, which
was not utilized at any stage during training or validation. All data splits were performed at
the session level.

Preprocessing parameters, including standardization and criteria for outlier handling de-
termined during training, were consistently applied to the test dataset.

The trained models classified each sample in the test set as either POTS or control. Addi-
tionally, learned feature representations were visualized using dimensionality reduction tech-
niques, enabling comparison between the distributions of test set and those of the training
and validation sets.

3. Results

3.1. Comparative Feature Analysis

Physiological data collected from wearable sensors were analyzed to investigate potential dif-
ferences between individuals diagnosed with POTS and healthy control participants. The
analyzed features included the previously described ECG and accelerometer-derived metrics,
comprising statistical, spectral, morphological, physiological, movement intensity, postural,
spatial, and temporal characteristics.

Welch’s t-tests revealed that a total of 1169 features showed statistically significant differ-
ences between groups after applying the Benjamini-Hochberg false discovery rate correction
(FDR, q < 0.05). Notably significant features with an FDR-adjusted q-value less than 0.001
included SKNA burst duration, heart rate changes, logarithmic-scale complexity measures,
SMA computed both 10 minutes before events and within 10-minute intervals, ECG ampli-
tude maxima over 1-minute intervals, and variance-based principal component characteristics
measured around event intervals (±10 minutes). Detailed statistical results for these significant
features—including exact q-values and 95% confidence intervals—are summarized in Table 3.
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Boxplots of these significant features listed in Table 3 are presented in Figure 2.
Overall, the analysis demonstrated that physiological features extracted within specific

temporal windows around each detected changepoint exhibited statistically significant differ-
ences between POTS patients and healthy control participants. The visualization and statis-
tical assessments further suggested that these features could have potential utility in distin-
guishing between the two groups. These analytical findings provided valuable direction for
selecting meaningful features and designing input features for the development of AI-based
classification models.

Feature FDR q-value 95% CI
ECG max (1 min) <0.001 [0.253, 0.284]
SMA (10 min) <0.001 [0.329, 0.361]
EVR PC2 (10 min) <0.001 [0.371, 0.403]
SKNA burst dur. (5 min) <0.001 [0.231, 0.262]
SKNA burst dur. (10 min) <0.001 [0.226, 0.257]
log Hjorth compl. (10 min) <0.001 [0.198, 0.229]
log Hjorth compl. (5 min) <0.001 [0.192, 0.224]
log Hjorth compl. (1 min) <0.001 [0.181, 0.212]
log Hjorth compl. (30 sec) <0.001 [0.168, 0.199]
HR change (10 min) <0.001 [0.113, 0.144]
HR change (5 min) <0.001 [0.098, 0.130]
HR change (1 min) <0.001 [0.080, 0.112]

Table 3: Detailed Statistical Results for All Features (CP = Changepoint; EVR = Explained
Variance Ratio; dur. = duration; compl. = complexity; HR = Heart Rate)

Note:Welch’s t-test was used for all comparisons. FDR = False Discovery Rate adjusted q-value; CI
= 95% Confidence Interval for effect sizes calculated using Hedges’ g. All listed features are significant
at FDR-adjusted q < 0.001.

3.2. Classification Performance

The generalization performance of each model was evaluated using 10-fold stratified cross-
validation, and the results are summarized in Table 4.

The Transformer model achieved a balanced accuracy of 0.825 ± 0.116, sensitivity of 0.800
± 0.135, and precision of 0.940 ± 0.079. This model also demonstrated specificity of 0.850 ±
0.198, an F1-score of 0.841 ± 0.093, and an AUC of 0.813 ± 0.181.

The CNN-BiLSTM-Attention (CNN-BiLSTM) model exhibited higher scores compared
to the Transformer across all reported metrics, except for precision. Specifically, the model
achieved a balanced accuracy of 0.900 ± 0.084 and sensitivity of 0.950 ± 0.062, indicating a
reduced likelihood of false negatives. Furthermore, this model had specificity of 0.850 ± 0.142

and precision of 0.935 ± 0.062. Additionally, the CNN-BiLSTM-Attention model recorded an
F1-score of 0.939± 0.052 and an AUC of 0.900± 0.103.
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Fig. 2. Comparison of physiological variables between Control and POTS groups

Metric Model Architecture

Transformer CNN-BiLSTM

Balanced Accuracy 0.825 ± 0.116 0.900 ± 0.084

Sensitivity 0.800 ± 0.135 0.950 ± 0.062

Specificity 0.850 ± 0.198 0.850 ± 0.142

Precision 0.940 ± 0.079 0.935 ± 0.062

F1 Score 0.841 ± 0.093 0.939 ± 0.052

AUC-ROC 0.813 ± 0.181 0.900 ± 0.103

Table 4: 10-Fold Cross-validation performance metrics (mean ± 95% confidence interval).

To evaluate the practical performance of the final models trained on the complete dataset,
validation was performed using a holdout test set.

The CNN-BiLSTM model exhibited superior overall validation performance compared to
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the Transformer model, achieving higher balanced accuracy (86.77% vs. 85.01%), sensitivity
(93.55% vs. 90.32%), specificity (96.67% vs. 94.93%), and F1-score (95.08% vs. 93.33%), except
for specificity, which was equal (80% vs. 80%). The complete comparison of these validation
metrics is provided in Table 5, indicating that the CNN-BiLSTM model may be more effective
for classifying this particular dataset than the Transformer model.

Metric Transformer CNN-BiLSTM
Balanced Accuracy 85.01% 86.77%
Sensitivity 90.32% 93.55%
Specificity 80.00% 80.00%
Precision 94.93% 96.67%
F1 Score 93.33% 95.08%

Table 5: Validation performance metrics

Feature space visualization (Fig. 4) further illustrates the capability of the CNN-BiLSTM-
Attention model in distinguishing between POTS patients and healthy controls. Dimensional-
ity reduction techniques, including PCA, t-SNE, and UMAP, applied to the high-dimensional
latent representations transformed by this model, revealed separation between the two groups
in the two-dimensional feature space, indicating effective discrimination. Additionally, the test
set data from POTS patients closely align with the distribution of the existing POTS group,
suggesting the model’s robustness and potential to generalize effectively to new patient data.
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Fig. 3. 10-Fold Cross Validation Results with 95% Confidence Intervals: Model performance com-
parison with mean values and confidence intervals.
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Fig. 4. Feature Space Visualization - CNN-BiLSTM-Attention Model
4. Discussion

The findings of this study suggest potential clinical implications for enhancing the diagnos-
tic approach to POTS. In contrast, the wearable-based methodology employed in this study
facilitates continuous and unobtrusive monitoring of subtle yet potentially clinically relevant
changes in physiological signals, including ECG and accelerometer-derived features, as they oc-
cur naturally in real-world settings. The deep learning models trained on wearable sensor data
demonstrated promising performance in differentiating between POTS patients and healthy
controls. Nonetheless, to establish the robustness of these findings and evaluate their clinical
applicability, it is essential to perform additional validation studies that include expanded
patient cohorts, varied clinical settings, and more comprehensive control-group datasets.

Despite the promising results, several considerations must be acknowledged regarding this
study. First, the dataset used in this research may not fully represent the broad diversity of
clinical conditions and patient populations, suggesting that further validation with larger and
more representative samples is required to enhance the generalizability and clinical applica-
bility of the diagnostic models. Second, this study focused primarily on specific physiological
signals; therefore, integrating additional physiological parameters or external environmental
factors in future research may further improve model generalizability and practical clinical ap-
plicability. In addition, the POTS cohort included both patients taking treatment medications
and those who were not. Therefore, it remains necessary in future research to clarify explicitly
whether the developed classifier is detecting disease-specific signals or instead patterns driven
by medication use or other confounding factors.

Additionally, the physiological parameters analyzed in this research—including features de-
rived from ECG and ACC data—may hold diagnostic promise for conditions beyond POTS,
indicating potential utility across multiple clinical scenarios. Prior studies have shown ECG
and HRV parameters to be valuable in evaluating autonomic dysfunction related to heart fail-
ure, cardiac arrhythmias, and diabetes mellitus.33,34 Likewise, accelerometry-derived metrics
have been successfully utilized in assessing motor abnormalities in neurological diseases such
as Parkinson’s disease and in assessing fall risk among older adults.35,36 Future research may
focus on investigating the potential of these physiological metrics in additional disease con-
texts, thereby supporting the creation of broadly applicable diagnostic technologies targeting
diverse neurological and autonomic conditions.
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5. Conclusion

This study investigated the feasibility of using deep learning techniques with features extracted
from wearable-derived ECG and ACC data to differentiate patients diagnosed with POTS
from healthy controls. The proposed wearable-based approach effectively captured subtle yet
clinically significant physiological variations and symptom patterns occurring naturally in
daily life. It demonstrates its potential to address key limitations of conventional diagnostic
tests such as the tilt-table test. Two deep learning architectures, specifically the Transformer
and hybrid CNN-BiLSTM models, demonstrate promising performance that suggests potential
applicability in real-world clinical scenarios. The proposed integration of wearable-derived
physiological signal analysis and deep learning techniques holds promise for future patient-
centered diagnostics and improved clinical management for individuals with POTS.
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