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Three-dimensional (3D) scene understanding in colonoscopy presents significant challenges
that necessitate automated methods for accurate depth estimation. However, existing depth
estimation models for endoscopy struggle with temporal consistency across video sequences,
limiting their applicability for 3D reconstruction. We present ColonCrafter, a diffusion-based
depth estimation model that generates temporally consistent depth maps from monocular
colonoscopy videos. Our approach learns robust geometric priors from synthetic colonoscopy
sequences, enabling reliable depth estimation across frames. We also introduce a style trans-
fer technique that preserves geometric structure while adapting realistic clinical videos
to match our synthetic training domain. ColonCrafter achieves state-of-the-art zero-shot
performance on the C3VD dataset, outperforming both general-purpose and endoscopy-
specific approaches. Although full trajectory 3D reconstruction remains a challenge, we
demonstrate clinically relevant applications of ColonCrafter, including 3D point cloud gen-
eration and surface coverage assessment. Our code will be made publicly available at
https://github.com/rajpurkarlab/ColonCrafter.
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1. Introduction

Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, with 52,900 pro-
jected deaths in 2025 in the United States alone.1 Colonoscopy serves as the gold standard
for CRC screening and is designated as a first-tier test by the American College of Gastroen-
terology.2 During this procedure, gastroenterologists navigate a flexible endoscope through
the colon to identify and remove precancerous polyps and other lesions. However, the clin-
ical effectiveness of colonoscopy is constrained by fundamental limitations in human visual
perception and spatial reasoning within the complex three-dimensional colonic environment.

These limitations manifest in several critical ways that directly impact patient outcomes.
Incomplete examinations occur due to poor visualization behind haustral folds, leading to
miss rates of up to 26% for adenomas.3–5 Clinicians struggle to relocate previously identified
lesions during the same procedure or across multiple sessions, complicating treatment plan-
ning and follow-up care.6 Perhaps most importantly, accurate measurement of polyp size—a
critical factor in determining removal strategy and surveillance intervals—remains challeng-
ing using current two-dimensional visualization methods.7,8 These challenges underscore a
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Fig. 1. Our approach incorporates two key components: (1) ColonCrafter, a diffusion-based depth
estimation model trained on large-scale synthetic colonoscopy sequences, and (2) a domain adaptation
technique that maps real colonoscopy frames into the synthetic training domain of ColonCrafter
while preserving geometric structure. ColonCrafter outputs accurate, temporally consistent depth
maps suitable for downstream 3D reconstruction and surface coverage assessment.

fundamental mismatch between the inherently three-dimensional nature of the colon and the
two-dimensional visual information available to clinicians.

Bridging this gap between human expertise and the geometric complexity of colonoscopy
requires computational tools that can augment clinical decision-making through precise three-
dimensional scene understanding. 3D reconstruction of the colon could transform clinical prac-
tice by enabling complete surface coverage assessment,9,10 accurate lesion localization and size
measurement,11 and robust lesion registration across multiple viewpoints and examination
sessions. Such capabilities would complement rather than replace human expertise, provid-
ing clinicians with enhanced spatial awareness while preserving their critical role in clinical
interpretation and decision-making.

However, achieving reliable 3D reconstruction from colonoscopy videos presents formidable
technical challenges that render conventional computer vision approaches ineffective. The
colonic environment systematically violates fundamental assumptions underlying traditional
Simultaneous Localization and Mapping (SLAM) algorithms.12,13 The mucosa lacks distinctive
visual features necessary for robust tracking,12,14 exhibits non-Lambertian reflectance with
severe specular highlights,6,15 and undergoes continuous deformation due to peristalsis and
insufflation.16,17 Additionally, rapidly changing illumination from the endoscope’s point light
source and erratic motion patterns—including rapid rotations, forward-backward movements,
and frequent occlusions—further complicate reconstruction efforts.13,18

Recent advances in deep learning have enabled progress toward colonoscopy-specific depth
estimation and SLAM systems.16,19–21 Self-supervised approaches have shown promise by learn-
ing from unlabeled colonoscopy videos,19,20,22 while others have leveraged synthetic data (i.e.,
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computer-simulated videos with paired depth maps) to overcome the scarcity of ground-truth
annotations.23–25 Nevertheless, existing methods still struggle with long-term temporal consis-
tency and often fail to generalize across the diverse appearance variations present in clinical
data.12,26,27 The persistent domain gap between synthetic training data and real colonoscopy
imagery represents a critical barrier to clinical translation,23,28,29 with models trained on syn-
thetic data typically exhibiting poor performance when deployed on real clinical videos.13,30

To address these challenges and enable clinically meaningful AI-assisted colonoscopy, we
present ColonCrafter (Figure 1), a diffusion-based depth estimation framework designed to
generate temporally consistent depth maps from monocular colonoscopy videos. Our approach
addresses the fundamental limitations of existing methods through three key innovations.
First, we formulate monocular depth estimation (MDE) as a conditional generation task within
a diffusion framework, enabling the model to learn robust priors over the complex appearance
and geometry of colonic scenes. Second, we train our model on a large-scale dataset of syn-
thetic colonoscopy sequences derived from computed tomography (CT) scans, providing rich
supervision for reliable video-level reconstructions. Third, we introduce a style transfer tech-
nique that adapts real colonoscopy videos to match the appearance of our synthetic training
domain while preserving the geometric structure essential for accurate depth estimation.

Our main contributions advance the integration of AI and clinical expertise in colonoscopy:

• We present the first diffusion-based depth estimation framework specifically designed
for colonoscopy, capable of generating temporally consistent dense depth maps that
enable robust 3D scene understanding.

• We develop a novel style transfer technique that bridges the domain gap between
synthetic training data and real colonoscopy videos while preserving geometric cues
essential for clinical applications.

• We demonstrate state-of-the-art zero-shot performance on the C3VD9 benchmark,
showing significant improvements in depth estimation accuracy compared to existing
methods.

2. Methods

We introduce ColonCrafter, a diffusion-based depth estimation model tailored to colonoscopy.
Given a monocular colonoscopy video sequence, ColonCrafter estimates temporally consistent
dense depth maps, enabling 3D reconstruction of the colon surface. Our approach is based
on a video diffusion model trained on a large-scale dataset of synthetic colonoscopy videos
derived from CT scans. To overcome the domain gap between our synthetic training data
and real-world clinical videos, we further propose a training-free style injection technique that
converts any colonoscopy video to the style of our synthetic videos.

2.1. Depth Estimation

ColonCrafter is a conditional video diffusion model adapted from the DepthCrafter31 archi-
tecture. Given an input RGB video x ∈ RF×H×W×3, the primary objective of ColonCrafter is
to predict a temporally consistent depth sequence d ∈ RF×H×W . An overview of ColonCrafter
is shown in Figure 2.
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Fig. 2. Overview of the ColonCrafter architecture. The model uses a conditional diffusion framework
in which paired colonoscopy videos and depth maps are projected into a latent space, and a spatio-
temporal U-Net denoiser learns to recover clean depth latents from their noisy counterparts. Training
is performed on synthetic colonoscopy sequences derived from CT scans to learn robust geometric
priors.

As with DepthCrafter, we formulate this as a conditional generation task within the Elu-
cidating Diffusion Models32 framework. During training, the ground-truth depth sequence d is
encoded to a lower-dimensional latent representation z

(d)
0 = E(d) using the encoder E of a pre-

trained variational autoencoder (VAE). This latent code is then subjected to a forward diffu-
sion process, which progressively adds noise over a continuous time variable t: z(d)t = z

(d)
0 +σ2

t ϵ,
where ϵ ∼ N (0, I) is a Gaussian noise sample and σ2

t is the noise variance at time t. Finally,
a spatio-temporal U-Net denoiser Dθ tries to predict the clean depth latent from the noisy
latent: ẑ(d)0 = Dθ(z

(d)
t ;σt; z

(x)
0 ). Here, z(x)0 = E(x) is the encoded latent of the input video x, and

serves to condition the denoising process. The denoising objective is given by

Ldepth = λt∥Dθ(z
(d)
t ;σt; z

(x)
0 )− z

(d)
0 ∥22 = λt∥ẑ(d)0 − z

(d)
0 ∥22, (1)

where λt is the loss weight at time t. To obtain the predicted depth map d̂, we project ẑ
(d)
0

back to pixel space using the VAE’s frozen decoder D, i.e. d̂ = D(ẑ
(d)
0 ).

2.2. Training Details

2.2.1. Synthetic Dataset Construction

ColonCrafter is trained on 109,329 colonoscopy images that we synthetically generated from
5 CT scans33 using standard segmentation and virtual fly-through rendering software.34,35 An
overview of our dataset construction methodology is shown in Figure 3.

2.2.2. Model Fine-Tuning

Rather than training ColonCrafter from scratch, we fine-tune the publicly available checkpoint
of DepthCrafter using Low-Rank Adaptation (LoRA).36 This approach allows us to reuse the
high-level features learned during its pre-training phase, while simultaneously reducing the
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Fig. 3. Synthetic dataset construction pipeline. We segment the colonic volume from 5 CT scans,
extract centerline paths, and render virtual fly-throughs to generate synthetic colonoscopy sequences
with paired ground-truth depth maps.

computational cost of adapting the model to colonoscopy videos. In our implementation, we
set the LoRA rank to 16 to give ColonCrafter sufficient expressive power and target the
attention modules of the U-Net denoiser.

We fine-tune ColonCrafter on an NVIDIA A100 GPU for 50,000 steps using the AdamW37

optimizer with a learning rate of 1.0 × 10−5 on a cosine schedule with warm-up. We set the
batch size to 8 and the sequence length to 16 (similar to DepthCrafter), allowing ColonCrafter
to effectively exploit temporal information. To improve generalization to complex colonoscopy
trajectories, we introduce several data augmentation strategies. First, we randomly sample
sequences so that camera translations between successive frames are not constant. Second, we
randomly flip video segments to reflect the fact that colonoscopy trajectories are rarely straight
paths in practice. Third, we randomly jitter the camera intrinsics to simulate variations in
endoscopic equipment. Finally, we apply a random attenuation factor to vary input video
brightness, creating lighting conditions representative of real colonoscopy procedures.

2.3. Real-to-Synthetic Style Transfer

Since ColonCrafter is trained on synthetic videos with different appearances from real
colonoscopy videos, we propose a style transfer approach to bridge this gap. Previous works
train dedicated neural networks using cycle consistency losses to convert between image do-
mains.38–40 However, such models must be trained on large corpora containing sufficiently
varied synthetic and real colonoscopy examples, and are prone to destroying structural and
lighting cues that are crucial for depth estimation and SLAM. To address these issues, we
propose a dynamic style transfer approach that enforces content preservation when shifting
from the real domain to the synthetic domain, as shown in Figure 4.

Specifically, we cast real-to-synthetic style transfer as a modulation of the denoising process
within a pre-trained Stable Diffusion (SD) model, inspired by the work of Chung et al.41 on
artistic style transfer. Let x(c) be a colonoscopy video frame that we want to convert to the style
of a synthetic video frame x(s). First, we project (x(c), x(s)) to latent codes (z(c)0 , z

(s)
0 ) using the

VAE encoder of the SD model. Second, we invert the clean latents (z
(c)
0 , z

(s)
0 ) to noisy latents

(z
(c)
T , z

(s)
T ) over T time steps. At each step t ∈ [1, T ], we store the intermediate queries Q

(c)
t of
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Fig. 4. Real-to-synthetic style transfer for colonoscopy videos. Given a real colonoscopy image to
be converted into the style of a synthetic image, we first invert their latent representations over a
sequence of time steps, storing the intermediate key, query, and value vectors at each step. Reverse
diffusion with attention substitution produces an output that retains the real image’s structure while
adopting the synthetic style.

the content latent and the keys and values (K
(s)
t , V

(s)
t ) of the style latent. We then carry out

the reverse diffusion process with an initial latent input of z̃T = AdaIN(z
(c)
T , z

(s)
T ). For every

step t of the reverse process and for selected self-attention layers in the frozen SD model,
we substitute (K

(c)
t , V

(c)
t ) with (K

(s)
t , V

(s)
t ). By keeping the original content queries Q

(c)
t fixed,

we preserve the content cues of x(c) during denoising. After completing the reverse diffusion
process, we obtain the style-transferred latent code z̃(c), which we decode into a full-resolution
style-transferred image x̃(c) using the SD model’s VAE decoder.

We also introduce three adjustments to facilitate specularity removal and enforce the
preservation of depth cues. First, we mask pixels whose intensities exceed 3 standard deviations
from the mean intensity of pixels in a 16× 16 patch. During the reverse diffusion process, the
SD model inpaints the masked patches to produce smooth style-transferred surfaces. Second,
we apply a local histogram matching approach to align the intensities of the style-transferred
videos with those of the original content videos. Third, we truncate the inversion process after
T ′ = αT steps, where α = 0.4. This approach allows us to reduce the amount of noise added
during inversion, thus limiting content drift during the denoising process.

3. Experiments and Results

Datasets We evaluate ColonCrafter on 10 colonoscopy sequences from C3VD,9 a dataset
featuring realistic colon phantom models with corresponding ground-truth depth annotations.
We preprocess all frames following the methodology of Huang et al.42
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Baselines Our evaluation encompasses both general-purpose and endoscopy-specific depth
estimation models. For general-purpose baselines, we include the publicly available checkpoints
of DepthCrafter31 and Depth-Anything.43,44 For domain-specific comparisons, we evaluate
against three endoscopy-tailored models: EndoDAC,45 EndoSfM-Learner,21 and EndoOmni.46

To ablate our real-to-synthetic style transfer approach, we also evaluate ColonCrafter directly
on the colonoscopy sequences without style transfer.

Evaluation Metrics We assess model performance using standard depth estimation met-
rics: absolute relative error (AbsRel), squared relative error (SqRel), root mean square error
(RMSE), and the δ1 accuracy measure. Rather than applying per-frame alignment, we com-
pute global scale and shift parameters across each complete video sequence by solving:

min
α,β∈R

∑
p∈Ω

[
αd̂(p) + β − d(p)

]2
, (2)

where d̂(p) and d(p) represent predicted and ground-truth depths at pixel p, respectively, with
the summation spanning all pixels Ω in the evaluated sequence. To ensure fair comparison, we
perform alignment in each model’s native training domain—for example, we apply scale-shift
alignment in the disparity domain for models trained on disparity data (such as DepthCrafter
and ColonCrafter) before converting to the depth domain for final metric computation.

3.1. Depth Estimation

Table 1 presents the average zero-shot depth estimation performance of ColonCrafter
on C3VD. ColonCrafter demonstrates excellent performance, outperforming both general-
purpose and endoscopy-specific depth estimation models. Figure 5 shows qualitative examples
of colonoscopy images from C3VD, their ground-truth depth maps, and the depth maps pre-
dicted zero-shot by ColonCrafter and other baseline methods.

Comparison with General-Purpose Models General-purpose depth estimation models
show limited performance on colonoscopy sequences, reflecting the discrepancy between open-
world and colonoscopy videos. This degradation stems from the unique visual characteristics
of colonoscopy images: constrained lighting conditions, specular reflections, texture-poor sur-
faces, and limited field of view present fundamentally different challenges compared to natural
outdoor scenes. Our colonoscopy-specific fine-tuning approach effectively addresses this dis-
crepancy, improving δ1 accuracy by more than 17% compared to the base DepthCrafter model.
Notably, ColonCrafter outperforms most baseline methods even without style transfer, demon-
strating that the model learns robust colonoscopy-specific geometric priors through synthetic
data training alone.

Style Transfer Analysis Figure 6 qualitatively demonstrates our real-to-synthetic style
transfer approach, showing original C3VD images (left), their style-transferred counterparts
(middle), and the corresponding photometric intensity difference maps (right). The trans-
formation successfully removes specular highlights and adjusts tissue appearance to match
the synthetic training distribution while preserving essential anatomical structure and depth
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Table 1. Zero-shot depth estimation performance on C3VD. We compare ColonCrafter with gen-
eral-purpose and endoscopy-specific monocular depth estimation (MDE) models. ColonCrafter out-
performs most baselines even without style transfer. Parentheses indicate 95% confidence intervals
computed using 1,000-sample bootstrap resampling.

Model δ1 ↑ AbsRel ↓ SqRel ↓ RMSE (mm) ↓

Depth-Anything-V143 0.55 (0.45, 0.66) 0.28 (0.21, 0.34) 3.58 (1.83, 5.50) 10.08 (7.08, 13.24)
Depth-Anything-V244 0.61 (0.52, 0.71) 0.24 (0.19, 0.28) 2.34 (1.55, 3.09) 8.20 (6.33, 9.87)
DepthCrafter31 0.59 (0.52, 0.65) 0.22 (0.19, 0.26) 2.65 (2.07, 3.14) 10.51 (9.09, 11.70)
EndoDAC45 0.50 (0.42, 0.61) 0.27 (0.22, 0.33) 4.45 (2.64, 6.63) 13.91 (10.45, 17.42)
EndoSfM-Learner9 0.56 (0.49, 0.64) 0.24 (0.21, 0.29) 3.49 (2.42, 4.68) 12.34 (9.81, 15.08)
EndoOmni†46 0.77 (0.72, 0.81) 0.15 (0.14, 0.16) 1.15 (0.88, 1.43) 6.91 (5.54, 8.20)
ColonCrafter 0.77 (0.66, 0.83) 0.16 (0.13, 0.20) 1.17 (0.81, 1.61) 6.42 (5.09, 7.62)
ColonCrafter + ST 0.79 (0.70, 0.86) 0.15 (0.12, 0.18) 1.09 (0.73, 1.45) 6.21 (5.01, 7.18)

ST: style transfer; †: Not strictly zero-shot (partially trained on C3VD).

cues. The intensity difference maps reveal that the most significant transformations occur in
regions with strong specular reflections and lighting variations, while anatomically critical
features such as tissue folds and surface geometry remain largely unchanged. Applying style
transfer before inference aligns ColonCrafter with its synthetic training domain, leading to
consistent gains across all depth evaluation metrics.

3.2. Downstream Applications

Point Cloud Generation ColonCrafter integrates seamlessly with established SLAM frame-
works to produce consistent 3D colon reconstructions. Following the approach of Xu et al.,47

we track feature points across successive frames using a pre-trained SpaTracker48 model. We
then estimate camera poses through bundle adjustment by minimizing the reprojection error
across all tracked points and frame pairs:

min
W1,...,WT

∑
i,j∈{1,...,T}

[
πKj

(WjW
−1
i π−1

Ki
(pi, d̂i))− pj

]2
. (3)

Here, T represents the size of our tracking window, π−1
Ki

denotes the backprojection opera-
tor that converts 2D pixel coordinates with depth d̂i to 3D world coordinates using camera
intrinsics Ki, and Wi represents the camera pose (transformation matrix) for frame i.

Figure 7 shows examples of 3D point clouds generated using ColonCrafter for six colon seg-
ments in C3VD. These reconstructions provide detailed structural representations of the colon
anatomy, clearly delineating missed surface regions (appearing as white, empty spaces) and
lesions. In the bottom right point cloud, we color points belonging to a polyp in blue, demon-
strating how point clouds can be used for lesion registration. This capability has significant
clinical potential for improving the accuracy of longitudinal lesion assessment by facilitating
precise lesion tracking and size measurement in follow-up colonoscopies.
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Fig. 5. Qualitative comparison of depth estimation on C3VD colonoscopy sequences. Each row
shows the original colonoscopy image, the ground-truth depth map, and predictions from different
methods: general-purpose models (DepthCrafter, Depth-Anything), endoscopy-specific approaches
(EndoDAC, EndoOmni), and our ColonCrafter with and without style transfer (ST). ColonCrafter
+ ST yields the most accurate depth maps, with sharper boundaries, better preservation of fine
geometric details, and improved handling of specular reflections that confuse other methods.

3.3. Missing Surface Estimation

Using the 3D reconstructions generated by ColonCrafter, we can assess unseen areas of the
colon in an image sequence. For a given point cloud, we estimate its centerline using Principal
Component Analysis, then “unroll” it into a 2D coverage map where the horizontal axis
represents the distance along the centerline and the vertical axis represents the circumferential
angle around it. Figure 8 shows coverage maps computed using ground-truth depths (left)
and ColonCrafter predictions (right), demonstrating the model’s ability to accurately identify
missed surfaces.

4. Related Work

4.1. Monocular Depth Estimation

Monocular depth estimation (MDE) addresses the inherently ill-posed task of predicting dense
depth maps from a single RGB image, where one image may correspond to infinitely many
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Fig. 6. Demonstration of real-to-synthetic style transfer on C3VD images. Each triplet shows: (left)
the original image, (middle) the style-transferred version that mimics synthetic examples while pre-
serving anatomical structure, and (right) the intensity difference map highlighting regions of greatest
change. The transfer effectively removes specularities and adapts texture to match the synthetic do-
main, supporting improved depth estimation.

plausible 3D scenes. Classical geometric methods typically yield sparse reconstructions and
are highly sensitive to illumination, motivating the development of learning-based approaches.
Recent advances include open-world foundation models such as Depth-Anything43,44 and
DepthCrafter.31 The latter exploits diffusion priors learned from large-scale video data, re-
ducing the temporal inconsistencies common in single-frame models. In contrast, endoscopy-
specific approaches such as EndoDAC45 and EndoOmni46 often rely on self-supervised or
semi-supervised objectives to overcome the limited availability of ground-truth depth anno-
tations. However, because they are primarily trained at the image level, these models still
struggle to maintain temporal coherence across video sequences.

4.2. Image Style Transfer

An important challenge in endoscopic depth estimation is the mismatch between synthetic
training data and real clinical images, which has motivated the use of style transfer for do-
main adaptation.23,29,30,39,49 Most prior approaches adopt a synthetic-to-real strategy, training
depth estimators directly on translated images to reduce distribution mismatch. In contrast,
dynamic adaptation at inference time remains underexplored. Recent diffusion-based style
transfer techniques offer a training-free alternative that preserves structural content while
adjusting appearance for domain alignment.41,50,51 For example, Chung et al.41 manipulate
self-attention layers of pre-trained diffusion models by substituting key-value pairs while pre-
serving queries, thereby maintaining the original content during stylization. This property is
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Fig. 7. 3D point cloud reconstructions of colon segments from C3VD using ColonCrafter depth pre-
dictions. Each point cloud represents the internal colon structure viewed from different perspectives,
with white regions indicating areas not visible according to the reconstruction. Colored annotations
highlight anatomical features and potential lesions on the point cloud.

Fig. 8. Colon surface coverage analysis. Coverage maps show the surveyed areas of the colon surface
“unrolled” into 2D representations, where the horizontal axis represents distance along the estimated
centerline and the vertical axis represents circumferential angle. Black regions indicate areas unseen
during the sequence, while colored regions represent seen surfaces. Comparison between ground-
truth depth-based coverage (left) and ColonCrafter prediction-based coverage (right) demonstrates
the model’s relative accuracy in identifying unseen areas.

especially valuable in endoscopy, where retaining geometric cues is essential for accurate 3D
reconstruction. Despite their promise, however, diffusion-based style transfer methods remain
largely untested in endoscopic applications.
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5. Discussion

Clinical Significance Our work addresses a fundamental challenge in colonoscopy: reconcil-
ing the three-dimensional structure of the colon with the two-dimensional visual information
available to clinicians. ColonCrafter’s ability to generate temporally consistent depth maps
represents an important step toward augmenting clinical decision-making with computational
tools. The observed improvements in depth estimation accuracy translate into practical bene-
fits for lesion localization, size measurement, and coverage assessment during routine colono-
scopic examinations.

Technical Contributions By adapting video diffusion models to the colonoscopy domain,
we advance generative methods for medical depth estimation and achieve temporally consistent
predictions that outperform both general-purpose and endoscopy-specific baselines. In parallel,
our style transfer strategy offers a novel means of bridging domain gaps in medical imaging
without the need for additional training data.

Limitations and Future Work Several limitations highlight directions for future develop-
ment. First, while evaluation on C3VD phantom data provides initial validation, true clinical
value requires testing on real patient procedures that include a wider range of anatomies and
disease states. Second, ColonCrafter is not yet suited for full-length colonoscopy workflows,
as it currently performs best on shorter video segments (with a runtime of 116 ms per frame
on an A100 GPU at a resolution of 512 × 512), highlighting the need for further improve-
ments in efficiency and robustness across different endoscopy systems. Finally, we plan to
extend ColonCrafter into a semi-supervised framework that learns jointly from real and syn-
thetic videos, reducing dependence on synthetic data and improving generalization to diverse
clinical settings.

6. Conclusion

We introduced ColonCrafter, a novel diffusion-based depth estimation model for colonoscopy
videos, achieving state-of-the-art zero-shot performance on a phantom dataset. By combining
video diffusion modeling with a style transfer strategy, our method addresses the challenge of
temporal consistency and bridges the domain gap between synthetic training data and real
colonoscopy images. ColonCrafter outperforms both general-purpose and endoscopy-specific
baselines, particularly in handling difficult visual conditions such as specular highlights and
complex tissue geometry. Although the current framework is optimized for short video seg-
ments with smooth camera motion, it provides a strong foundation for future advances in
computational colonoscopy. More broadly, it shows that synthetic data, when paired with
domain adaptation, can support practical clinical applications including 3D reconstruction,
lesion localization, and surface coverage analysis.
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