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Evaluating factual accuracy in Large Language Model (LLM)-generated clinical text is a
critical barrier to adoption, as expert review is unscalable for the continuous quality as-
surance these systems require. We address this challenge with two complementary contri-
butions. First, we introduce MedFactEval, a framework for scalable, fact-grounded eval-
uation where clinicians define high-salience key facts and an “LLM Jury”—a multi-LLM
majority vote—assesses their inclusion in generated summaries. Second, we present Med A-
gentBrief, a model-agnostic, multi-step workflow designed to generate high-quality, factual
discharge summaries. To validate our evaluation framework, we established a gold-standard
reference using a seven-physician majority vote on clinician-defined key facts from inpatient
cases. The MedFactEval LLM Jury achieved almost perfect agreement with this panel (Co-
hen’s k = 81%), a performance statistically non-inferior to that of a single human expert
(k = 67%, P < 0.001). Our work provides both a robust evaluation framework (MedFactE-
val) and a high-performing generation workflow (MedAgentBrief), offering a comprehensive
approach to advance the responsible deployment of generative Al in clinical workflows.

1. Introduction

Large Language Models (LLMs) offer substantial potential for automating clinical documenta-
tion, a primary driver of physician burnout.! By generating draft discharge summaries, LLMs
can perform critical information synthesis, freeing time for clinicians to focus on patient care.??3
However, the risk of factual errors impedes their adoption.* These errors manifest as both er-
rors of omission, where clinically vital information is excluded, and errors of commission (or
“hallucinations”), where generated text contradicts source data or fabricates information.55
The gold standard for identifying such errors—expert human review—is prohibitively slow
and expensive for the routine, iterative quality assurance these systems require. This cre-
ates a critical evaluation bottleneck, as current automated metrics (e.g., BLEU, ROUGE-L,

BERT-Score) often fail to capture clinical nuance. Consequently, there is an urgent need for
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an evaluation framework that is both scalable and replicates the clinical validity of expert
judgment.

To address this challenge, this paper makes two complementary contributions. First, we
introduce and validate MedFactEval, a framework designed to enable the fact-grounded,
iterative improvement of Al systems for clinical information synthesis. Second, we introduce
MedAgentBrief, a novel, model-agnostic LLM workflow for generating high-quality, fac-
tual discharge summaries. We then demonstrate the utility of MedFactEval by using it to
benchmark the performance-cost tradeoffs of these different generation strategies.

Our specific contributions are:

1. We define the MedFactEval framework, which grounds evaluation in clinician-defined
key facts and uses an LLM Jury for robust, scalable assessment to drive iterative model
improvement.

2. We introduce and evaluate MedAgentBrief, a multi-step, model-agnostic workflow
for generating high-fidelity clinical summaries.

3. We conduct a rigorous meta-evaluation of MedFactEval, demonstrating that our LLM
Jury achieves almost perfect agreement with a seven-physician panel (Cohen’s k = 81%)
and is statistically non-inferior to a single human expert (k = 67%, P < 0.001).

4. We demonstrate MedFactEval’s utility by benchmarking the factual performance of
MedAgentBrief against a baseline single-prompt strategy.

Our primary contribution is the validation of the MedFactEval framework, establishing that
an LLM Jury can serve as a reliable and scalable proxy for expert human evaluation. We
then demonstrate the framework’s utility by applying it to benchmark generation strategies,
providing a foundational component for the safety monitoring of generative Al in clinical
medicine.

2. Related Work

The evaluation of LLM-generated medical text is a rapidly evolving field. Early approaches
relied on comparing Al-generated summaries against human-written references using global
quality ratings from physician experts.?37” While these foundational studies established that
LLMs can produce summaries of comparable quality to humans, they also highlighted a per-
sistent risk of factual errors, including both omissions and commissions. However, such global
ratings are inherently subjective and often demonstrate low inter-rater reliability. This makes
them a noisy signal, insufficient for the granular, fact-based feedback required to systematically
improve model factuality and ensure patient safety.

To address the need for more objective evaluation, automated fact-checking has emerged
as a key area of research.®? For instance, “VeriFact” is a system that retrospectively verifies
claims in generated text by decomposing them into atomic facts and checking them against the
entire electronic health record (EHR) using retrieval-augmented generation.® While powerful,
this approach faces challenges: the EHR itself can be noisy or contain outdated information,
and the system does not inherently know which facts are most clinically salient for a specific
care context. Other work has confirmed that LLMs can struggle with fact decomposition, for
example, the FactEHR effort showed that different LLMs generate up to 2.6x different number
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of facts per sentence.'® In addition, standard natural language processing metrics often fail to
correlate with human judgments of factuality.!!

Our MedFactEval framework is distinct from prior work in three key ways. First, it is de-
signed for ongoing evaluation of an in-use workflow rather than for one-off, retrospective
analysis, providing a mechanism for continuous quality assurance. Second, it shifts the source
of ground truth from the entire, potentially noisy EHR to a small set of clinician-defined,
key facts. This strategically reframes the ambiguous task of “is this summary good?” into
a series of concrete, verifiable questions (e.g., “Does the summary include Fact X?”). This
ensures the evaluation is focused on what matters most for a given patient context. Finally, it
introduces an LLM Jury to automate this assessment, enhancing robustness and reliability
over single-model judgments.'? These design choices position MedFactEval as a pragmatic tool
for both real-time quality assurance and the iterative improvement of Al systems in clinical
practice.

3. Methods
3.1. Study Setting and Data Source

We conducted a retrospective study using a cohort of adult inpatients to validate MedFactE-
val, our framework for the ongoing evaluation of in-use clinical Al workflows. The cohort was
drawn from patients admitted to the Division of Hospital Medicine at Stanford Health Care
between January 1, 2023, and June 1, 2024. To ensure representative cases of sufficient clinical
complexity, we included only patients with a hospital length of stay between 2 and 14 days.
From this eligible cohort, we randomly sampled 30 patients. For each patient, we extracted the
complete set of de-identified, unstructured clinical notes from the Electronic Health Record
(EHR), including the History & Physical, all progress notes, and the physician-authored dis-
charge summary.

3.2. Generation of AI Discharge Summaries for FEvaluation

For each of the 30 cases, the collected clinical notes served as source material to generate a
diverse set of draft discharge summaries. We employed two distinct Al synthesis strategies to
produce summaries for evaluation.

Strategy 1: Single-Prompt Summarization. In this baseline approach, all source notes
for a given patient were concatenated and provided within the context window of a foundation
model. The model was then prompted to generate a complete discharge summary in a single
step.

Strategy 2: MedAgentBrief Workflow. We developed MedAgentBrief, a model-agnostic,
multi-step workflow designed to enhance factual accuracy through an iterative process:
(i) Initial Draft Generation: A foundation model produced a first-pass summary using
only the History & Physical and the final progress note as source documents.
(ii) Iterative Refinement: The initial draft was then iteratively refined by processing the
remaining progress notes in chronological order. For each note, a prompt instructed the
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model to identify salient medical information, integrate it into the evolving summary,
and simultaneously embed a corresponding provenance tag (e.g., <PROG_NOTE_7>) with
each new statement.

(iii) Hallucination Reduction & Citation: A concluding step first performed a verifica-
tion pass, reviewing the summary to identify and mitigate unsupported factual claims.
Following this check, the embedded provenance tags were resolved, linking each tag to
its full source note to enable downstream citation generation.

An anonymized sample of a MedAgentBrief output is available as Supplementary Data 1.

Foundation Models and Output Structure. These two strategies were implemented us-
ing various foundation models, such as GPT-40 and DeepSeek-R1 (see Supplementary Table
S1 for a complete list), all accessed via a secure, HIPAA-compliant Application Programming
Interface (API) infrastructure to ensure data privacy.!® The scope of our generation task fo-
cused on the narrative synthesis of a patient’s stay. All models were prompted to produce
a consistent, structured output containing: (1) a one-line summary, (2) a brief narrative of
the hospital course, and (3) a problem-focused summary. This task was explicitly scoped to
synthesizing information already present in the source notes. The generation of boilerplate
text (e.g., standard patient instructions) and novel medical recommendations not found in
the provided documentation was considered out of scope.

3.3. The MedFactEval Framework

The MedFactEval framework consists of three main steps: benchmark creation, LLM Jury
evaluation, and automated reporting.

Step 1: Benchmark Creation—Key Fact Extraction. For each patient case, one or
more senior attending physicians reviewed the original, human-written discharge summary to
identify three high-salience clinical facts. These “key facts” represent critical information that
a high-quality summary must not omit. Examples of such key facts include: (i) a new critical
diagnosis, (ii) a key change in management, or (iii) an essential follow-up action.

To streamline this process, annotators were optionally provided with candidate key facts
suggested by a Task-Assisting LLM (based on models such as GPT-40 and Gemini 2.0 Flash),
which they could then review, edit, or discard. This process yields a benchmark of clinician-
validated facts, creating a trusted reference for evaluating Al summaries on their ability to
capture clinically critical information.

Step 2: LLM Jury Evaluation. To evaluate a generated summary, our framework employs
an “LLM Jury” of ten distinct LLM judges. For each key fact, the jury is prompted to assess
whether the summary includes that fact. Each judge provides a binary verdict and a brief
justification, with the final decision determined by a majority vote. A parallel process is used
to assess for contradictions, where the jury determines if the summary contains information
inconsistent with the key fact.
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Step 3: Automated Evaluation Report. To synthesize the evaluation results into an
actionable format, the framework generates an automated report for each evaluated Al sys-
tem. This report uses a language model to distill qualitative themes from the LLM Jury’s
explanations for omitted or contradicted facts. The final output programmatically aggregates
these insights with quantitative performance scores into a structured HTML document. An
anonymized sample of a complete HT'ML report is available as Supplementary Data 2.

3.4. Meta-FEvaluation of the MedFactEval Framework

The validity of MedFactEval hinges on whether its automated scores correspond with expert
human judgment. We therefore conducted a meta-evaluation to assess this correspondence.

Gold Standard Creation. We created a gold standard reference using a subset of the
generated summaries. Specifically, summaries generated for all 30 cases by two Med AgentBrief
systems (one using GPT-40, the other DeepSeek-R1) were selected, resulting in 60 unique
summaries for evaluation. A panel of seven attending physicians independently evaluated each
summary, providing a binary judgment (present/absent) for each of the three corresponding
key facts. The gold standard for fact presence was then defined as the majority vote of this
seven-physician panel.

Human Expert Baseline. To establish a performance baseline for a single human expert,
we calculated the agreement for each of the seven physicians against the majority vote of the
other six (a leave-one-out approach). The final human expert baseline is then reported as the
average of these seven individual agreement scores.

Statistical Analysis. Our primary outcome was the inter-rater agreement between an eval-
uator (MedFactEval LLM Jury or a single human expert) and the seven-physician gold stan-
dard. We measured agreement using Cohen’s kappa coefficient (x) and used a one-sided test
to assess for non-inferiority against a pre-specified margin of 10% for the kappa coefficient.
Ninety-five percent confidence intervals (95% CI) were calculated by bootstrapping (9999
iterations).

4. Results
4.1. An Instantiated Benchmark for Discharge Summaries

Applying the first step of the MedFactEval framework—Key Fact Extraction—we developed
a benchmark for the task of discharge summary generation. This benchmark comprises three
core components: First, it specifies the task as the synthesis of a patient’s hospital course
into a structured discharge summary. Second, it provides the source data: the complete set
of unstructured clinical notes for each of 30 patients, including the History & Physical and all
progress notes from both physician (attending and consultant) and allied health services (e.g.,
clinical nutrition, occupational therapy, speech language pathology). Finally, it establishes the
evaluation standard: a set of 90 clinician-defined “key facts” (three per case), which provide
the concrete criteria for assessing the factual integrity of a generated summary.
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Examples of such key facts include new critical diagnoses (e.g., “admitted for recurrent
malignant biliary obstruction with hyperbilirubinemia requiring percutaneous transhepatic
drainage”), key changes in management (e.g., “discharged with deep vein thrombosis prophy-
laxis, with anemia at hemoglobin 9g/dL"), and essential follow-up actions (e.g., “will return
next week to have the small skin cancer on the right cheek removed”). The specific character-
istics of this benchmark are detailed in Table [Il

Table 1. Benchmark Characteristics. SD:
Standard Deviation, IQR: InterQuartile Range.

Characteristic Value

Patient Demographics

Number of patients 30
Age, mean (SD), years 60 (16)
Sex, n (%)
Female 17 (57)
Male 13 (43)
Length of stay, median (IQR), days 5 (4-8)

Source Documents (per case)
Total progress notes, median (IQR) 12 (10-16)
Physician notes, median (IQR) 9 (7-11)
Allied health notes, median (IQR) 3 (2-6)

Key Fact Categorization

Total Key Facts 90
Diagnosis-related, n (%) 46 (51)
Management Change, n (%) 36 (40)
Follow-up Action, n (%) 5 (6)
Other, n (%) 3 (3)

4.2. Benchmarking Generation Strategies with MedFactEval

We applied MedFactEval to compare our two generation strategies—the baseline Single-
Prompt approach and the MedAgentBrief workflow—across various foundation models.

Fact Presence vs. Inference Cost. As illustrated in Figure[I] the Med AgentBrief workflow
consistently improved factual presence scores over the Single-Prompt baseline for every foun-
dation model tested. This performance gain, however, came at an increased inference cost,
highlighting a clear trade-off between factuality and expense. A parallel trade-off between
performance and generation time (latency) was also observed (see Supplementary Figure S1).
While the models designated as “Reasoning models” in our benchmark (e.g., DeepSeek-R1,
Gemini-2.5-Pro) occupied the high-performance quadrant, other powerful models also bene-
fited significantly. For instance, the factual presence score of GPT-40 improved by 17 percent-
age points (from 48% to 65%) when using the MedAgentBrief workflow.
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Fig. 1. Performance-Cost Trade-off of Al Summary Generation, Measured by Med-
FactEval. The y-axis represents the MedFactEval score for factual presence (higher is better), while
the x-axis shows inference cost per patient on a logarithmic scale. For each foundation model, the
MedAgentBrief workflow (cyan) consistently yields a higher factuality score than the baseline Single
Prompt approach (brown), demonstrating its effectiveness at the expense of increased cost. Models
designated as “Reasoning models” (starred) generally occupy the high-performance, high-cost quad-
rant.

Analysis of Factual Errors. MedFactEval identified contradiction rates ranging from 10%
to 25% across the different systems, with performance varying by both foundation model and
generation strategy (see Supplementary Figure S2). A manual review revealed that this rate
is attributable to MedFactEval LLM Jury’s high sensitivity in detecting subtle yet clinically
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significant inconsistencies. For instance, the jury correctly flagged a summary that misrepre-
sented a complex fondaparinux-to-apixaban transition as a simple initiation. This distinction
is critical, as it obscures the patient’s prior anticoagulation history and the clinical reasoning
for the change (e.g., treatment failure or convenience), information vital for future care deci-
sions. While notable, these contradiction rates were consistently lower than errors of omission,
making fact presence the primary differentiator between systems.

4.3. Meta-FEvaluation: Validating MedFactEval LLM Jury

Our primary goal was to validate whether the MedFactEval LLM Jury could serve as a reliable
proxy for human expert evaluation.

LLM Jury Agreement with Gold Standard. As shown in Figure 2] the 10-member LLM
Jury demonstrated almost perfect agreement with the seven-physician majority vote gold
standard for determining fact presence. This strong performance was observed across both
systems evaluated: for summaries from the GPT-40-based MedAgentBrief, the jury achieved
a Cohen’s kappa of k = 81% (95% CI: 66%-92%), while for the DeepSeek R1-based MedA-
gentBrief system, the agreement was x = 75% (95% CI: 59%—88%). This level of agreement
was substantially higher than that achieved by any individual LLM judges, underscoring the
value of the jury ensemble approach.

Non-Inferiority to a Single Human Expert. Our analysis confirmed that the MedFactE-
val LLM Jury is statistically non-inferior to a single human expert for evaluating factual pres-
ence (Figure . When evaluating summaries from the GPT-40-based Med AgentBrief, the full
LLM Jury’s agreement (k = 81%) was substantially higher than the single-physician baseline
(k = 67%, 95% CI: 49%-83%). This resulted in a kappa difference of 15% (95% CI: -1%-29%),
satisfying our non-inferiority criteria (P < 0.001). This finding of non-inferiority also held when
evaluating the Deepseek Rl-based system, which showed a kappa difference of 2% (95% CI:
-11%-15%; P < 0.001) (see Supplementary Figure S3). Furthermore, as shown in Figure [3| the
cost-effective “Small LLM Jury” (comprising Claude 3.5, Llama-4-Scout, and DeepSeek-R1)
also met the non-inferiority threshold, suggesting that practical, lower-cost versions of the jury
are viable for real-world application.

5. Discussion

In this work, we introduced and validated MedFactEval, a scalable framework for fact-
grounded evaluation, and presented MedAgentBrief, a high-performing workflow for generat-
ing clinical summaries. Our primary finding is that an LLM Jury, guided by clinician-defined
key facts, can evaluate the factual accuracy of Al-generated text with a reliability non-inferior
to that of a single human physician expert. While we focused on discharge summaries, the
MedFactEval methodology is intentionally generalizable and can be applied to other clinical
information synthesis tasks by defining a new set of relevant key facts.

This result is significant because it offers a path to overcoming the critical evaluation
bottleneck in clinical AI. Manual, expert-led review is unsustainable for the continuous mon-
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Fig. 2. Agreement of LLM Judges and Juries with the Physician Gold Standard. Each
point represents the Cohen’s kappa agreement for an evaluator against the seven-physician majority
vote. (A, C) Agreement versus evaluation time for summaries from the GPT-40 and Deepseek-R1
workflows, respectively. (B, D) Agreement versus evaluation cost for the same summaries. The full
10-member LLM Jury (red diamond) consistently achieves higher agreement than most individual
judges. The Small LLM Jury (purple diamond) offers a faster, lower-cost alternative while maintain-
ing performance comparable to the single physician reference (blue shaded area, representing the
95% CI for a single physician’s agreement).

itoring required for safe deployment. By demonstrating that an LLM Jury can serve as a
reliable and scalable proxy, MedFactEval provides a practical tool for real-time quality assur-
ance and iterative model improvement. This moves evaluation from a retrospective academic
exercise toward a dynamic, automated process suitable for live clinical environments.
Furthermore, our benchmarking results highlight the utility of MedFactEval for concrete
development tasks. The clear performance-cost trade-off revealed in Figure [1| can guide deci-
sions about model and strategy selection. The framework’s ability to systematically identify
errors of omission—which our analysis confirmed is the predominant failure mode—provides
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Fact-based Evaluation of the GPT-40-Based MedAgentBrief Summaries:
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Fig. 3. Non-Inferiority of LLM Judges Compared to a Single Physician Expert. The plot
shows the difference in Cohen’s kappa between each LLM judge and the average single physician,
for summaries generated by the GPT-40-based MedAgentBrief. Points to the right of the vertical
line favor the LLM judge. The dashed line indicates the pre-specified non-inferiority margin. The full
LLM Jury (bottom diamond) and the Small LLM Jury both surpassed the single physician baseline
and met the criteria for non-inferiority (P < 0.001). Error bars represent 90% confidence intervals,
consistent with the one-sided nature of the non-inferiority test.

developers with the granular, actionable feedback needed to improve the safety and reliability
of their systems.

Limitations and Future Directions

Our study has several limitations. The validation was conducted on a cohort from a single
service-line (general inpatient medicine) from a single academic medical center. While we
demonstrated that even a small, locally-created benchmark can provide a powerful signal for
model selection and improvement, larger-scale validation across diverse settings is warranted.
Second, our framework intentionally focuses on a small number of clinician-defined, high-
salience facts (three per case in our study), a constraint chosen to mirror the low cognitive
burden required for practical integration into a busy clinical workflow. This ensures clinical
relevance but does not assess other quality dimensions like fluency or conciseness, nor does
it detect the omission of facts not pre-specified by the clinician. MedFactEval is therefore in-
tended as a targeted fact-checking tool to be used alongside other holistic evaluation methods.
Integrating our framework into comprehensive platforms like MedHELM'® would support this
goal by enabling multi-dimensional assessment. Finally, the process of selecting key facts is
inherently subjective. This was a deliberate design choice, meant to empower physicians to
direct the evaluation toward what they deem clinically critical. However, future work could
explore methods to further standardize or automate this selection process.
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Looking forward, our immediate goal is to deploy MedAgentBrief in a pilot study, using
MedFactEval to provide real-time safety monitoring. In this prospective workflow, a clinician
would define a small number of critical facts for their patient’s summary. The MedFactE-
val jury would then assess the Al-generated draft against these facts, providing immediate
feedback on whether the facts were correctly included or contradicted. This real-time loop
would empower clinicians to identify Al failure modes as they occur. Furthermore, this pro-
cess would generate a prospectively collected, real-world dataset of clinical notes paired with
expert-defined key facts, providing an invaluable resource for future model training and eval-
uation.

6. Conclusion

This work advances the safe and effective use of Al in clinical documentation by providing
two key contributions: a robust evaluation framework, MedFactEval, and a high-performing
generation workflow, MedAgentBrief. By demonstrating that an LLM Jury can reliably and
scalably replicate expert judgment for fact-checking, we offer a practical solution for the
continuous safety monitoring required for the responsible deployment of Al systems for clinical
information synthesis.

Supplementary Materials

Supplementary materials associated with this article can be found at:
https:/ /fcgrolleau.github.io/medfacteval /supplementary_materials.pdf
This includes Supplementary Table S1 and Supplementary Figures S1-S3.

Code Availability

The complete source code for the MedFactEval framework, the MedAgentBrief workflow, and
all experiments presented in this paper is open-source and publicly available on GitHub at:
https://github.com/fcgrolleau/medfacteval.

Data Availability

The validation benchmark used in this study contains detailed clinical notes of recently ad-
mitted patients at Stanford Health Care. Due to the sensitive nature of this data and the risk
of direct re-identification, it cannot be publicly shared. The following supplementary data are
available with this article:

e Supplementary Data 1: Anonymized sample of a MedAgentBrief-generated summary
(HTML format). Available at:
https://fcgrolleau.github.io/medfacteval /samples/anonymized medagentbrief sumary.html
e Supplementary Data 2: Anonymized sample of an automated MedFactEval evaluation
report (HTML format). Available at:
https://fcgrolleau.github.io/medfacteval /samples/anonymized medfacteval report.html
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