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The accurate determination of biological molecular function remains one of the most significant 
challenges in computational biology, with vast areas of biological “dark matter” persisting in 
microbiomes, viruses, and unexplored sequence space. To meet this challenge, we developed at PSB 
session to address the limitations of traditional sequence similarity-based functional annotation 
methods and explores how recent advances in AI/ML and high-throughput data generation are 
transforming the field. We highlight four innovative contributions presented in this session: a 
geometric framework using signed distance functions for modeling protein surfaces; a reinforcement 
learning-based approach for steering protein generative models to design functional sequences; an 
ensemble framework combining sequence, structural, and network features for subcellular 
localization prediction; and a scalable factorization method integrating gene-gene interaction data 
for analyzing high-dimensional genetic perturbation profiles. Together, these methodologies 
showcase the potential for computational and AI-driven tools to address the complex and multiscale 
nature of molecular function prediction, paving the way for new discoveries in understanding and 
engineering biological systems. 
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1.  Introduction 

What is biological molecular function? We doubt you’d be able to get two experts on the subject to 
agree on what precisely this entails. By relying on textbook definitions, the term can be interpreted 
to mean the specific biochemical activity performed by any molecule. Within a cell this is typically 
a protein or RNA. Activity includes enzymatic activities, binding interactions, and structural roles 
among an infinity of other functions. Here, however, the ease of definitions ends. Can function be 
described without consideration of molecular, cellular, organismal, and even community/ecosystem 
context? Are parts of the same pathway considered to be interacting even if they are never in the 
same location? Does the human ortholog of a yeast enzyme have the same function? In spite of these 
issues with definition, the field has been developing methods for years aimed at prediction and 
characterization of gene and protein function (Zhou, Jiang et al. 2019).  

Even for well-characterized organisms, the number of genes and proteins with unknown or 
poorly defined functional annotations is substantial (Rocha, Jayaram et al. 2023), with particular 
blind spots for non-canonical isoforms. And in microbial communities and viruses, existing methods 
frequently leave more than half of the proteins with unannotated functions often failing to find even 
putative homologs. RNA sequences, metabolites and other small molecules are even less well-
characterized, with only a fraction of identified species having any kind of known functional role. 
Furthermore, even the existing functional labels are limited, with many describing only aspects of 
function or lacking specificity to accurately describe the role of the molecule in the system. 

Function depends on the context in which it takes place, as molecules participate in systems and 
structures at differing levels of scale and abstraction. High-throughput data generation methods, 
along with automated platforms for experimental investigation, offer ways to provide contextual 
information by measuring many thousands of molecular species in biological samples under 
different environmental conditions that cause changes in system interactions. Until now, however, 
the potential of these data streams to inform learning models for functional annotation has remained 
largely untapped. 

The recent revolution in AI/ML methods represents a significant opportunity to make in-roads 
into the problem of unknown functions. Especially relevant are advances in protein structure 
prediction, which can now be accomplished with high fidelity from just protein sequence alone. 
These approaches have opened new avenues for computational function determination. However, 
these approaches have not solved the function annotation problem; significant limitations and dark 
areas of function for many molecules still remain. 

This session is focused on bringing to light new thinking about the following questions: How 
can we define a function of a particular molecule? How can this functional label be propagated to 
other molecules? What is the relationship of these labels? How can labeling systems describe 
context at different levels of detail, and how do they link to phenotypic outcomes? 

2.  Overview of the functional annotation problem 

Functional characterization of individual genes and proteins has a long history in science, with years 
of research leading to specific enzymatic, signaling, and/or systems-level functions being 
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determined for individual molecules. In the era of high-throughput biological data acquisition, our 
ability to gather novel genetic material and thus protein sequences has vastly outpaced our ability 
to determine functions experimentally for those molecules. In part, this is because experimental 
function determination is not easily possible in unculturable organisms, such as those from 
environmental sources, or for many viruses where experimental systems do not exist and/or genetic 
manipulation is challenging (Schloss and Handelsman 2005, Mahler, Costa et al. 2023).  
 
To address this gap, databases that capture experimental functional knowledge have been developed 
and, concomitantly, bioinformatic methods for determining sequence similarity. Sequence similarity 
is the primary method used to infer evolutionary relationships between sequences and can be used 
to associate a novel sequence with a sequence or sequence family that has an experimentally 
determined function allowing transference of annotations computationally to a large number of 
sequences (Hamp, Kassner et al. 2013). However, it is estimated that in many organisms, 20-40% 
of the proteins encoded cannot be assigned a specific function (Lobb, Tremblay et al. 2020). This 
problem is more pronounced in sequences derived from microbiomes and viromes, where the 
majority of proteins can’t be annotated in this way (Wang, Ma et al. 2017). 
 
Traditional methods rely on sequence similarity to infer evolutionary (and therefore functional) 
relationships between genes and proteins. The BLAST (Altschul, Gish et al. 1990) software suite 
provides relatively rapid methods for searching large sequence databases, while modern alternatives 
like MMSeqs2 (Steinegger and Soding 2017) and DIAMOND (Buchfink, Reuter and Drost 2021) 
introduce greater speed, and profile hidden Markov models (Eddy 2011, Roddy, Rich and Wheeler 
2024) can increase sensitivity particularly when provided with organized sequence families (Mistry, 
Chuguransky et al. 2021).  
 

3.  Use of structure for prediction of function 

Recent advances in structure prediction have opened new possibilities for determining structure-
based similarity from known or predicted structures, which can identify relationships not evident 
from sequence alone. Tools like FoldSEEK leverage structure predictions to enable rapid searching 
for structurally similar proteins (Pan, Wu et al. 2024, van Kempen, Kim et al. 2024). Because protein 
structure determines function these approaches allow transference of annotations using structural 
similarity. Some methods exist which aim to characterize structural properties or motifs to more 
directly predict function, for example, predicting binding sites and substrates directly from structure 
(Krivak and Hoksza 2018, Fang, Jiang et al. 2023). These are particularly exciting as they do not 
directly depend on the existence of well-characterized orthologs for function determination. 
Additionally, related methods are being developed that allow prediction of functional context via 
structure, to predict protein localization and interactions with cellular systems context. 
 
For example, the paper by Scott et al., ‘Implicitly and Differentiably Representing Protein Surfaces 
and Interfaces’ presents an innovative method for computationally representing protein shapes, 
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emphasizing the use of signed distance functions (SDFs) to model solvent-accessible surfaces. By 
integrating SDFs with constructive solid geometry operations, the authors demonstrate potential 
advancements in predicting protein conformation with potential impact on estimates of binding 
potential and structure-aware design predictions. The work sets the stage for leveraging machine 
learning techniques, such as pretrained protein transformers, to enhance these representations and 
better understand protein behavior.  
 
The paper by Viggiano et al., ‘Steering Protein Generative Models at Test-Time for Guided AAV2 
Capsid Design’ does not attempt to predict protein function. Instead it explores methods for guiding 
pretrained generative models to design protein sequences with specific functional properties. Their 
method, ProVADA+, utilizes reinforcement learning-based adaptive masking and advanced 
sequence evaluation metrics to efficiently explore sequence space to generate optimized variants. 
The method demonstrates success in designing viable Adeno-Associated Virus (AAV2) capsids, 
overcoming challenges posed by rugged fitness landscapes. This approach highlights the potential 
for computational techniques to accelerate the rational design of proteins with complex, user-defined 
functionalities. 

4.  Protein language models for predicting function 

New protein language models trained on large sets of sequence data such as ESM (Rives, Meier et 
al. 2021) and ProteinBERT (Brandes, Ofer et al. 2022) allow searching sequence space for 
contextual patterns, and may provide insight into underlying biology and thus function of those 
sequences. These models build on numerous advances in machine learning and deep learning in the 
past few decades, with many methods being developed to target specific functional prediction 
problems for classes of proteins, address limitations in standard sequence similarity methods, or 
predict specific functional properties for proteins like localization or tissue specificity. In our 
session, the paper by Ahmed, et al. ‘HALO: Hybrid Attention Model for Subcellular Localization’ 
integrates structural and sequence-based approaches to predict subcellular localization for proteins, 
an important component of functional context. It emphasizes the use of large-scale language models 
like ESM and ProtT5, fine-tuned on subcellular localization datasets, to generate rich protein 
representations. By combining sequence embeddings, structural features, and graph neural networks 
within an ensemble framework, the approach achieves enhanced predictive accuracy and robustness. 
The work underscores the transformative potential of combining structural biology and deep 
learning to better understand protein function. 
 

5.  Analysis of high-throughput functional assays for function prediction 

The ability to assay thousands of molecules at once provides rich sources of data for a diverse range 
of systems. These datasets have been used extensively to provide functional information for many 
genes and proteins at varying levels of scale and for different purposes (McDermott, Arshad et al. 
2020, Kustatscher, Collins et al. 2022). They have been also used to determine relationships between 
molecules, and thus inform about their function through grouping similar functions (Wolfe, Kohane 

Pacific Symposium on Biocomputing 2026

420



 
 

 

and Butte 2005) or through associating molecular profiles with phenotypes of disease outcomes or 
genetic features. Similarly, the ability to genetically manipulate hundreds or thousands of genes in 
cells provides a powerful way of examining the effects of individual genes on the system function, 
as well as examining interactions between genes. In our session, the paper by Chang et al., 
‘PertSpectra: Interpretable Matrix Factorization for Genetic Perturbations’ presents a scalable 
approach for analyzing high-dimensional genetic perturbation datasets to uncover biologically 
relevant gene interactions. The method combines matrix factorization with biologically informed 
inductive biases, integrating gene-gene interaction graphs to improve the interpretability of learned 
embeddings. PertSpectra demonstrates improved computational efficiency and scalability compared 
to other models, making it well-suited for large-scale genetic screens. The framework offers a 
powerful tool for predicting cellular responses to complex perturbations and advancing our 
understanding of gene function and regulation. 
 

6.  Large Language Models (LLMs) in protein function prediction 

The development of large language models (LLMs) has transformed computational biology by 
enabling sophisticated analyses of protein sequences and functions. Trained on vast quantities of 
text from many domains, they provide a great deal of context and can be used to help predict 
function. However, their ability to generalize and to predict function for proteins and systems that 
have not been well studied are likely limited. The comprehensiveness and accuracy of training data 
raises concerns about biases and generalization to understudied proteins, microbiomes, and viromes.  
 
The paper by, Shringapure et al. demonstrate the powerful and scalable application of LLMs for 
causal gene prioritization in genome-wide association studies (GWAS). By synthesizing complex 
scientific literature, LLMs helped identify high-probability candidate genes, successfully 
outperforming current methods across benchmark datasets. The paper highlights the potential of 
LLMs to fill critical gaps in understanding functional impacts of genetic loci while underscoring the 
need for refined methodologies to enhance transparency and mitigate biases in their predictions. 
 
The study by Wang et al. introduces Gene-R1, a specialized open-source LLM framework aimed at 
improving gene set analysis tasks. By incorporating domain-specific knowledge and reinforced fine-
tuning methodologies, Gene-R1 narrows the performance gap between open models and proprietary 
systems. While it exhibits significant advancements in reasoning and task-specific accuracy, this 
study also acknowledges existing challenges, such as hallucinations outside of training domains and 
transferability to other ontologies, emphasizing future directions for development. 
 
Zhapa-Camacho et al. explore the emerging potential of agent-based LLM systems, such as 
LangChain and CAMEL-AI, for protein function prediction. These systems enhance traditional 
LLM capabilities by introducing multi-step reasoning processes that integrate structured biological 
datasets and experimental evidence on-the-fly. This approach allows predictions to be iteratively 
refined, combining computational outputs with curated biological constraints. Such frameworks 
significantly improve both the interpretability and accuracy of protein function determination, 
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positioning LLM-agent systems as a powerful tool for addressing the complexity of biological 
datasets. 
 
These contributions demonstrate both the progress and the persistent challenges for LLMs in protein 
function prediction. By addressing core issues such as limited interpretability, data bias, and the 
integration of curated biological knowledge, these studies push the boundaries of applying LLMs to 
one of computational biology's most enduring challenges. 

7.  Conclusions 

Computational prediction of molecular function is critical to our ability to understand, utilize, and 
control biological systems. Our session highlights a number of advances in this area, from new 
approaches to using protein structure to methods for making sense of large-scale genetic 
perturbations. Advances in AI and systems modeling, coupled with the explosive growth of various 
forms of biological data from different systems is likely to drive a transformation of this problem in 
the near future. 
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