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Ascertainment of multiple sclerosis (MS) progression is important for informing clinical care
decisions and supporting biomedical research. However, the details to infer a patient’s MS
progression status are locked within clinical notes. In this feasibility study, we assessed the
feasibility of developing and validating a large language model (LLM)-based EDSS and FS
classifier for ascertaining MS progression from clinical notes.
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1. Introduction

Multiple sclerosis (MS), a chronic inflammatory disorder of the brain and spinal cord, is
estimated to affect 2.9 million people worldwide and 1 million people in the United States.1

The condition is characterized by acute episodes of symptoms from which a patient often
recovers well, referred to as relapses, and gradual accrual of disability over time, referred
to as progression of disability. The presence of these features has formed the basis for the
commonly used clinical course descriptors which refer to an individual’s clinical phenotype. For
instance, patients typically experience relapses early in their clinical referred to as relapsing-
remitting multiple sclerosis (RRMS), many of them later manifest with gradual progression of
disability that has been referred to as secondary progressive multiple sclerosis (SPMS). Others
do not have evident relapses and develop gradual progression of disability from clinical onset,
a phenotype referred to as primary progressive multiple sclerosis (PPMS).

While relapses are relatively easy to identify along a patient’s disease course due to typ-
ically more rapid change in symptoms, MS progression can be more difficult to discern be-
cause accrual of disability develops more slowly in subtle ways, often taking many months
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or years to appreciate. Yet, it is critical to better identify progression as treatment ap-
proaches are evolving and can be different. The Expanded Disability Status Scale (EDSS),
developed by John Kurtzke in 1983, is a validated clinical assessment tool for measuring dis-
ability and its progression in MS.2 It assigns scores for the degree of neurologic impairment
across eight domains called functional systems (FS). These systems include functions in the
visual, brainstem, pyramidal (strength), cerebellar (coordination), sensory, bowel
and bladder, cerebral (cognitive), and ambulatory (walking) domains. Each FS con-
tributes to a calculation of overall EDSS score, which ranges from 0 (normal) to 10 (death)
with intervals of 0.5. The EDSS is used as a standard outcome measure for clinical trials, and
a change of +1.0 for EDSS scores between 0 and 5.5 or a change of +0.5 for EDSS scores
between 6 and 10 is deemed evidence of ’clinically significant’ progression. The time needed to
determine each FS score and the overall EDSS score can pose a challenge for measurement in
routine care. There are heuristics that can be used to more easily derive certain EDSS scores
(such as the use of a cane resulting in an EDSS of 6.0), but this approach is limited.

Scores can also be retrospectively derived based on the narrative and description of the
neurological exam in clinic notes. Natural language processing (NLP) may aid automatic
computation of FS and EDSS scores to support both routine clinical care as well as clinical
research studies of treatment efficacy. Several studies have explored automated recovery of
EDSS from routinely collected data with NLP. Yang et al. compared rule-based, convolutional
neural network (CNN), and a combined rule-based+CNN model and found the combined
approach performed best for total EDSS (accuracy = 0.90; F1 = 0.83), while FS subscore
performance was lower, especially when subscores were not explicitly documented in notes.3

Alves et al. validated an XGBoost-based estimator on neurologist notes, reporting PPV 0.85
and NPV 0.854 . D’Costa et al. introduced MS-BERT and an MS severity classifier, showing
transformer-based embeddings substantially improved EDSS macro-F1 of 0.88 and offered
gains across subscores vs. Word2Vec and rule-based baselines, yet FS extraction remained the
harder task.5 Beyond note-level NLP, Davis et al. demonstrated early feasibility of rule-driven
EDSS extraction from EHR text at scale, motivating subsequent learning-based approaches.6

Muros-Le Rouzic et al. derived a claims-based proxy for EDSS and validated it against chart
EDSS.7 While granular classification was weak, broader severity groupings, particularly EDSS
≥ 6.0, showed much better agreement, underscoring that text-rich notes remain the more
precise substrate for fine-grained EDSS. We hypothesize that large language models might
improve upon performance for FS in clinical notes because of their ability to reason over
heterogeneous phrasing and cross-sentence context, integrating implicit cues with section-
aware constraints to map narrative evidence to FS constructs even when explicit subscores
are absent.

In the long-term, our objective is to develop a robust and highly accurate, multimodal AI
algorithm for determining MS progression of disability over time. For this short-term pilot
study, our objective is two-fold: (1) determine the feasibility of automatically deriving MS
disability progression from clinical notes leveraging large language models (LLMs) and (2)
evaluate how precisely EDSS progression scores can be derived from clinical notes.

Pacific Symposium on Biocomputing 2026

325



2. Methods

This retrospective, feasibility study was approved by the University of Pennsylvania Institu-
tional Review Board.

2.1. Cohort

We identified patients with MS from the Penn Neuroimmunology Registry with a diagnosis of
MS by a neurologist according to McDonald criteria (revised) treated between calendar years
2024-2025 (n=239 patients with 288 progress notes). The mean number of notes per unique
patient encounter was 1.2± 0.41.

2.2. Multiple Sclerosis Progression

We developed LLM-based classifiers for extracting and encoding two MS-related progres-
sion indicators: the standardized and quantified neurological examination and assessment
of Kurtzke‘s Functional Systems (FS) and Expanded Disability Status Scale (EDSS)

from the clinical notes. The complete definitions and logic for computing the EDSS score can
be found in Kappos et al.8 Below, we offer the following more detailed, descriptive summary
for FS and EDSS scoring:

(1) Functional Status (FS) include subscores based on 8 neurological functions that de-
termine a patient’s ability to perform daily activities - basic and complex - necessary for
independent living.9

(a) Visual Functions include assessments of visual acuity, visual fields, scotoma, and
disc pallor with functional system scores ranging from 0=normal to 6=grade 5 plus
maximal visual acuity of better eye of 20/60 (0.33) or less,

(b) Brainstem Functions include assessments of extraocular movement impairment, nys-
tagmus, trigeminal damage, facial weakness, hearing loss, dysarthria, dysphagia, and
other cranial nerve functions with function system scores ranging from 0=normal to
5=inability to swallow or speak,

(c) Pyramidal Functions include assessments of reflexes, limb strength, functional tests,
limb spasticity, gait spasticity, overall motor performance with function system scores
ranging from 0=normal to 6=tetraplegia defined as British Medical Research Council
(BMRC) grade 0 or 1 in all muscle groups of the upper and lower limbs,

(d) Cerebellar Functions include assessments of head tremor, truncal ataxia, limb
ataxia, tandem walking, gait ataxia, Romberg test, other cerebellar tests with function
system scores ranging from 0=normal to X=pyramidal weakness BMRC grade 3 or
worse in limb strength) or sensory deficits interfere with cerebellar testing,

(e) Sensory Functions include assessments of superficial sensation, vibration sense, po-
sition sense, Lhermitte’s sign, and paraesthesiae with function system scores ranging
from 0=normal to 6=sensation essentially lost below the head,

(f) Bowel and Bladder Functions include assessments of urinary hesitancy and reten-
tion, urinary urgency and incontinence, bladder catheterization, bowel dysfunction,
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and sexual dysfunction with function system scores ranging from 0=normal to 6=loss
of bowel and bladder function,

(g) Cerebral Functions include assessments of depression and euphoria, decrease in men-
tation, and fatigue with function system scores ranging from 0=normal to 5=dementia,

(h) Ambulation Functions include assessments of distance and time reported by patient
and use of devices with function system scores ranging from 0=unrestricted to 12=es-
sentially restricted to bed or chair or perambulated in wheelchair, but out of bed most
of day; retains many self-care functions; generally has effective use of arms (EDSS 8.0).

(2) Expanded Disability Status Scale (EDSS) is a standardized assessment tool for
determining the degree of disability in patients with MS that is calculated based on the
individual FS subscores. The EDSS scores range from 0=normal neurological exam (all
FS grade 0) to 10=death due to MS.9 Because the ambulatory is the largest scaled FS
score, it tends to have drive the overall EDSS score. Therefore, the ambulation score can
be directly mapped to the EDSS score in a few limited cases illustrated below.

• 0=unrestricted
• 1 = fully ambulatory
• 2 = Walks ≥ 300 m, but < 500 m unassisted; mild gait impairment (EDSS 4.5 or 5.0)
• 3 = Walks ≥ 200 m, but < 300 m unassisted; noticeable limitation (EDSS 5.0)
• 4 = Walks ≥ 100 m, but < 200 m unassisted; may require minimal aid (EDSS 5.5)
• 5 = walking range < 100m w/o assist (EDSS 6.0)
• 6= unilateral assist, ≥ 50 m (EDSS 6.0)
• 7= bilateral assist, ≥ 120 m (EDSS 6.0)
• 8= unilateral assist, < 50 m (EDSS 6.5)
• 9= bilateral assist, ≥ 5 m, but < 120 m (EDSS 6.5)
• 10 = wheelchair w/o help (EDSS 7.0)
• 11 = wheelchair w help (EDSS 7.5)
• 12 = bed or chair bound (EDSS 8.0)

2.3. Prompts

We used OpenAI’s GPT-4.1 model, which we have historically demonstrated its ability to
complete information extraction and patient phenotyping tasks using clinical notes.10 To re-
duce the model’s stochasticity and improve reproducibility, we set parameters of temperature
at 0.1 and top p at 1. For this feasibility study, we opted to use zero-shot learning after several
rounds of curating and making iterative changes to the prompts. We created system prompts

and task prompts for executing FS and EDSS processing and classification steps.

system prompt = As a neurologist at a health system, you have been tasked

with reviewing clinical notes for evidence of progression of multiple

sclerosis, an autoimmune disease of the brain and spinal cord. You will be

scoring functional system subscores for patients. For each measure,

analyze the narrative and determine if the type is explicitly and

undeniably present or absent. The clinical note you are assessing can be

lengthy, so focus only on the relevant parts for the task
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2.3.1. FS prompt and processing task

For each functional system, the LLM was instructed carefully review the clinical note and
provided more detailed logic to assign a score based on information documented within the
narrative. Below, we provide truncated examples for each FS subscore.

FS task prompt = For each functional system, carefully review the clinical

note and assign a score based on the following criteria:

(1) VISUAL SUBSCORE:

• Score 0: if none of the below are true ...

• Score 5: if there is mention of no light perception (NLP) ...

(2) BRAINSTEM SUBSCORE:

• Score 0: Cranial nerves described as normal or no abnormalities

mentioned ...

• Score 5: Unable to speak or swallow, requires enteral nutrition or

PEG tube ...

(3) PYRAMIDAL SUBSCORE:

• Score 0: if none of the below are true ...

• Score 6: if there is mention of tetraplegia, all limbs with a grade

of 0 or 1 ...

(4) CEREBELLAR SUBSCORE:

• Score 0: if the cerebellar exam is normal or none of the below are

true ...

• Score 4: if severe truncal AND limb ataxia is present ...

(5) SENSORY SUBSCORE:

• Score 0: if the sensory exam is described as normal or none of the

below are true ...

• Score 6: 6 if complete loss of all sensation in 3-4 limbs (neck

down) ...

(6) BOWEL/BLADDER SUBSCORE:

• Score 0: if none of the below are true ...

• Score 6: if complete loss of bladder and bowel control ...

(7) AMBULATION SUBSCORE:

• Score 0: if gait exam is normal or none of the below are true ...

• Score 12: if uses a motorized chair ...

(8) CEREBRAL SUBSCORE:

• Score 0: if none of the below are true, exclude mood related

symptoms and also score 0 if there is improvement in a cognitive

symptom ...

• Score 5: if there is mention of dementia ...
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2.3.2. EDSS prompt and processing

For the EDSS task, the LLM was instructed to ascertain the EDSS score from the FS scores
using the EDSS task prompt and provided more detailed post-processing steps that incorpo-
rated instructions from Kappos et al.8

EDSS task prompt = You are an expert neurologist specializing in multiple

sclerosis (MS), a chronic autoimmune disease affecting the central nervous

system. One of your key responsibilities is accurately determining a

patient’s level of disability using the Expanded Disability Status Scale

(EDSS). The EDSS is the gold standard measure of disability in MS, ranging

from 0 (normal neurological examination) to 10 (death due to MS). This

scale integrates impairments across multiple functional systems into a

single score that reflects overall disability. Your expertise is required

to translate a patient’s functional system subscores into an accurate EDSS

rating. These subscores come from a comprehensive neurological examination

and measure impairment in eight key domains: ambulation (walking ability),

vision, brainstem function, pyramidal function (motor strength),

cerebellar function (coordination), sensory function, bowel/bladder control,

and cerebral/mental function. Your goal is to apply the established EDSS

calculation rules consistently and accurately.

Using the output from the eight predicted functional system (FS) subscores, an LLM was
instructed to deterministically derive an EDSS score (0.0–9.0). Two additional rules must be
applied to correctly ascertain clinically-valid EDSS scores. For visual and bowel/bladder FS,
scores are adjusted so that these symptoms do not disproportionately contribute to the EDSS
score. Use of an assistive device suggests a significant degree of disability and therefore some
ambulatory FS scores determine a specific EDSS score regardless of other FS values. The LLM
outputs were used to compute the EDSS score using the following steps in order:

(1) Pre-convert visual and bowel/bladder FS scores to a lower scale
(2) Convert ambulatory FS scores directly to EDSS values when possible.

The model was prompted to (i) articulate a concise chain of thought for each of the eight
functional-system domains, (ii) assign the corresponding ordinal score, and (iii) return the 
predictions in a simple, consistently formatted JSON object. Requiring the model to “reason 
first, a nswer s econd” e nabled i nspection o f i ts i ntermediate r ationale a nd h as b een shown 
to improve zero-shot classification p erformance i n c linical l anguage t asks.11,12 Handling one 
domain at a time limited cross-domain interference and keeps the prompt length manageable 
for long progress notes. A rigid output schema ensured that the predictions are machine-
readable without post-processing, which simplified i ntegration w ith t he e valuation pipeline 
and downstream analytic workflows.

2.4. FS Classifier Performance

We assessed the performance of the FS classifier u sing a ccuracy a s well a s p recision, recall, 
and both weighted and macro F1.
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2.5. EDSS Classifier Performance

We understand that there is imprecision in classifying EDSS scores from FS scores due to lack 
of specificity in the measurement and incorrect inference among other reasons. However, not all 
misclassifications are alike. For example, the documentation of the ambulatory FS score may 
not include distance walked to precisely classify lower scores. Therefore, we devised several 
lenient match criteria for capturing and assessing performance based on ordinal closeness 
(adjusts for small numeric differences in documented precision such as off by  n)  and semantic 
relatedness (adjusts for similarities in clinical definitions such as use of assistive device).

(1) Exact match: both expert and LLM values match exactly
(2) Lenient match by 1: the LLM value is within 1 point of the expert value
(3) Lenient match by 2: the LLM value is within 2 points of the expert value
(4) Lenient match by category: the LLM value is an exact or falls within a range of values

associated with need for assistance. These ranges were as follows: no assist ranges from
0 ≤ 5.5, unilateral assist is 6, bilateral assist is 6.5, and wheelchair ranges from 7 ≤ 8.5.

We computed the following agreement and error metrics:

(1) Quadratic Kappa (κ): quantifies agreement by penalizing errors based on order and dis-
tance between the true and predicted scores; penalizes larger disagreements more heavily.

(2) Mean Average Error (MAE): measures the average absolute distance between true and
predicted scores; interprets error rate by treating all errors linearly.

(3) Root Mean Square Error (RMSE): measures the square root of the mean squared differ-
ences between the true and predicted scores; penalizes larger errors more heavily than
MAE, making it useful for class imbalance and comparing costly errors and outliers.

3. Results

We developed LLM-based classifiers f or e xtracting a nd i nferring F S a nd EDSS s cores from 
clinical notes. We report classification performance.

3.1. FS Classifier Performance

In Table 1, we observed high overall accuracy and weighted recall across FS subtypes ranging 
from 0.787 (cerebral) to 0.971 (visual). Weighted F1-scores ranged from moderate at 0.784 
(ambulation) to high at 0.970 (visual); in contrast, macro F1-scores ranged from low at 
0.295 (ambulation) to moderate at 0.724 (visual). The majority class for each FS subscore 
is 0.

In Figure 1, we show the distribution of FS subscores by the generated by the expert and 
LLM. We observe similar trends within subscore values, e.g., both predict similar prevalence 
across subscores and the LLM under predicts the majority class of 0 and overpredicts value 1.

In Figure 2, we assessed the difference b etween t rue, e xpert-generated FS s core values 
and predicted, LLM-generated FS score values. We observe concordant median score values 
of 0 for all functional system scores and most exactly match across FS types. Most of the 
predicted LLM values are off by no more than 2  points from the true value.
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Table 1: Performance metrics for FS subtype classification

FS subtype Accuracy Precision Recall F1-score Precision Recall F1-score

Weighted Macro

Ambulation 0.799 0.776 0.799 0.784 0.275 0.362 0.295
Bowel/Bladder 0.782 0.876 0.782 0.803 0.476 0.447 0.413
Brainstem 0.900 0.930 0.900 0.911 0.495 0.561 0.511
Cerebellar 0.879 0.892 0.879 0.878 0.691 0.619 0.631
Cerebral 0.787 0.849 0.787 0.801 0.640 0.664 0.641
Visual 0.971 0.970 0.971 0.970 0.708 0.744 0.724
Pyramidal 0.812 0.815 0.812 0.806 0.456 0.436 0.440
Sensory 0.895 0.901 0.895 0.892 0.660 0.638 0.642

Fig. 1: Distribution of true and predicted FS scores

3.2. EDSS Classifier Performance

In Figure 3, we performed a sensitivity analysis using exact and lenient match criteria for 
computing expert-LLM agreement. For exact IAA, EDSS performance ranged from low (score 
2.5 at 0.33) to high (score 7 at 1.0). 1 of 16 EDSS subscores achieved 100% agreement. For 
lenient by 1 IAA, 10 of 16 (62.5%) EDSS subscores achieved 100% agreement; for lenient by 2 
IAA, 12 of 16 (75%) EDSS subscores achieved 100% agreement. Match by category produced 
a high overall of 0.974 and moderate to high IAA: no assist of 0.980, unilateral assist of 0.667, 
bilateral assist of 0.846, and wheelchair of 1.00.
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Fig. 2: Differences between true and predicted FS scores

Fig. 3: Agreement between true and predicted EDSS scores varied by match criteria

In Figures 4 and 5 - Appendix, we report the confusion matrices with κ, MAE, and
RMSE for FS and EDSS scores. κ ranged from moderate (brainstem at 0.621) to high
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(ambulation at 0.942) for subscores and was high for EDSS at 0.942. MAE ranged from 
0.13 for bowel/bladder to 0.34 for ambulation subscores and was 0.34 for EDSS. RMSE 
ranged from 0.39 for bowel/bladder to 1.04 for ambulation for subscores and was 0.70 for 
EDSS.

4. Discussion

We conducted a feasibility study leveraging LLMs to encode FS and EDSS scores from clinical 
notes and an expert-LLM sensitivity analysis to understand imprecise classification of EDSS.

4.1. FS Classifier Performance

The language model correctly assigned FS scores in most domains. Five of eight domains ex-
ceeded exact accuracy of 0.90. The lower macro-average numbers reflected the class imbalance 
and the difficulty of  long-tailed labels. Visual, sensory, and cerebellar domains achieved 
macro-F1 above 0.70, whereas ambulation and pyramidal lagged below 0.40. Performance 
differences f ollow c linical d ocumentation p atterns. V isual l oss a nd c erebellar disorders 
are usually described with distinct terms such as “optic neuritis” which the model captures 
reliably. Ambulation scoring depends on walking distance and aid usage, information often 
omitted or expressed qualitatively. Pyramidal signs occupy a similar gray zone; progress notes 
may list upper motor neuron findings without quantifying weakness, making p recise ordinal 
mapping challenging.

4.2. EDSS Classifier Performance

We observed that most EDSS misclassifications c ould b e c aptured w ith more l enient match 
criteria. Error analysis shows that most residual errors arise at the scale’s extremes. In the 
very mild range (EDSS 0.5–2.5) the model tends to underestimate severity by one half-point, 
likely because phrases such as “walks independently but tires easily” are interpreted as normal 
ambulation, demonstrating that underspecified and small variations i n ambulation phrasing 
can lead to whole-point shifts. In the wheelchair-bound range (EDSS ≥ 7.0) we observe a few 
adjacent misclassifications b etween 7 .0, 7 .5, a nd 8 .0, b ut a ll p redictions r emain w ithin the 
acceptable tolerance band.

Because EDSS is an ordinal measure, the clinical impact of a prediction error depends 
on its magnitude. Misreading a note scored by clinicians as EDSS 6.5, where the patient 
needs bilateral support to walk, as 2.0, which is indicated only minimal disability, could delay 
escalation of therapy or understate safety concerns. By contrast, confusing 4.0 with 5.0 seldom 
changes management. Cognitive error, rather than lack of knowledge, underlies many medical 
mistakes, and evaluation metrics that ignore the distance between ordinal classes can hide 
systems that make infrequent yet clinically significant large-magnitude errors. This concern is 
particularly relevant in the context of bridging AI with human expertise, where misjudgment of 
disability trends directly distorts decisions about disease progression and treatment response.
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4.3. Related Works

In comparison to Yang et al.’s highest performing classifiers for FS subscores, our LLM-based
solution produced higher F1-scores for cerebellar, cerebral, visual, and sensory. How-
ever, the LLM-based EDSS classifier performance did not outperform the rules/CNN-based
classifier. We hypothesize that poor EDSS classification is partially driven by FS classifica-
tion as well as insufficient ambulatory score details, e.g., how far a patient can walk in feet
documented in the clinical notes.

4.4. Limitations and Future Work

This work presents a feasibility evaluation situated alongside prior efforts (Yang et al.), with
the primary objective of establishing a clear empirical reference point for automated EDSS
and FS extraction from routine notes. Several limitations merit emphasis. Our cohort is mod-
est and drawn from a single institution, which raises the risk of overfitting, particularly given
iterative prompt refinement, and limits generalizability. We will mitigate this by expanding
the dataset across additional neurologists, encounter types, and less prevalent MS phenotypes;
freezing explicit train/dev/test splits with documented seeds and access controls; and employ-
ing automated prompt optimization that searches over instruction variants and exemplars to
reduce ad-hoc tuning and quantify sensitivity to prompt choices. Labeling in the present
study relied in part on a single annotator, which constrains ceiling performance and injects
unavoidable uncertainty; the next phase includes multi-rater annotation with adjudication on
a stratified subset and reporting of inter-rater agreement.

Methodologically, our zero-shot framing focuses on clinical utility and transparency but
remains incremental. Two directions are in progress to strengthen novelty and fit to the
task. First, we are conducting targeted error analyses and ablation studies to isolate failure
modes and their impact on EDSS and FS outputs. Second, we are exploring a presence-only or
maximum-entropy formulation in which the LLM serves as a high recall evidence extractor and
a constrained probabilistic layer estimates FS abnormalities and ambulation anchors without
treating “no mention” as negative. An ordinal mapping with clinical consistency constraints
could then yield EDSS scores. This hybrid approach with LLMs has the potential to improve
calibration, reduce silent false negatives, and better respect the ordinal structure of disability
scores.

Finally, because EDSS is computed from multiple functional subsystems, errors in any
single domain can propagate to the composite score. To curb this, future iterations will incor-
porate complementary modalities to cross-validate narrative inferences, designate exact-match
EDSS as the primary endpoint with tolerance-band results reported as secondary analyses, and
extend analyses beyond point estimates to longitudinal trajectories, enabling detection of clin-
ically meaningful changes over time. We emphasize that tolerance bands are not a substitute
for exact agreement. They are reported to reflect the known resolution of EDSS assignment
in routine practice and to distinguish near-misses from clinically divergent errors. In our error
analysis, most disagreements were adjacent and preserved the underlying category, suggesting
limited clinical impact. With a larger, more diverse corpus, multi-site validation, multi-rater
labels, and principled prompt/model tuning, we aim to deliver a more robust, generalizable
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system suitable for prospective evaluation while preserving the practicality and transparency
that motivated this feasibility stage.

5. Conclusion

Automating EDSS and FS extraction can lessen clinician documentation burden, unlock his-
torical data for large-scale outcome studies, and provide up-to-date disability estimates to deci-
sion support tools. This pilot investigation confirms the technical feasibility of deriving detailed
MS disability progression measures from routine neurology notes with a single prompt-based
large language model. The model achieved strong FS performance, with accuracy spanning
0.782 – 0.971 and weighted F1 ranging from 0.784 to 0.970 across the eight neurologic domains.
Although overall EDSS exact match agreement was lower, applying clinically-meaningful tol-
erance bands raised categorical agreement to 0.974, indicating that most disagreements occur
within ranges unlikely to alter therapeutic decision making.
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7. Appendix

Fig. 4: EDSS confusion matrix
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Fig. 5: Functional System (FS) confusion matrices for all subscore categories
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