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Nonmedical opioid use is an urgent public health challenge, with far-reaching clinical and
social consequences that are often underreported in traditional healthcare settings. Social
media platforms, where individuals candidly share first-person experiences, offer a valuable
yet underutilized source of insight into these impacts. In this study, we present a named
entity recognition (NER) framework to extract two categories of self-reported consequences
from social media narratives related to opioid use: ClinicalImpacts (e.g., withdrawal, depres-
sion) and SocialImpacts (e.g., job loss). To support this task, we introduce RedditImpacts
2.0, a high-quality dataset with refined annotation guidelines and a focus on first-person
disclosures, addressing key limitations of prior work. We evaluate both fine-tuned encoder-
based models and state-of-the-art large language models (LLMs) under zero- and few-shot
in-context learning settings. Our fine-tuned DeBERTa-large model achieves a relaxed token-
level F1 of 0.61 [95% CI: 0.43–0.62], consistently outperforming LLMs in precision, span
accuracy, and adherence to task-specific guidelines. Furthermore, we show that strong NER
performance can be achieved with substantially less labeled data, emphasizing the feasi-
bility of deploying robust models in resource-limited settings. Our findings underscore the
value of domain-specific fine-tuning for clinical NLP tasks and contribute to the responsible
development of AI tools that may enhance addiction surveillance, improve interpretability,
and support real-world healthcare decision-making. The best performing model, however,
still significantly underperforms compared to inter-expert agreement (Cohen’s kappa: 0.81),
demonstrating that a gap persists between expert intelligence and current state-of-the-art
NER/AI capabilities for tasks requiring deep domain knowledge. The dataset, annotation
guidelines, appendix, and training scripts are publicly available to support future research.∗

Keywords : Named Entity Recognition; Substance Use; Clinical Impacts; Social Impacts;
In-Context Learning; Large Language Models.

1. Introduction

Nonmedical use of opioids remains a pressing public health challenge in the United States
(U.S.), with more than 8.6 million Americans affected [1]. Opioid-related overdoses have con-
sistently remained a leading cause of accidental death in adults under 45 years of age, signifi-
cantly reducing the average U.S. life expectancy [2]. In addition to fatal outcomes, nonmedical
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opioid use and addiction significantly disrupts social well-being and stability. People experi-
encing emotional distress or social instability, such as unemployment, housing insecurity, or
family disruption, are more likely to initiate or escalate opioid use [3, 4]. Communities affected
by the opioid epidemic often experience increased crime, educational challenges, and economic
instability, further perpetuating cycles of disadvantage [5].

Nonmedical opioid use and subsequent impacts are underreported in clinical settings due
to stigma, criminalization, and distrust of healthcare systems [6], leading to negative health
outcomes [6, 7, 8]. Widespread underreporting creates significant blind spots in public health
surveillance, impeding efforts to detect early warning signs and deliver timely interventions. In
contrast, social media sites like Reddit provide a pseudonymous environment where people feel
more comfortable disclosing sensitive information. Health-related disclosures can include pat-
terns of substance use, clinical symptoms (e.g., withdrawal), overdose risk, and co-occurring
mental health issues [9, 10]. Users also describe social consequences rarely captured in elec-
tronic health records [11], such as strained relationships, family disruption, financial hardship,
unemployment, and social isolation. Analyzing these clinical and social impacts of opioid use
reported on social media is crucial, as research has shown that the frequency and the content of
opioid-related discussions online can mirror official epidemiological trends and provide timely
insights for public health surveillance and intervention [12]. The enormity of the opioid crisis,
which has ravaged the U.S. for almost three decades, requires innovative solutions [13], and
the relative underutilization of social media data, which contains timely information directly
posted by people with lived experiences, remains an untapped opportunity.

Extracting nuanced clinical and social impacts from informal, user-generated content poses
significant challenges for natural language processing (NLP) models. Such content is highly
unstructured, context-dependent, and contains abbreviations and ambiguities. Understanding
the content, thus, requires deep contextual knowledge (e.g., through medical expertise or lived
experience), which generic NLP systems, including large language models (LLMs) typically
lack. Posts frequently express subjective, emotionally charged experiences, making it difficult
for models to reliably map them to predefined categories [14]. There is a critical need to bridge
the gap between expert-level domain-specific knowledge and NLP model capabilities in char-
acterizing and extracting meaningful information from such user-generated content, so that
surveillance systems can be deployed at scale to inform public health strategies, intervention
planning, and, ultimately, reduce the burden of the substance-related overdose epidemic [15].

As an initial exploration of this challenge, our lab introduced a named entity recognition
(NER) dataset—Reddit-Impacts [16]—which was the first to capture both clinical and social
dimensions of substance use. Although promising, efforts employing transformer-based models
and proprietary LLMs (GPT-3.5) revealed several critical limitations in the annotation and
subsequent NLP system performances. A more detailed discussion about these limitations is
provided in Appendix A. To address these shortcomings and enable the development/training
of more effective NLP systems, we update the data set and develop an improved processing
pipeline to automatically identify the clinical and social impacts of non-medical opioid use in
Reddit narratives. Our contributions are summarized below:

(1) We release RedditImpacts 2.0, an improved, task-specific dataset featuring detailed an-
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notation guidelines, consistent entity spans, and exclusive focus on first-person narratives.
(2) We propose an encoder-based framework for accurately extracting impact-related entities

from unstructured social media narratives and systematically evaluate the effectiveness of
various LLMs under zero- and few-shot in-context learning (ICL) settings.

(3) We introduce custom evaluation metrics designed to effectively measure the accuracy and
reliability of models, ensuring they only identify self-reported social and clinical impacts.

(4) We conduct a targeted error analysis and data efficiency evaluation, demonstrating that
strong, scalable performance can be achieved with substantially reduced labeled data,
supporting responsible deployment in resource-limited and underserved settings.

Collectively, these contributions advance the development of human-aligned and trustwor-
thy NLP systems to accurately interpret first-person opioid use narratives from social media.

Findings: Our findings reveal that LLMs underperform in the token-level NER task to
identify clinical and social impacts of nonmedical opioid use in social media posts, whereas
encoder-based models can be fine-tuned to achieve substantially better performance. Via tar-
geted error analysis, we highlight areas where fine-tuned encoders and LLMs differ, illustrating
specific strengths and pitfalls of each. We also show that strong model performance can be
achieved with significantly small training data, emphasizing the feasibility, scalability, and
responsible development of fine-tuned NER models in low-resource and data settings.

2. Related Work

NER involves identifying specific terms or phrases within texts, referred to as “entities”.
Traditionally, NER methods have concentrated on identifying narrow sets of predefined en-
tities. In the biomedical field, for instance, entities include genes, diseases, chemicals, and
proteins [17]. Compared to general or open-domain NER tasks, biomedical NER studies have
received comparatively less scholarly attention because of the paucity of labeled data, the
need for specialized computational models, and gaps in evaluation and benchmarking stan-
dards [18, 19, 20]. Biomedical NER involving social media data adds an additional layer of dif-
ficulty. Texts from such sources are characteristically informal, noisy, and linguistically diverse,
making automated NER particularly difficult [21, 22]. Factors such as non-standard terminol-
ogy, abbreviations, lack of context, and misspellings further amplify NER challenges [22, 23].

Recent advances have overcome many of the abovementioned challenges, demonstrating
the successful use of advanced NER models, including neural network and transformer-based
approaches, to extract entities such as drugs, diseases, and symptoms from posts on platforms
like Reddit and online health forums [24, 16, 25]. Within the broader substance use sphere,
transformer-based language models (BERT-base-NER, RoBERTa-base, BioBERT-base-cased,
and Bio ClinicalBERT) have been utilized to accurately identify opioid-related entities [25].
Scepanovic et al. [24] demonstrated that transformer-based models outperform traditional
BiLSTM-CRF architectures in accurately extracting diverse medical entities such as symp-
toms, diseases, and drug names from social media posts, including Reddit.

The emergence of instruction-tuned LLMs, including Llama 3 [26], Gemma 3 [27], and
GPT-4o [28], which have demonstrated exceptional performance in medical reasoning bench-
marks, have also, in many cases, led to improvements in challenging NER tasks primarily
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through innovative prompting strategies [29, 30, 31]. These prompting techniques enable
models to generalize effectively to previously unseen scenarios with minimal contextual cues,
reducing the need for extensive fine-tuning and thus facilitating efficient biomedical entity
extraction. There is, however, still a research gap in NER for highly imbalanced datasets,
descriptive entities, and in low-shot settings, as demonstrated by past work on the Reddit-
Impacts dataset [16, 32].

3. Methodology

(a) Encoder-Based Pipeline for Impact Entity Recognition

(b) LLM-Based Pipeline for Impact Entity Recognition

Fig. 1: NER framework for detecting Social and Clinical Impacts in user-generated text. In the
output, Clinical corresponds to ClinicalImpacts and Social corresponds to SocialImpacts

.

3.1. Task Overview

We formulate the NER task as a sequence-labeling problem using the BIO (Begin, Inside,
Outside) tagging scheme. This scheme assigns one of three tags to each token: B to indicate
the beginning of an entity, I for tokens that are inside an entity, and O for tokens that lie
outside any entity span. Each tag is further associated with a specific entity type X, resulting
in labels such as B-X (beginning of entity type X) and O (non-entity token).

Given a token sequence, T = [t1, t2, . . . , tn] the model predicts a corresponding sequence
of labels L = [l1, l2, . . . , ln], where each li ∈ {O,B-X,I-X}. This formulation enables the model
to learn both the boundary and the type of each entity span. In our study, we focus on two
domain-specific entity types: ClinicalImpacts, representing physical or psychological con-
sequences of substance use (e.g., “hospitalized”, “depression”), and SocialImpacts, which
denote social, occupational, or relational consequences (e.g., “lost job”, “arrested”). An illus-
tration of a BIO-tagged example with both entity types is shown in Table 1.
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Table 1: Example of BIO-tagged tokens. The phrase “lost my job” is annotated as a
SocialImpacts entity and “depressed” as a ClinicalImpacts entity.

Tokens I lost my job and felt depressed for weeks .

BIO Tag O B-SocialImpacts I-SocialImpacts I-SocialImpacts O O B-ClinicalImpacts O O O

3.2. Data Annotation

Named entities for very specialized problems are expected to be context-dependent, making
annotation of such entities inherently complex [33]. This challenge is exacerbated in the con-
text of social media data, where language is informal, unstructured, and shaped by personal,
lived experiences. Posts related to opioid misuse often contain emotionally expressive narra-
tives, fragmented grammar, and colloquial terms, making it difficult to consistently identify
clinical and social impacts. To meet these complexities, this study included two experienced
annotators with formal linguistic training. Both were guided by a comprehensive and detailed
annotation manual, refined by a subject matter expert, specially designed to address the spe-
cific complexities of clinical and social impact mentions in opioid-related narratives. The full
annotation guideline is provided in Appendix C.

The annotation process followed an iterative design. Initially, a 10% subset of the dataset
was independently annotated by both annotators. This step was critical for aligning their
interpretation of the guidelines, especially in handling variations in language and subtle dis-
tinctions in meaning. Discrepancies were resolved through discussion, leading to refinement
of the guideline. We conducted iterative co-annotation until an agreement accuracy exceeding
95% was achieved. Once this threshold was met, the remaining data were divided between the
two annotators for independent annotation.

We used Cohen’s Kappa [34] across overlapping annotated samples to compute inter-
annotator agreement. The resulting score of 81% indicated substantial agreement, reflecting
almost-perfect agreement [35]. Descriptive statistics of the annotated dataset, including the
total number of posts, tokens, and labeled entities, are summarized in Table 2.

Table 2: Statistics of the annotated Reddit-Impacts NER dataset.

Split Total Posts SocialImpacts Entities ClinicalImpacts Entities Total Entities Total Tokens

Train 842 408 616 1024 17.2K
Dev 258 167 223 390 5.2K
Test 278 256 108 364 6.2K
Total 1378 831 947 1778 28.6K

3.3. Experimental Setup

For training our models, we merged the original training and development datasets to ensure
we utilized the maximum amount of available data. We then set aside approximately 10% of
this combined dataset as a validation set, resulting in roughly a 90/10 split between training
and validation. The test set was kept separate to provide a reliable assessment of how well our
models perform on completely unseen data. To support fine-tuning these models, we leveraged
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a GPU equipped with 48GB of memory (e.g., NVIDIA RTX A6000). Detailed fine-tuning
procedures and settings are provided in Appendix D.1.

3.4. Modeling Approaches

We evaluate three modeling paradigms for our SocialImpacts and ClinicalImpacts detection
NER task: fine-tuning pre-trained language models (PLMs), augmenting PLMs with condi-
tional random fields (CRF), and applying few-shot prompting techniques with large language
models (LLMs). Each of these strategies has been extensively validated in recent NER re-
search, motivating their adoption in our study [36, 37, 38, 39]. Figure 1 provides a visual
summary of our overall modeling pipeline.

3.4.1. Pre-trained language models (PLMs)

We fine-tuned several transformer-based encoder derivatives, namely BERT [40], RoBERTa
[41], DeBERTa [42], RoBERTaNER a, and BioBERT [43]. We replace each model’s standard
classification head with a linear token-level classification layer predicting our BIO-formatted la-
bels. Models are optimized using cross-entropy loss, AdamW optimizer, learning rate schedul-
ing with linear warm-up, and early stopping based on validation-set F1 score.

3.4.2. PLM with CRF (PLM + CRF)

Motivated by prior research demonstrating that adding CRF (Appendix B ) layers significantly
improve NER performance by capturing inter-label dependencies and ensuring valid BIO-tag
transitions [44, 45], we extend each PLM by adding a CRF layer. The CRF replaces the
softmax outputs and decodes the most probable sequence of labels through Viterbi decoding.
Training is performed by minimizing the negative log-likelihood of the true sequences, further
improving tag consistency and producing more coherent spans.

3.4.3. Few-Shot Prompting with LLMs

We explore zero- and few-shot prompting strategies. For each input sequence requiring label-
ing, we perform three key steps. First, we compute the semantic embedding of all training
samples using sentence-BERT [46]. Second, we identify and select the top@K most seman-
tically similar training examples based on cosine similarity to the input sequence. We then
construct a comprehensive prompt, integrating a concise task description, explicit annotation
guidelines (BIO scheme and definitions for ClinicalImpacts and SocialImpacts), the top@K
dynamically selected exemplar token-label sequences, and the target input tokens to be an-
notated. This in-context learning approach leverages the robust semantic understanding and
few-shot inference capabilities of LLMs, eliminating the need for task-specific parameter up-
dates and providing a flexible inference method suited for low-resource or rapid-deployment
scenarios. The prompt is detailed in Appendix D.2.

3.5. Evaluation Metrics: Relaxed F1 Score

We evaluate model performance using a relaxed, token-level F1 scoring method designed for en-
tity recognition tasks involving partial matches. Our approach is inspired by partial-matching

ahttps://huggingface.co/Jean-Baptiste/roberta-large-ner-english
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techniques used in biomedical NLP tasks [47, 48]. Unlike strict span-level matching, which con-
siders only exact boundary matches, relaxed evaluation accounts for partial overlap between
predicted and ground truth entity spans of the same type, capturing cases where predictions
are approximately correct. This evaluation is especially suitable for informal, user-generated
text where exact span boundaries may be difficult to capture. The specific evaluation strategy
formulation is outlined below.

Let each labeled sequence consist of predicted and gold spans represented as:

G = {g1, g2, . . . , gm}, P = {p1, p2, . . . , pn},

where each span gi or pj is defined as a triple (t, s, e), denoting the entity type t, start token
index s, and end token index e.

We define token-level overlap between two spans gi and pj of the same entity type as:

Overlap(gi, pj) = max(0,min(eg, ep)−max(sg, sp) + 1),

where (sg, eg) and (sp, ep) are the token span boundaries of the gold and predicted entities,
respectively.

For each entity type T , we compute:

TPT =
∑

(g,p)∈MT

Overlap(g, p);PT =
∑

pj∈PT

(ep − sp + 1);RT =
∑

gi∈GT

(eg − sg + 1)

where MT denotes the set of span pairs (g, p) of type T with non-zero token-level overlap.
Precision, recall, and F1 score for entity type T are then defined as:

PrecisionT =
TPT

PT
, RecallT =

TPT

RT
, F1T =

2 · PrecisionT ·RecallT
PrecisionT +RecallT

.

We additionally compute a micro-averaged overall F1 score by aggregating overlapping
token counts across all entity types:

Overall Precision =

∑
T TPT∑
T PT

, Overall Recall =

∑
T TPT∑
T RT

,

Overall F1 =
2 ·Overall Precision ·Overall Recall
Overall Precision+Overall Recall

This relaxed overlap-based metric for NER is tailored to informal user-generated content,
where exact boundary prediction is often difficult.

3.6. Error Analysis

To better understand the strengths and limitations of our models, we conducted a qualitative
error analysis comparing the fine-tuned DeBERTa-large model (the best-performing model
among fine-tuned PLMs) and GPT-4o with 3-shot prompting (the top-performing model
among LLMs) on the task of extracting social and clinical impacts.
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4. Results

Table 3 summarizes the overall token-level relaxed precision, recall, and F1 scores with 95%
confidence intervals (CI) for all models described in Section 3.4.

Among fine-tuned PLMs (Table 3(a)), DeBERTa-large achieved the highest overall per-
formance, with an F1 score of 0.61 (95% CI: [0.43, 0.62]), precision 0.75, and recall 0.52,
demonstrating significant improvement over prior approaches reported on this difficult NER
task. Incorporating a CRF layer yielded mixed results across models. For DeBERTa-large,
the F1 score was lower with CRF at 0.57 [0.43-0.59], with overlapping confidence intervals
suggesting statistically insignificant differences. For BERT-large, adding CRF similarly re-
duced F1 from 0.56 [0.38–0.56] to 0.52 [0.36–0.52]. In contrast, RoBERTaNER-large with
CRF achieved an F1 of 0.56 [0.45–0.60], slightly higher than its no-CRF counterpart at 0.51
[0.39–0.53], reflecting modest improvements in recall. Overall, the effect of CRF was minimal
and appeared to depend on the underlying architecture. BioBERT models generally achieved
lower F1 scores compared to other PLMs, reflecting possible limitations in transferring their
specialized clinical language understanding to the informal language context of social media.

Table 3(b) presents the in-context learning performance of LLMs under zero-, 3-, and
5-shot settings. Among these LLMs, GPT-4o achieved the best overall few-shot prompting
performance, with an F1 score of 0.44 [95% CI: 0.37, 0.51] in the 3-shot setting, demonstrating
balanced precision (0.42) and recall (0.46). Llama 3-70b also performed competitively, reaching
an F1 score of 0.41 in the 3- and 5-shot settings. Gemma 3-27b, while lower in absolute
performance, showed a clear benefit from in-context examples, improving from an F1 score of
0.32 [0.27-0.40] in a zero-shot setting to 0.34 [0.33-0.45] in the 3-shot setting.

These results collectively demonstrate that few-shot prompting using semantically similar
examples enhances the performance of LLMs on token-level prediction tasks compared to
zero-shot settings. Nevertheless, even the best-performing LLM (GPT4o, F1 = 0.44) remained
below the best fine-tuned encoder (DeBERTa-large, F1=0.61), emphasizing the advantage of
domain-specific fine-tuning for token-level NER tasks in this domain.

We also report entity-specific token label performance for the best-performing fine-tuned
PLM (DeBERTa-large) and the top-performing few-shot LLM (GPT-4o with 3-shot prompt-
ing) in Table 4. In these two combinations, DeBERTa-large yielded the strongest performance
on both ClinicalImpacts (F1 = 0.60) and SocialImpacts (F1 = 0.50). GPT-4o (3-shot) per-
formed comparably on ClinicalImpacts (F1 = 0.51), but underperformed on SocialImpacts (F1

= 0.26), indicating varying levels of difficulty across entity types.

4.1. Qualitative Error Analysis Results

We identified four major categories of errors: label confusion, missed implicit entities, false
positives due to negation/context errors, and violations of annotation guidelines.

Label confusion (Social vs. Clinical): GPT-4o frequently struggled to differentiate
between social and clinical contexts. For instance, in the sentence “When I was 21... on a
therapeutic community”, the model misclassified the phrase “therapeutic community” as a
SocialImpact, whereas it was correctly annotated as a ClinicalImpact.

Missed implicit entities: Both models exhibited limitations in capturing impacts that
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Table 3: Token-level relaxed precision, recall, and F1 scores with 95% confidence intervals (CI)
across two evaluation settings: (a) Fine-tuned PLMs–evaluated with and without Conditional
Random Fields (CRF). (b) In-Context Learning Performance of LLMs–evaluated under zero-
shot, 3-shot, and 5-shot settings using the most similar examples for prompting. The best-
performing model is highlighted in bold, and the second-best is underlined.

(a) Fine-tuned Pretrained Language Models (PLMs).

Model Precision Recall F1 95% CI

BERT(large-uncased) 0.65 0.49 0.56 [0.38, 0.56]
BERT(large-uncased) + CRF 0.67 0.42 0.52 [0.36, 0.52]
RoBERTaNER(large) 0.67 0.42 0.51 [0.39, 0.53]
RoBERTaNER(large) + CRF 0.59 0.54 0.56 [0.45, 0.60]
DeBERTa(large) 0.75 0.52 0.61 [0.43, 0.62]
DeBERTa(large) + CRF 0.68 0.50 0.57 [0.43, 0.59]
BioBERT(large-cased) 0.60 0.39 0.47 [0.34, 0.52]
BioBERT(large-cased) + CRF 0.63 0.42 0.51 [0.35, 0.53]

(b) In-Context Learning Performance of LLMs under Zero-, 3-, and 5-shot Settings.

Model Prompting Precision Recall F1 95% CI

0-shot 0.29 0.35 0.32 [0.27, 0.40]
Gemma 3-27b-it 3-shot 0.26 0.48 0.34 [0.33, 0.45]

5-shot 0.25 0.48 0.33 [0.32, 0.46]
0-shot 0.46 0.27 0.34 [0.28, 0.37]

Llama 3-70b instruct 3-shot 0.47 0.37 0.41 [0.35, 0.45]
5-shot 0.46 0.37 0.41 [0.33, 0.48]
0-shot 0.43 0.37 0.40 [0.31, 0.43]

GPT-4o 3-shot 0.42 0.46 0.44 [0.39, 0.51]
5-shot 0.39 0.48 0.43 [0.37, 0.51]

Table 4: Entity-specific token-level relaxed precision, recall, F1-score with 95% CI for the top-
performing fine-tuned PLM (DeBERTa-large) and few-shot LLM (GPT-4o, 3-shot).

Model Entity Precision Recall F1-score 95% CI

DeBERTa(large) SocialImpacts 0.63 0.41 0.50 [0.25, 0.62]

ClinicalImpacts 0.80 0.56 0.66 [0.45, 0.67]

GPT-4o(3-shot) SocialImpacts 0.28 0.25 0.26 [0.18, 0.34]

ClinicalImpacts 0.46 0.56 0.51 [0.44, 0.60]

were implied rather than explicitly stated. In the sentence “I was shocked... when I told them
about my addiction and that I was seeking/needed help”, DeBERTa successfully identified
the ClinicalImpact “addiction”, but failed to detect the SocialImpact embedded in the phrase
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“seeking/needed help”. GPT-4o similarly failed, incorrectly labeling isolated words and missing
the intended SocialImpacts entirely.

False positives due to context or negation errors: Both models occasionally pro-
duced false positives when failing to interpret negation or surrounding context accurately. In
the sentence “I am a recovering heroin addict with no criminal record but...”, both DeBERTa
and GPT-4o incorrectly labeled the phrase “criminal record” as a SocialImpact, despite the
explicit negation (“no criminal record”).

Guideline violations and overgeneralization errors: GPT-4o sometimes failed to
adhere to annotation guidelines, including the instruction to annotate only first-person ex-
periences. For example, in the sentence “Helps with the restlessness and anxiety”, the model
labeled “restlessness” and “anxiety” as ClinicalImpacts, despite the absence of first-person
framing. Moreover, GPT-4o exhibited overgeneralization, labeling ambiguous or emotionally
charged terms, such as “blindsided”, “pressuring”, and “treatment”, as ClinicalImpacts, even
when these were contextually neutral or not linked to direct impacts.

5. Discussion

5.1. Bridging Expert Knowledge and Model Intelligence Remains a
Challenge for Complex NER

While our NER models demonstrated improvement over past efforts on the same, challenging
dataset, there remains a significant gap between human-level agreement and model perfor-
mance. Systematically improving the annotation guideline improved IAA, but models failed
to fully capture the nuances of first-person reporting of clinical and social impacts of substance
use. While our study explored strategies to bridge this gap using the Reddit-Impacts dataset,
it generalizes to other NER tasks where deep domain expertise is necessary and in problems
where annotated examples are lexically diverse and low due to dataset characteristics. In the
context of substance use surveillance from social media data, improving NER performance
may lead to the timely detection of emerging impacts of the continuously evolving overdose
epidemic in the U.S. Our work may also shed light on how social media content reflects and
shapes public perceptions of substance use over time, helping identify high-risk groups and
the types of content they engage with, thereby informing development of more targeted and
effective prevention strategies. Automated impact detection can further support the develop-
ment of real-time support systems that connect users with peer or professional support during
moments of crisis, thus strengthening clinical decision-making and public health intervention.

5.2. Error Analysis

Label confusion, prominent in GPT-4o, highlights its difficulty in distinguishing between struc-
tured clinical environments and broader social circumstances, particularly when terminologies
overlap, although these subtle differences are evident to human experts. GPT-4o’s overgen-
eralization errors also revealed its difficulty in handling subtle context-dependent biomedical
terms. Model errors in detecting implicit entities revealed challenges in grasping context-
dependent, nuanced language. Labeling errors in both models’ ability to process negated con-
structs and assess contextual validity prior to labeling. Overall, while GPT-4o offers impressive
generalization through prompting, it tends to misinterpret nuanced or implied information,
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and is more prone to guideline violations and contextual errors. In contrast, the fine-tuned
DeBERTa-large model demonstrated stronger alignment with domain-specific guidelines and
span accuracy. It may be possible to employ ensembling approaches, such as adding a first-
person report classifier prior to processing by an LLM, rather than a single-module pipeline
to improve inference performance.

5.3. Impact of In-Context Learning in LLMs

Our findings indicate that ICL offers marginal performance gains in certain cases. For example,
using 3-shot prompting resulted in a modest improvement of less than 4% in F1 score across all
LLMs compared to the zero-shot setting. However, when we increased the number of examples
to 5, the overall performance declined by ≈1–2%, suggesting that additional examples may
introduce noise or confuse the model’s decision-making process in the NER detection task. The
differences were not statistically significant, as indicated by overlapping 95%-CIs. Overall, we
observe that while ICL may enhance performance to a limited extent, particularly when using
well-selected and minimal examples, increasing the amount of text in the context window may
overwhelm the model, leading to reduced inference performance.

5.4. Sample Size Consideration for Fine-Tuning a Language Model

Fig. 2: F1 score with 95% CIs across training
data sizes. x-axis shows the number of training
samples with the corresponding percentage of
the full dataset; shaded area represents the 95%
CI for each point.

Training a model for specialized tasks can
be expensive due to the need for domain
expert annotation—leading to substantial
time and financial costs [49, 50]; expert an-
notators take 10-30 seconds per sentence to
label named entities [51]. These challenges
are further amplified for of user-generated
biomedical data, which can be context-
dependent, and emotionally nuanced, and
where the demand for annotation quality
is especially high. Consequently, develop-
ing models that can perform well even with
limited annotated data is paramount.

We investigated the amount of an-
notated data required to achieve expert-
level performance using the DeBERTa-
large model, which attained the highest F1

score. Our findings (Figure 2) demonstrate
that F1 score plateaus at approximately 50% of training data, with additional data yield-
ing only minor improvements. This suggests that better strategies for incorporating domain
knowledge may be more effective in improving performance than annotating more data.

5.5. Domain-Specific Fine-Tuning Still Matters for Biomedical NER

Our findings reinforce the growing evidence that prompting alone is insufficient for achiev-
ing state-of-the-art performance in biomedical NER. Despite the flexibility and generalization
capabilities of LLMs, models like GPT-4o and Llama 3-70B underperformed compared to

Pacific Symposium on Biocomputing 2026

22



domain-specific encoders fine-tuned on task-relevant labeled data. In our experiments, even
the best-performing LLM using in-context learning (few-shot prompting) failed to match the
F1 score of the top fine-tuned encoder model, DeBERTa-large. These results align with some
recent studies showing that LLMs, when used without task-specific fine-tuning, struggle to
surpass traditional encoder architectures in specialized biomedical settings [39, 36]. One under-
lying limitation is that token-level NER tasks—particularly in biomedical contexts—require
models that can interpret the structured label schemes such as BIO tags and manage domain-
specific terminology, which may include rare and unseen tokens. Prompting strategies, which
do not modify the model’s internal weights, are often insufficient to capture these nuances.
In contrast, fine-tuning involves updating the model’s parameters through supervised train-
ing, which allows the model to learn domain-specific representations and labeling conventions
more effectively. The relatively stable and accurate performance of fine-tuned PLMs in struc-
tured biomedical NER tasks highlights the continued importance of fine-tuning, particularly
in domains where general-purpose LLMs still fall short.

5.6. Limitations

We acknowledge some limitations in our study. First, the dataset used for training is rela-
tively small, resulting in suboptimal performance. Second, while our fine-tuned encoder-based
models achieved strong performance, they are still struggle with capturing nuanced, context-
dependent expression–especially when entities are implied rather than explicitly stated. Incor-
porating additional contextual signals or auxiliary tasks could further enhance the performance
of the model. We also observed that social impacts are harder to detect than clinical impacts.
This might be due to the fact that social impact expressions have higher lexical variability and
non-clinical concepts are not as well defined as clinical ones. Lastly, though we evaluated LLMs
under zero- and few-shot in-context learning settings, we did not explore instruction-tuned
version of these models or feedback from error analysis to refine prompts. In future work, we
aim to explore these approaches, along with multi-agent architectures, to better adapt LLMs
for domain-specific entity recognition applicable to other types of texts (e.g., clinical notes).

6. Conclusion

We explored strategies for extracting social and clinical impacts from first-person narratives
related to substance use, using the refined and high-quality RedditImpacts 2.0 dataset. Our
best-performing fine-tuned encoder model, DeBERTa-large, achieved a relaxed token-level F1

score of 61%, significantly outperforming the best-performing LLM (GPT-4o), which achieved
an F1 score of 44%—a 17% gap. This performance gap highlights the current limitations
of prompting-based LLMs in specialized NER tasks without fine-tuning. Furthermore, our
data efficiency analysis revealed that using only 50% of the balanced dataset was sufficient to
achieve performance comparable to training on the full dataset, suggesting that high-quality,
domain-specific annotations, even in moderate quantities, can yield strong results.
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