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We present SeizureFormer, a Transformer-based model for long-horizon seizure risk fore-
casting (1–14 days) using structured biomarkers—interictal epileptiform activity (IEA) and
long episodes (LE)—extracted from responsive neurostimulation (RNS) systems. Unlike
prior models based on raw scalp EEG, SeizureFormer leverages stable RNS biomarkers
and integrates multi-scale CNN patch embedding, cross-variable temporal convolution, and
squeeze-and-excitation attention to capture both short-term fluctuations and long-term
seizure cycles. Tested across five patients and multiple prediction windows (1–14 days),
SeizureFormer achieved state-of-the-art performance with mean ROC AUC of 79.44%
and mean PR AUC of 76.29% across five patients and four prediction windows. Com-
pared to statistical, classical ML, and deep learning baselines, it demonstrates superior gen-
eralizability under class imbalance. Clinically, it enables actionable multi-day forecasting,
supporting personalized and proactive intervention in epilepsy care by forecasting seizure-
related events 1 to 14 days ahead.
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1. Introduction

Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable
seizures, affecting over 50 million people worldwide.1,2 A central clinical need is the abil-
ity to detect or forecast seizure risk in advance, enabling timely intervention and improved
patient management.2,3

Seizure risk detection generally falls into two categories: seizure classification and seizure
forecasting. Early research predominantly focused on seizure classification, which aims to
detect ongoing or imminent seizures by identifying ictal or pre-ictal segments from recent EEG
recordings. In contrast, seizure forecasting aims to estimate the probability of future seizure
occurrence over longer horizons-often days in advance-without access to EEG signals from
the forecasted time window, relying solely on historical neural activity.4,5 While classification
supports reactive interventions, forecasting offers a critical opportunity for preventive care
and long-term planning.

Early efforts in seizure forecasting primarily relied on scalp EEG recordings combined
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with statistical or deep learning models.4,5 However, scalp EEG signals are inherently non-
stationary and highly susceptible to physiological and environmental factors such as brain
state transitions, medication effects, fatigue, and electrode shifts.6,7 These fluctuations make
it difficult to model consistent long-term patterns, often requiring frequent retraining and
resulting in poor generalization across patients—especially for multi-day prediction settings.8

As an alternative, responsive neurostimulation (RNS) systems extract seizure-related sig-
nals such as interictal epileptiform activity (IEA) and long episodes (LE), which are validated
seizure risk indicators that reflect sustained EEG abnormalities associated with cortical ex-
citability.9,10 These structured features offer a more stable and interpretable basis for seizure
risk assessment compared to scalp EEG. Recent studies leveraging RNS biomarkers have ex-
plored statistical,8 machine learning, and deep learning methods11 for seizure risk forecasting,
achieving promising results yet several critical limitations remain:

• Limited multi-scale modeling ability: RNS data exhibits multi-scale temporal pat-
terns, including daily, weekly, and potentially longer-term rhythms.12 However, existing
work often fails to capture these complex temporal dependencies, focusing either on
narrow time windows or specific periodicities.

• Limited capacity to model both short-term and long-term dependencies:
Seizure risk is influenced by both immediate neural fluctuations and long-range histor-
ical patterns. While statistical models effectively capture long-term trends, they lack
the resolution for short-term dynamics. Conversely, common deep learning models ex-
cel in local pattern recognition but struggle with integrating seizure periodicities across
time scales.8,11 A unified approach that can jointly model both short-term variability
and long-term seizure cycles is needed.

• Overreliance on raw RNS data, leading to high personalization require-
ments: Many existing models rely heavily on raw RNS recordings, which are noisy,
complex, and patient-specific. This often requires extensive per-patient training and
limits generalizability.9,10 Shifting towards more structured and stable biomarkers could
improve model scalability and clinical applicability.

To address these challenges, we propose SeizureFormer—a deep learning model that jointly
captures multi-scale seizure dynamics, bridges short- and long-term dependencies, and reduces
reliance on raw patient-specific data. In essence, we are faced with three key challenges. First,
how to extract seizure-relevant features from time-series signals with varying peri-
odicity? We address this by employing a CNN-based patch embedding module with multiple
kernel sizes, allowing the model to capture both short-term fluctuations and long-term cy-
cles from the input signals. Additionally, we introduce a Cross-Variable Temporal 2D Conv
(CVT-Conv) module to explicitly model local interactions and aggregate contextual informa-
tion across different A+B pattern channels. The integration of these two modules is critical
for effectively modeling epileptic activity across multiple temporal scales and compensating
for the Transformer’s limited inductive bias toward locality and temporal hierarchy. Sec-
ond, how to bridge the gap between short-term and long-term forecasting, which
are often handled separately in prior work? We tackle this by introducing a hierar-
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chical Transformer architecture that jointly models local and global temporal dependencies,
enabling unified forecasting across different time horizons. Third, how to reduce model
dependence on raw, highly individualized EEG signals? Instead of using raw RNS
data, we leveraged the RNS system’s continuous monitoring of EEG-based hyperexcitable
patterns (A/B spike detections and long episodes) to reduce the reliance on raw signal pro-
cessing. Together, these components form SeizureFormer, a robust solution for generalized,
multi-timescale seizure risk forecasting.

Our model demonstrates leading performance across multiple evaluation settings. Exten-
sive experiments show that SeizureFormer achieves the highest ROC AUC (79.44%) and
PR AUC (76.29%), significantly outperforming baseline statistical and recurrent mod-
els. Furthermore, our approach extends seizure forecasting beyond conventional short-term
windows, enabling multi-day (1-14 days) risk estimation, which is critical for clinical
decision-making and patient management. Our contributions can be summarized as follows:

(1) We develop the first Transformer-based model for seizure risk forecasting, SeizureFormer,
capable of capturing both short-term fluctuations and long-horizon seizure cycles. This
enables accurate seizure forecasting across different time scales up to 14 days ahead,
addressing the limitations of prior approaches.

(2) Our model relies on A+B spike patterns and Long Episodes (LE) as seizure risk proxies,
reducing dependence on large volumes of raw EEG data while maintaining predictive
robustness and generalizability.

(3) Extensive experiments demonstrate that SeizureFormer outperforms statistical and deep
learning baselines in both short-term and long-term seizure forecasting, achieving superior
predictive accuracy and clinical applicability.

2. Related Works

EEG-based Seizure Risk Forecasting: Traditional seizure forecasting models rely on scalp
EEG data, using statistical and deep learning methods to estimate seizure risk. Statistical ap-
proaches such as Poisson regression, GLMs, and logistic regression model seizure probability
through probabilistic frameworks.13 Proix’s study8 showed that multi-day seizure cycles could
be captured using Poisson regression on long-term iEEG, achieving above-chance forecasting
in approximately 66% of patients. While effective for modeling cyclic trends, these methods
struggle with the fine-grained temporal resolution required for real-time forecasting. To ad-
dress this, deep learning models like RNNs, GRUs, and LSTMs have been applied to capture
sequential dependencies in EEG signals.14,15 Though they improve short-term prediction, they
face limitations in modeling long-range patterns and generalizing across patients,16 partly due
to the variability of raw scalp EEG.6,7 Recent studies have attempted to incorporate multi-day
periodicity and additional physiological biomarkers such as heart rate (HR) and skin conduc-
tance (SC).16 However, few approaches integrate both short-term fluctuations and long-term
seizure cycles, limiting their clinical applicability.

RNS-Based Seizure Risk Forecasting: The RNS system, compared to raw scalp EEG,
provides more stable and temporally correlated biomarkers such as interictal epileptiform ac-
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tivity (IEA) and long episodes (LE),9,10 making it a reliable source for seizure-related forecast-
ing. Several studies have explored this potential: a past study17 demonstrated the feasibility of
using statistical and classical machine learning methods, including SVM and random forests,
to forecast seizure frequency from long-term RNS recordings, capturing meaningful patient-
specific temporal patterns with AUC ranging from 70% to 89%. Deep learning approaches
have also been applied; for example, Constantino18 and Peterson11 utilized CNN-based mod-
els for seizure detection and onset prediction, achieving high accuracy on short-term tasks.
While these studies show strong potential for leveraging structured RNS data, they still face
limitations: most models heavily rely on patient-specific features and require extensive per-
patient training due to the raw, individualized nature of RNS signals. Moreover, few models
have explored unified architectures capable of simultaneously capturing short-term variability
and long-term seizure periodicity from RNS-derived features.

Long-Term Seizure Risk Forecasting: Recent work has extended seizure prediction from
short- to long-term horizons using RNS data. For example, Yang’s study19 showed that Pois-
son regression with SVMs achieves AUCs above 70% for up to 6-day forecasts, highlighting
the potential of cyclic RNS features. However, most models target short or long-term pat-
terns in isolation, and few explore learning both simultaneously. To address this, we propose a
Transformer-based model that captures short-term fluctuations and long-range dependencies
via multi-head self-attention. Compared to GRUs and LSTMs, Transformers mitigate vanish-
ing gradients and better capture long-range periodicity through global attention mechanisms.
We also benchmark statistical, classical ML, and deep learning baselines, showing that our
approach achieves superior performance in modeling seizure dynamics across time scales.

3. Methods

In this section, we first present a general problem formulation for seizure risk forecasting. We
then describe how RNS-derived features are utilized to support the forecasting process.

3.1. Problem Formulation and Feature Selection

Problem Formulation: We formulate seizure risk forecasting as a binary risk estimation
task, where the objective is to predict whether a given day falls into a high-risk seizure
period based on historical biomarkers of brain excitability. Given an input time series X =

[xt−n,xt−n+1, ...,xt] ∈ Rn×d, where xt represents the extracted feature set at time t, d is the
feature dimension (i.e., the number of input variables), and n is the sequence length, defining
the number of past time steps. The goal is to estimate the seizure risk for the subsequent h

days. In this study, we evaluate four forecasting horizons: h ∈ 1, 3, 7, 14.

yh = f(xt−n,xt−n+1, ...,xt), (1)

where yh ∈ {0, 1} is a binary label determined by the presence of long episodes.

RNS-Based Feature and Label Selection: Due to the non-stationary nature of raw scalp
EEG, we chose to use data collected by the RNS system. While raw RNS data can still be
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varying among different patients and across time, some clinically relevant biomarkers can be
extracted from raw RNS data to represent seizure proxy in a more stable way. To capture these
clinically relevant dynamics, we extract two structured biomarkers from the RNS system:

• A+B Patterns (IEA Surrogate Biomarkers): The RNS system continuously mon-
itors electrocorticographic activity and detects patient-specific epileptiform discharges.
These patterns provide a structured time-series representation of cortical excitability,
making them a more stable biomarker for seizure forecasting compared to raw EEG. For
each device with two channels, we extract Pattern A and B from both channels to get two
combined features: Pattern A + B on Channel 1 and Pattern A + B on Channel 2. These
serve as the input features xt ∈ R2, and the full input sequence X = [xt−n, . . . ,xt] ∈ Rn×2

is used to predict the seizure risk label yh.
• Long Episodes (LEs) as Seizure Risk Indicators: The RNS system also records Long
Episodes (LEs), defined as sustained abnormal electrocorticographic activity exceeding a
predefined duration threshold. Prior studies have shown that LE occurrences correlate
strongly with seizure likelihood, making them an effective proxy for defining high-risk
periods.9 In our formulation, the binary label yh ∈ {0, 1} is determined based on LE
activity: we assign yh = 1 if the cumulative LE count or duration in the forecasting window
exceeds a patient-specific threshold, indicating a high-risk period; otherwise, yh = 0.

3.2. Our Proposed Model: SeizureFormer

Fig. 1. Overall framework of SeizureFormer.
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As shown in Fig. 1, SeizureFormer is composed of two functional components that first
extract multi-scale temporal features and then model contextual risk dependencies for long-
term seizure forecasting. Both of the modules will be explained below:
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Multi-Scale Temporal Feature Extractor: The first stage of our model is the Multi-
Scale Temporal Feature Extractor, which decomposes multichannel A+B signals into
temporally and spatially enriched representations suitable for downstream modeling.

We begin by applying patching to each input channel independently. To effectively cap-
ture local seizure-relevant patterns, each univariate time series X ∈ RN×1 is segmented into
overlapping temporal windows, or patches, of length P and stride S:

Xp = {Xt:t+P | t = 1, S, 2S, ..., N − P}, (2)

Xp ∈ Rp×P , (3)

where P is the patch length, S is the stride, and p = ⌊(N − P )/S⌋ + 1 is the number of
resulting patches. This process reduces redundancy and enables the model to encode fine-
grained temporal structure.

After patching, we perform CNN patch embedding to extract temporal features from
each patch at multiple resolutions. This design mimics clinical intuition: seizures can manifest
as both brief transients and prolonged patterns. Multi-kernel CNNs enable the model to
concurrently detect different temporal signatures. The patch sequence Xp is processed by K

parallel 1D convolutional layers with kernel sizes {k1, . . . , kK}, each producing a feature map:

P(i) = Conv1Dki
(Xp), (4)

P(i) ∈ Rp×di , (5)

d1 = · · · = dK , i = 1, . . . ,K, (6)

where Conv1Dki
(·) denotes a convolution with kernel size ki. The outputs are concatenated to

form the final patch embedding:

P = Concat
(
P(1), . . . ,P(K)

)
, P ∈ Rp×d′

, (7)

where d′ =
∑K

i=1 di. To preserve the ordering of patches, we add a learnable position encoding:

Pd = WPP+Wpos, Pd ∈ Rp×D, (8)

where WP is a trainable projection matrix and Wpos is a learnable position encoding.
Once patch-wise features have been extracted and embedded, we enhance the represen-

tation further using the Cross-Variable Temporal 2D Conv module. While the previous
steps capture intra-channel patterns, this component explicitly models interactions across dif-
ferent A+B channelscapturing dependencies across spatially separated brain regions. This
allows the model to learn coordinated dynamics that may underlie seizure generation. We
first reshape the patch embeddings into a 4D tensor X ∈ RB×d×p×D, where B is the batch size,
d is the number of channels, p is the number of patches, and D is the embedding dimension.
Then, a 2D convolution is applied over the (d, p) grid:

X′ = Conv2DK(X), X′ ∈ RB×d×p×D. (9)

These enhancements introduce inductive biases that help the model learn local and inter-
channel patterns.
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Contextual Risk Modeling Module: The second component of SeizureFormer is theCon-
textual Risk Modeling Module, which integrates local features extracted by the previous
stage and models global temporal dependencies to predict seizure risk.

Starting from the output of the previous convolutional step, we have a 4D tensor X′ ∈
RB×d×p×D, where B is the batch size, d the number of channels, p the number of patches,
and D the embedding dimension. To capture long-range dependencies across time for each
channel, we apply Multi-Head Self-Attention (MHSA) to the patch dimension. For each
attention head j ∈ {1, . . . , h}, the output is computed as:

SAj(Pd) = softmax

(
(PdW

Q
j )(PdW

K
j )⊤

√
dk

)
(PdW

V
j ),

MultiHead(Pd) =
(∥∥h

j=1
SAj(Pd)

)
·WO,

(10)

where WQ
j ,W

K
j ,WV

j are projection matrices for the queries, keys, and values respectively, WO

is the output projection, and dk = D/h is the per-head dimension. This mechanism allows the
model to learn contextualized representations of each patch in the sequence.

Following attention, we further enhance the representation using a Squeeze-and-
Excitation Feature Recalibration block. This lightweight module adaptively emphasizes
the most seizure-relevant channels by learning to reweight their contributions based on global
context. It first summarizing the information from each channel via global average pooling:

gb,d =
1

p ·D

p∑
a=1

D∑
c=1

Xb,d,a,c, (11)

and then passing this summary through a two-layer feedforward network:

s = σ (W2 ·ReLU(W1g)) , XSE = X′ · s.unsqueeze(-1).unsqueeze(-1), (12)

where W1,W2 are learnable parameters and σ is the sigmoid activation. This recalibration
allows the model to focus on the most informative spatial patterns while suppressing less
relevant activity, improving robustness to noise and channel variability.

The final step is Seizure Risk Prediction. We flatten the recalibrated tensor XSE to
obtain a global representation H, which is passed through a fully connected layer with dropout
and sigmoid activation:

Ŷ = σ(WH+ b). (13)

This produces a scalar probability representing the likelihood of a high-risk seizure period for
the given input.

The model is trained using binary cross-entropy loss, which is well-suited for imbal-
anced binary classification tasks:

L = − 1

M

M∑
i=1

(
yi log Ŷi + (1− yi) log(1− Ŷi)

)
, (14)

where yi is the ground truth label, Ŷi is the predicted probability, and M is the batch size.

Pacific Symposium on Biocomputing 2026

91



4. Experimental Settings

4.1. Datasets

Our study uses electrocorticographic data from patients with implanted RNS devices. Rather 
than raw spectrograms, we extract IEA surrogate biomarkers as features and LEs as seizure 
risk indicators. The dataset comprises recordings from five patients, each identified by a unique 
RNS Patient ID, and collected at the Emory Epilepsy Center. The daily recordings span from 
3,030 to 6,953 days per patient. These patients were selected based on the availability of 
ultra-long-term monitoring data and clinically validated seizure annotations. The dataset is 
partitioned into 70% training, 10% validation, and 20% testing sets.

4.2. Data Preprocessing and Labeling

To account for inter-patient variability and device reprogramming effects, we n ormalize the 
A+B pattern counts using patient-specific Z-scores:

Zt =
Xt − µ

σ
, (15)

where Xt is the A+B count at time t, and µ, σ are the mean and standard deviation across 
all visits. High-risk days (Yt = 1) are defined as days where the LE count exceeds 70% of the 
mean over the past 60 days, a threshold that approximates when patients typically transition 
into higher seizure vulnerability states. This adaptive strategy, informed by clinician input, 
reflects evolving seizure patterns and maintains robustness across clinical stages.

4.3. Data Visulization

To illustrate both macro-level trends and finer variability, we visualized 1000-day segments of 
normalized A+B patterns with corresponding LE risk labels in Fig.2.

2000 2200 2400 2600 2800 3000
Time Index

data/processed/0107

data/processed/0432

data/processed/0471

data/processed/0475

data/processed/0477

Line = A+B Patterns Square = LE risk label

Fig. 2. A+B patterns and LE risk labels over a 1000-day period. The line represents normalized
A+B patterns, while the square markers indicate high risk labels.

These samples were selected for their size and to represent diverse seizure risk profiles
across patients. Fig. 2 shows that clear differences emerge across patients: Patient 0475 and
Patient 0432 show periodic high-risk patterns—short cycles for 0475 and long, irregular ones
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for 0432—affecting predictability. Patient 0471 exhibits short, frequent cycles with high A+B
variability, indicating unstable risk dynamics. In contrast, Patients 0477 and 0107 show pro-
longed high-risk periods and noisy A+B patterns, suggesting persistent ictal-interictal states
and increased forecasting difficulty.

4.4. Evaluation Metrics

According to the label distribution shown in Fig. 2, the label distribution for all patients
is imbalanced. Thus we use Area Under the Receiver Operating Characteristic curve (ROC
AUC) and Area Under the Precision-Recall curve (PR AUC) as the primary metrics.20

4.5. Implementation Details

Models undergo extensive hyperparameter tuning. We set the learning rate to 0.003, hidden
dimension (D) to 128, batch size to 2048, and weight decay to 0.0001. The model uses 3 input
channels (enc in = 3), 2 decoder input channels (dec in = 2), and 3 output channels (c out
= 3). The Transformer encoder comprises 3 layers with 2 attention heads and feedforward
dimension 1024. Dropout is set to 0.2 to prevent overfitting. To address class imbalance, we
apply class weighting in the loss function using a pos weight derived from the ratio of negative
to positive samples per patient. Experiments are conducted on an NVIDIA TITAN RTX
(24GB VRAM) with CUDA 12.4. Models are trained for up to 30 epochs with early stopping
(patience = 5), based on validation AUC.

4.6. Baseline Models

We compare SeizureFormer with baselines across three categories: statistical, machine learning,
and deep learning. Statistical models, including Generalized Linear Models (GLM) and Poisson
Regression,21,22 provide interpretable baselines suited for structured medical data. For classi-
cal machine learning, we test Support Vector Machines (SVM)23 and Logistic Regression,22

which are effective for binary classification using structured features. Deep learning models in-
clude GRU-LSTM24 for capturing long-range dependencies, DLinear25 for decomposing trend
and seasonality in time series, Informer,26 which introduces a ProbSparse self-attention mech-
anism for efficient long-sequence forecasting, and PatchTST,27 a Transformer-based model
that leverages patching and global attention for improved forecasting.

5. Experimental Results

In this section, we present our experimental results, structured around four key research ques-
tions (RQs) to systematically evaluate the performance of our proposed model, SeizureFormer,
in seizure risk forecasting.

(1) RQ1: Does SeizureFormer outperform baseline models?
(2) RQ2: How does the prediction window (PredLen = 1, 3, 7, 14 days) affect performance?
(3) RQ3: How do different patients’ ictal patterns influence model performance?
(4) RQ4: How do different components affect the performance of SeizureFormer?

Pacific Symposium on Biocomputing 2026

93



Table 1. Seizure Risk Forecasting Results. The table presents each model’s seizure risk forecast-
ing performance under different settings. Mean ROC AUC and Mean PR AUC are also calculated
to show the overall performance of each model. The best performance is bold and the second best
is underlined.

Patients 0107 0432 0471 0475 0477 Average

Models Pred ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

GLM

1 59.5% 37.6% 77.8% 19.6% 68.9% 55.9% 95.9% 88.7% 81.2% 67.1%
71.32% 64.34%3 55.2% 51.5% 69.8% 21.8% 67.6% 76.3% 92.5% 86.8% 76.8% 75.8%

7 58.7% 70.2% 53.4% 25.9% 67.5% 87.3% 90.2% 87.0% 80.4% 88.4%
14 58.2% 81.7% 21.5% 69.4% 95.3% 86.4% 84.1% NA NA NA

Poisson Regression

1 62.7% 48.8% 78.0% 27.1% 67.7% 54.7% 96.2% 90.8% 80.8% 65.9%

71.20% 65.24%
3 54.6% 51.3% 78.8% 33.5% 63.0% 73.6% 93.6% 88.5% 71.5% 69.4%
7 59.8% 70.6% 72.1% 31.2% 59.6% 85.7% 90.5% 87.6% 76.9% 87.2%
14 65.0% 82.8% 38.2% 17.2% 61.6% 93.7% 82.2% 79.9% NA NA

Logistic Regression

1 62.4% 44.9% 82.3% 22.3% 68.4% 54.8% 94.8% 87.1% 79.3% 62.6%

73.13% 64.94%
3 53.9% 49.1% 77.9% 28.2% 65.3% 73.8% 93.2% 87.6% 76.6% 74.6%
7 55.3% 66.7% 70.9% 31.7% 68.7% 88.1% 90.4% 87.4% 81.3% 89.2%
14 59.1% 82.2% 54.3% 25.3% 69.8% 95.3% 85.6% 82.9% NA NA

SVM

1 60.4% 39.4% 64.4% 16.4% 68.8% 55.2% 95.8% 88.5% 79.3% 63.0%

71.35% 63.92%
3 55.5% 51.3% 72.9% 22.9% 68.1% 76.1% 93.3% 87.9% 75.5% 71.8%
7 57.3% 68.4% 62.1% 27.0% 67.5% 88.0% 90.6% 87.4% 81.3% 89.2%
14 57.7% 81.4% 50.8% 22.9% 69.0% 95.2% 85.4% 82.4% NA NA

DLinear

1 70.9% 57.7% 46.2% 8.96% 68.9% 55.9% 96.9% 92.0% 81.8% 67.6%

72.83% 65.97%
3 52.9% 52.9% 73.4% 22.7% 69.4% 78.0% 93.6% 88.9% 79.3% 78.6%
7 47.1% 61.6% 84.2% 37.2% 69.1% 89.5% 88.2% 85.1% 79.0% 89.6%
14 52.5% 77.5% 80.6% 35.6% 69.5% 95.2% 80.3% 78.9% NA NA

GRU LSTM

1 58.2% 81.7% 82.5% 32.4% 68.5% 56.3% 97.6% 93.3% 83.9% 68.4%

73.16% 71.05%
3 67.9% 66.2% 87.8% 54.3% 70.8% 78.7% 94.7% 88.9% 76.7% 73.5%
7 64.5% 75.1% 76.8% 30.8% 58.4% 88.1% 90.2% 86.2% 50.0% 85.2%
14 45.6% 77.6% 35.1% 51.9% 51.9% 85.7% 82.6% NA NA NA

Informer

1 54.2% 64.1% 53.0% 54.7% 54.0% 67.7% 90.2% 89.3% 77.8% 66.7%

65.65% 69.82%
3 61.3% 66.9% 83.7% 28.8% 61.4% 68.8% 88.7% 82.7% 66.8% 66.8%
7 67.7% 80.1% 54.2% 29.8% 58.7% 82.7% 85.4% 86.1% 56.6% 79.9%
14 65.1% 88.0% 46.2% 38.5% 42.3% 90.1% 84.9% 84.8% NA NA

PatchTST

1 74.2% 63.9% 93.2% 62.4% 66.4% 46.0% 97.1% 91.7% 78.2% 62.7%

76.41% 73.07%
3 52.0% 45.4% 92.6% 59.6% 69.6% 76.4% 94.5% 89.9% 77.4% 78.7%
7 53.7% 70.8% 87.4% 49.5% 73.1% 91.0% 91.2% 88.0% 78.8% 89.2%
14 28.9% 64.3% 83.9% 78.5% 74.6% 95.9% 85.0% 84.5% NA NA

SeizureFormer

1 74.2% 53.5% 94.7% 61.6% 70.3% 59.2% 97.1% 93.4% 84.8% 73.0%

79.44% 76.29%
3 61.4% 68.1% 92.2% 77.8% 71.0% 76.7% 94.8% 90.8% 80.6% 80.7%
7 47.7% 64.6% 87.9% 52.3% 71.8% 90.6% 92.7% 88.3% 81.6% 90.7%
14 64.7% 83.1% 85.5% 64.6% 73.3% 95.7% 86.0% 84.9% NA NA

5.1. RQ1: Overall Model Performance

To evaluate whether SeizureFormer outperforms baseline models, we first analyze the over-
all model performance, disregarding the effects of prediction length (PredLen) and patient-
specific variations. Table 1 presents the ROC AUC and PR AUC scores across all patients
and PredLen values. SeizureFormer achieves the highest average ROC AUC (79.44% ) and PR
AUC (76.29% ), surpassing all baseline models. The second-best performing model, PatchTST,
achieves 76.41% ROC AUC and 73.07% PR AUC, while other deep learning models, such as
GRU-LSTM, also demonstrate strong performance but fall short of SeizureFormer. Traditional
statistical and classical machine learning models, including Logistic Regression, Poisson Re-
gression, GLM, and SVM, yield lower mean PR AUC scores, reflecting their limited capacity
to model complex temporal dynamics and address severe class imbalance. These results estab-
lish SeizureFormer as the most effective model overall, though further analysis is needed to
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assess its robustness across different prediction lengths and patient cases. Examining patient-
specific performance, SeizureFormer achieves top performance for four out of five patients,
demonstrating strong generalization across different seizure patterns. For Patient 0477, where
long-term forecasting becomes challenging due to sparse or inconsistent label availability at
longer prediction windows PredLen = 14, SeizureFormer still outperforms other models in
shorter forecasts. GRU-LSTM exhibits strong performance in some cases but struggles with
consistency, particularly for longer PredLen. These results confirm SeizureFormer as the most
effective model for seizure risk forecasting.

5.2. RQ2: Impact of Prediction Window

To analyze the impact of prediction window length on model performance, we evaluate trends
in both ROC AUC and PR AUC scores across different PredLen values. Table 1 provides
the full performance breakdown. A general pattern emerges where shorter PredLen values
(1, 3 days) yield higher ROC AUC scores, while longer PredLen values (7, 14 days) lead
to higher PR AUC scores. For PredLen = 1, 3 days, models show higher ROC AUC, with
deep learning models (SeizureFormer, PatchTST, GRU-LSTM) performing consistently well.
Traditional models (e.g., Poisson Regression, SVM) show weaker and less stable performance.
For PredLen = 7, 14 days, PR AUC improves, reflecting better long-term risk trend capture.
Deep learning models handle class imbalance more effectively, with SeizureFormer exceeding
80% PR AUC and GRU-LSTM often above 70%. Statistical models frequently fall below 50%.
The trade-off between ROC AUC and PR AUC highlights the balance between short-term
precision and long-term generalization. SeizureFormer performs robustly across all PredLen
values. However, while most models benefit from longer prediction horizons, we observe a
consistent PR AUC decline forPatient 0475 (e.g., SeizureFormer: 93.4%→84.9%, PatchTST:
78.2%→80.9%, Poisson Regression: 90.8%→79.9%, SVM: 88.5%→82.4% ). As shown in Fig.2,
this patient’s highly periodic seizure pattern likely causes temporal misalignment in long-
window predictions, leading to false positives during low-risk phases and reduced PR AUC.

5.3. RQ3: Inter-Patient Variation

To investigate the impact of different patients’ ictal patterns on model performance, we analyze
how seizure forecasting varies across individuals. Given the variability in seizure occurrence
and EEG characteristics, it is essential to assess whether certain models maintain consistent
performance across different patients. Table 1 shows that forecasting performance varies widely
across patients. Some (e.g., 0475 ) consistently achieve high scores, while others (e.g., 0432 )
show large fluctuations, indicating varying signal clarity and model sensitivity. SeizureFormer
performs most consistently, while GRU-LSTM shows more variation. Statistical models often
fail on patients with complex patterns. Model performance is strongly patient-dependent, with
SeizureFormer generalizing better than other baselines.

5.4. RQ4: Ablation Study of Model Components

To assess each component’s contribution, we performed ablation studies on Patient 0477,
a representative case with stable high-risk dynamics. As shown in Table 2, we individually
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Table 2. Ablation experiment results on Patient 0477. The best performance is bold and the second
best is underlined.

Model Variant PredLen = 1 PredLen = 3 PredLen = 7

Metrics ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC

Full Model 84.83% 73.03% 80.62% 80.70% 81.63% 90.70%
w/o CNN Patch Embedding 84.39% 71.89% 73.31% 75.60% 64.61% 81.59%

w/o SE Block 82.80% 68.68% 77.95% 78.21% 82.76% 90.20%
w/o Cross-Variable Temporal convolution 77.71% 63.55% 77.66% 77.24% 75.69% 88.65%

w/o All Modules 76.35% 61.86% 70.87% 72.40% 72.97% 87.56%

removed three core modules—CNN Patch Embedding, Squeeze-and-Excitation (SE) Block,
and Cross-Variable Temporal Convolution (CVT)—as well as all together. The table shows
that removing any module reduces overall performance across multiple prediction lengths.
Detailed comparisons reveal the following patterns:

• CNN Patch Embedding plays a critical role in long-horizon prediction. At PredLen =
7, removing it leads to the largest performance degradation: ROC AUC drops by 17.02%
and PR AUC by 9.11%, confirming its effectiveness in capturing long-term features.

• CVT (Cross-Variable Temporal Convolution) is crucial for short-term forecasting.
At PredLen = 1, its removal causes a 7.12% drop in ROC AUC and a 9.48% drop in PR
AUC, indicating its importance in modeling high-resolution temporal dependencies.

• SE Block subtly improves short-horizon performance. At PredLen = 1, its removal results
in a 2.03% drop in ROC AUC and a 4.35% drop in PR AUC. Interestingly, at PredLen
= 7, its removal causes a slight increase in ROC AUC (+1.13%), likely due to reduced
overfitting or over-suppression of weak channels. However, PR AUC still drops by 0.50%,
which is more clinically relevant in imbalanced settings. This suggests that SE Block may
help improve early seizure precision while trading off certain long-horizon sensitivity.

These findings highlight the complementary strengths of the three modules in addressing
both short-term and long-term forecasting demands. Their combination enables SeizureFormer
to achieve consistent performance across different horizons.

6. Conclusion

We present SeizureFormer, a Transformer-based model that advances seizure risk forecasting
using RNS-derived IEA biomarkers. By integrating multi-kernel CNNs, cross-variable convolu-
tion, self-attention, and a squeeze-and-excitation module, it captures seizure-relevant temporal
dynamics across multiple time scales. Experiments demonstrate state-of-the-art performance
and strong generalizability across patients and forecasting horizons.

In clinical settings, SeizureFormer could enable proactive seizure management. For in-
stance, if a forecast indicates elevated seizure risk over the next three days, clinicians might
preemptively adjust medication, modify behavioral protocols, or recommend precautions. Such
foresight empowers both patients and providers to make timely, informed decisions.

Future work will explore transfer learning across patients, dynamic biomarker adaptation,
and integration with closed-loop neurostimulation for end-to-end seizure risk mitigation.
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