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Understanding the mechanistic basis of pathogenic genetic variants requires reconstruct-
ing the molecular pathways connecting the variant, via a chain of molecular intermediates,
to a disease-causing biological process and phenotype. However, a literature-wide assem-
bly of causal networks connecting variants, molecular pathways, biological processes and
phenotypes has not been previously available. To create such a resource, we developed
an automated pathway reconstruction approach building on the Integrated Network and
Dynamical Reasoning Assembler (INDRA) system which extracts causal mechanistic state-
ments (positive regulation, phosphorylation, complex formation, etc.) by combining struc-
tured databases and literature mining. We traversed INDRA statements extracted from
publications to identify those describing a genetic variant resulting in a protein point mu-
tation. We then reconstructed directed paths (consisting of one or more linked INDRA
statements) connecting this variant to a term representing a biological process, phenotype
or disease within the same publication. This resulted in a directed multigraph obtained
from 25,862 paths for variants in 2,561 proteins. Each node in this graph corresponds to
an ontology-grounded molecular or process term and each edge is explicitly linked to sup-
porting literature evidence, enabling full auditability of inferred mechanisms. To leverage
the assembled networks, we trained a classification model to predict likely downstream bi-
ological processes or specific disease associations for protein variants. As features to the
model, we integrated molecular annotations (including protein sequence features, ClinVar
pathogenicity labels, and UniProt domain mappings) in combination with representations
from the ESM2 transformer-based protein language model. The performance achieved by
this model shows promise for reconstructing causal mechanistic statements associated with
function of genetic variants, a framing of the variant effect prediction task that goes sig-
nificantly beyond simple assessment of pathogenicity. This integrative framework enables
the mechanistic interpretation of known variants and prediction of functional relevance for
variants lacking prior phenotypic annotation.
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1. Introduction

Advances in genomic sequencing have greatly increased the number of genetic variants ob-
served in human populations; however, understanding how these variants affect biological pro-
cesses and lead to disease remains an ongoing challenge.1 Current computational approaches
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for variant impact prediction are powerful.2–4 They rely predominantly on sequence informa-
tion, evolutionary conservation, and structural features, and are trained to predict specific
functional alterations (e.g., impact on protein stability) or some form of variant viability,
often using pathogenicity information from clinical databases.5,6 While these methods have
achieved widespread adoption in genomic pipelines,7,8 they continue to exhibit fundamental
limitations in deciphering the molecular mechanisms that lead to disease.9 Specifically, these
methods, along with recent studies that aim to establish genotype-phenotype causal relation-
ships,10 generally cannot reconstruct causal paths from individual variants, through specific
molecular events, to downstream biological and disease processes. Moreover, current variant
interpretation tools lack the ability to trace predictions back to supporting literature evidence,
limiting their explainability and clinical applicability.

To address these challenges, we developed an integrated framework that combines auto-
mated path reconstruction with transformer-based machine learning for mechanistic variant
interpretation. Building on the Integrated Network and Dynamical Reasoning Assembler (IN-
DRA) system,11,12 which extracts and assembles causal mechanistic statements from scientific
literature and structured databases, we reconstructed mechanistic paths connecting protein
variants to biological processes and disease phenotypes. This approach yielded a comprehen-
sive network covering 6, 268 variants and 25, 862 causal paths across 2, 561 proteins, where each
causal path (chain of events) is explicitly linked to supporting literature evidence, enabling
full auditability of predicted mechanisms. We then trained an attention-based model that
integrates protein sequence features, domain annotations, pathogenicity scores, and pathway
representations to predict chains of events that lead to both broad functional categories and
specific biological process associations.

We proposed two prediction strategies for associating protein variants with biological pro-
cesses and disease causal paths: a fine-grained model that directly scores all target labels, and
a hierarchical model that incorporates intermediate broad functional categories to guide pre-
diction. While both strategies achieve comparable overall performance, the hierarchical model
provides a structured framework for organizing outputs and supports more interpretable classi-
fication. Incorporating mechanistic paths extracted from the literature substantially improves
prediction quality, highlighting the importance of biological context in variant interpretation.
Combined with domain and pathogenicity information, these features enable functionally ex-
plainable predictions and systematic exploration of variant impact across biological networks.
We deployed an interactive web portal for exploring literature-derived mechanistic networks,
which enables researchers to investigate the network-level propagation of variant effects. This
approach advances mechanistic interpretation of variant effects and supports downstream ap-
plications in target prioritization, biomarker discovery, and precision medicine.

2. Methods

2.1. Extracting causal paths from the literature

To reconstruct causal paths connecting genetic variants to biological processes, we leveraged
the INDRA Database (https://db.indra.bio). The INDRA Database contains mechanistic
Statements extracted from PubMed abstracts and PubMed Central full text articles using
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multiple natural language processing systems combined with the content of curated path-
way databases, assembled using INDRA.12 Each INDRA Statement represents an assertion
about a causal relationship between biological Agents (genes, proteins, small molecules, bi-
ological processes, etc.), where an Agent may represent additional states such as mutations
and post-translational modifications.11 Statements can express, for instance that “CDK12
phosphorylates POLR2A on S1896” or “EGFR-G796D activates cell proliferation”, with each
statement linked to specific supporting evidence sentences and source publications.

From the INDRA Database we extracted all Statements in which an Agent representing
the mutated form of a protein (corresponding to a genetic variant) was involved. Our path
extraction process identified the shortest directed paths connecting genetic variants to biolog-
ical process terms through chains of molecular intermediates within individual publications.
The extracted paths form a directed graph connecting variants, via molecular intermediates,
to disease-causing biological processes or phenotypes, with edges representing causal rela-
tionships. An example causal path for the A53T variant in SNCA is shown in Fig. 1. Each
complete path was constrained to originate from a single publication (rather than drawing
on statements from multiple publications) ensuring coherence of context in which the genetic
variant and its effects are described.

“... A53T α-synuclein overexpression increased LDH release (296%, p < 0.001), caspase 1 
(157%, p = 0.001) and caspase 3 (157%, p = 0.017) activities...”
“Caspase 1 can be activated by known inflammasome-stimulators to directly cleave α-synuclein 
to generate truncated species that are prone to form aggregates in a neuronal PD cell model, 
and silencing of caspase 1 expression rescues neurotoxicity caused by α-synuclein, suggesting 
that under certain toxic stimuli, inflammasome, and caspase 1 cause PD pathology in neurons…”
[PMID: 33494411]

Causal PathINDRA Database

SNCA A53T

[Activation]

CASP1

[Activation]

Parkinson’s Disease

Fig. 1. An example of constructing a causal path for SNCA A53T based on literature evidence
extracted from INDRA Database, with the cited publication supporting a mechanistic link
from variant to Parkinson’s disease via CASP1.

Through this extraction, we identified 19 types of relations capturing mechanistic inter-
actions between molecular entities (Table 1). The “Identity” relation (ID 0) connects genetic
variants to their corresponding proteins to facilitate graph neural network training. We treat
the “Complex” (ID 3) relation as undirected, to describe mutual binding rather than direc-
tional causality. All other relations are directed, thus reflecting their inherent causal nature.

This approach yielded 25, 862 causal records covering 2, 561 proteins. The entities and the
relations between them form a comprehensive network of causal relationships that serves as
the foundation for our knowledge graph construction and subsequent analyses.

2.2. Variant feature construction

To ensure effective utilization of sequence information in model training, we validate position-
to-amino acid correctness using UniProt Swiss-Prot canonical sequences and splice variant
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Table 1. Mechanistic relation types between molecular entities in the knowledge graph

ID Type ID Type ID Type ID Type

0 Identity 5 DecreaseAmount 10 Glycosylation 15 Palmitoylation
1 Acetylation 6 Deglycosylation 11 Hydroxylation 16 Phosphorylation
2 Activation 7 Demethylation 12 IncreaseAmount 17 Sumoylation
3 Complex 8 Dephosphorylation 13 Inhibition 18 Ubiquitination
4 Deacetylation 9 Deubiquitination 14 Methylation

isoforms. The validation process filters for human proteins (OX = 9606) with canonical se-
quences taking precedence when isoform information was imprecise. This approach corrects
potential text mining errors in variant position and amino acid assignment, generating protein
sequence mappings for accurate variant feature construction, with 20,442 records successfully
matching protein sequences across 1,989 proteins to yield 4,511 unique protein-variant pairs.

Next, we incorporate embedding from Evolutionary-Scale Modeling 2 (ESM2),13 a pre-
trained protein language model developed for capturing evolutionary and structural informa-
tion of proteins. Domain features provide binary encoding of the domain types where the
variant is located. Amino acid features capture reference and alternative amino acid prop-
erties through concatenated embeddings. Position features represent the normalized position
within the protein sequence. ClinVar annotations contribute two clinically curated features:
pathogenicity scores and review star ratings. Categorical values are mapped to continuous
scores as described in Table 2.

Table 2. Mapping of ClinVar pathogenicity and review star annotations to feature values

Value Pathogenicity Value Review star rating

0.99 pathogenic 4 practice guideline
0.90 likely pathogenic 3 expert panel
0.50 uncertain significance/missing 2 multiple submitters, no conflicts
0.10 likely benign 1 single submitter
0.01 benign 0 no review/missing

The final variant feature vector xv for variant v combines ESM2 embeddings, domain type
features, ClinVar annotations, amino acid features, and position features as shown in Fig. 2.

Sequence: MDVFMK…QYEPEA 
(140 AA)
Embedding by ESM2 (𝑥𝐸𝑆𝑀2)

Pathogenicity: Pathogenic evidence
Review: ★ (single submitter)
Embedding for (𝑥𝐶𝑙𝑖𝑛𝑉𝑎𝑟)

Variant AA (𝑥𝐴𝐴): AàT
Variant Position(𝑥𝑝𝑜𝑠):	53
Domain feature(𝑥𝑑𝑜𝑚):	REGION

SNCAA53T
(𝑥𝑣)

ClinVar

Fig. 2. Constructed feature representation for SNCA A53T, incorporating sequence embedding
(via ESM2), variant annotations (substitution, domain type), ClinVar annotations.
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2.3. Dataset

We constructed a hierarchical multi-label dataset to evaluate variant functional predictions
across biological processes and diseases. The dataset (Fig. 3A) comprises 4,511 unique pro-
tein variants with experimentally validated functional annotations, organized into a two-level
hierarchy: 1,085 fine-grained biological process and disease labels were manually mapped to
30 broader categories such as cancer and neoplasms, clinical symptoms, cellular transport,
immune response, and cardiovascular diseases.

Knowledge graph GNN pre-training
B

Dataset
A

Cancer and neoplasms

Immune response

Clinical symptoms

Colonic neoplasms

Isotype switching

……
(30 categories)

……

……
(1085 labels)

……

Path encoding by Transformers 
C

2-Layer Transformer

𝑥𝑣 𝑟𝑒𝑙1 𝑝1 bp/disease…

{𝑧!"#$
(&) , 𝑧!"#$

(() , … , 𝑧!"#$
()) }Multi paths per variant:

𝑥𝑣	=	[𝑥𝐸𝑆𝑀2;	𝑥𝐴𝐴;	𝑥𝑝𝑜𝑠; 𝑥𝑑𝑜𝑚;	𝑥𝐶𝑙𝑖𝑛𝑉𝑎𝑟]

Multi-label prediction
D

Category head (𝑓)𝑓 = 𝑃𝑎𝑡ℎ𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑥* , {𝑧!"#$
()) })+&, )

Category gating

Label head ([𝑓; 𝑓-.$"./-0])

Hierarchical modelFine-grained model

Label head ( 𝑓 )

Fine-grained label (1085)

Coarse-grained label (30)

Fine-grained label (1085)

Coarse-grained model

Fig. 3. Prediction framework. (A) Dataset construction with 1,085 fine-grained labels across 30
biological categories; variants are split into training, validation, and test sets. (B) Knowledge
graph pre-training comprising 8,986 nodes (molecular entities) and 33,579 edges (mechanistic
relations). (C) Causal paths are encoded using a 2-layer transformer. (D) Multi-label predic-
tion: a fine-grained model (left) directly predicts all fine-grained labels; a hierarchical model
(right) scores the categories first, then predicts fine-grained labels through the category-guided
gating mechanism.



To prevent overfitting to specific proteins or categories, we adopted a stratified data split-
ting strategy repeated over 30 independent runs. In each run, variants were partitioned into
training (70%), validation (20%), and test (10%) subsets. Across the 30 runs, the split sizes
were highly consistent (mean ± std): 3,158.4 ± 59.8 for training, 889.5 ± 55.5 for validation,
and 463.1 ± 29.3 for testing. To quantify the stability of variant allocation, we computed
the Jensen–Shannon (JS) divergence between each variant’s observed split distribution and
the expected uniform distribution. The average JS divergence was 0.084 ± 0.046. All 30 cat-
egories were represented in every training and validation split on average, while the test set
maintained 99.3% category coverage, with only occasional omissions in a few runs.

2.4. Pre-training GNN model for knowledge graph construction

Using validated sequences as described in Section 2.2, we constructed a knowledge graph
G = (V,E,R) comprising |V | = 8986 unique nodes representing variants, proteins, biological
processes, and phenotypes. These nodes are connected by |E| = 33579 edges representing
|R| = 19 distinct relation types, as shown in Table 1 and Fig. 3B.

We employed a 2-layer Relational Graph Convolutional Network (R-GCN)14 to learn node
embeddings, where the embedding dimensionality is chosen as 256. The initial node embed-
dings are randomly initialized from a standard normal distribution:

H(0) ∈ R8986×256, h
(0)
i ∼ N (0, 1)

The R-GCN forward propagation is performed according to the following update rule:

h
(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W(l)

r h
(l)
j


where h

(l)
i is the embedding of node i at layer l, N r

i represents the set of neighbors of node i

connected by relation r, W(l)
r is the learnable weight matrix for relation r at layer l, ci,r = |N r

i |
is the normalization constant, and σ denotes the ReLU activation function.

For knowledge graph completion, we employ the DistMult scoring function15 f(s, t, o) to
evaluate the plausibility of triples:

f(s, t, o) = ⟨hs, rt,ho⟩ =
256∑
d=1

h
(2)
s,d · rt,d · h

(2)
o,d

where s is the subject node index, t is the relation type index, o is the object node index, and
d denotes the dimension index of the embedding vectors.

The model parameters are optimized using a softplus margin ranking loss:

Llink =
1

|E|
∑

(s,t,o)∈E

[
log(1 + e−f(s,t,o)) +

1

k

k∑
i=1

log(1 + ef(s,t,o
′
i))

]
where k = 2 is the number of negative samples and o′i denotes the i-th randomly sampled
negative16 object node.

Upon completion of training, the model produces node embeddings Enode ∈ R8986×256 and
relation embeddings Erel ∈ R19×256.
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2.5. Path encoding by transformers

To encode causal paths from variants to biological processes or diseases, each path is repre-
sented as a sequential token sequence as illustrated in Fig. 3C. The path token p(i) is con-
structed as:

p(i) = [x(proj)v , er1 , en1
, er2 , en2

, ..., erk , eBP ]

where i denotes the path index, node embeddings Enode[ni] are projected to eni
for each inter-

mediate node ni, relation embeddings Erel[ri] are projected to eri for each relation ri, and eBP

represents the final biological process or disease term. Each path p(i) is processed through a
2-layer transformer17 to obtain the path encoding z

(i)
path.

2.6. Category-guided multi-label prediction

For a variant v with m encoded paths {z(1)path, z
(2)
path, ..., z

(m)
path}, an attention mechanism aggregates

the path information by computing importance weights. The variant representation queries all
paths to focus on the most relevant causal connections, giving the aggregated representation
fv. The prediction process follows a hierarchical approach. First, category-level predictions are
generated through a classification head, producing probability distributions pcat ∈ [0, 1]30 over
30 broader categories. Category information is then incorporated through a gated mechanism
to enhance variant representations. The weighted category representation cweight is computed
using learned category embeddings weighted by predicted probabilities:

cweight = pTcatC

where C ∈ R30×512 contains learned embeddings for each category.
A variant-specific gate g ∈ [0, 1]512 determines which dimensions should incorporate cate-

gory information,18 which enhances the original variant representation fv into fenhanced as:

fenhanced = fv + g ⊙ cweight

where ⊙ denotes element-wise multiplication.
Finally, fine-grained label predictions are generated using both original and enhanced rep-

resentations to predict across 1,085 specific biological processes and diseases. To address the
inherent class imbalance in multi-label biological process prediction, we employ asymmetric
loss19 which applies different focusing parameters for positive and negative samples, empha-
sizing learning from underrepresented positive classes. This hierarchical framework leverages
category-level guidance for accurate fine-grained predictions while handling class imbalance
through specialized loss functions.

3. Results

3.1. Protein variant network

We constructed a comprehensive protein variant network integrating 25,862 variant-to-disease
paths across 2,561 proteins. Each causal edge is fully auditable with explicit links to supporting
literature evidence, enabling researchers to trace any variant-disease association to its original
experimental sources. We created an interactive web portal (http://variants.indra.bio) that
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provides community access for browsing causal paths, visualizing network connections, and
accessing supporting evidence. Table 3 summarizes the genes most frequently linked to causal
paths in our network.

Table 3. Summary statistics for the top 20 genes ranked by the count of causal paths

Gene Paths Variants BPs/diseases PMIDs Gene Paths Variants BPs/diseases PMIDs

TP53 1298 87 110 261 PIK3CA 180 9 47 55
BRAF 1218 30 130 562 EGFR 179 29 38 78
KRAS 1152 27 162 365 SNCA 178 10 45 52
TARDBP 909 35 54 30 NRAS 173 14 47 63
LRRK2 398 17 77 166 CTNNB1 156 20 36 59
SOD1 305 16 53 141 DNM1L 156 16 41 48
JAK2 231 16 50 125 RAC1 151 16 51 54
HRAS 225 14 56 89 MDM2 136 22 41 37
MAPT 187 19 77 55 GSK3B 128 15 39 40
RPS6KB1 183 4 58 100 PTEN 127 23 39 40

Figure 4 demonstrates a variant-centric mechanistic network derived for SNCA, a gene
strongly associated with Parkinson’s Disease. The visualization integrates multiple SNCA
variants (e.g., A30P, E46K, G51D, A53E) and their downstream effects through molecular
intermediates. Highlighted biological processes include unfolded protein response, autophagy,
oxidative stress, and neuroinflammation. Key proteins such as LRRK2, PRKN, and TNF
mediate diverse regulatory interactions including activation, inhibition, and post-translational
modifications, ultimately converging on phenotypes such as cell death and Parkinson’s Disease.

3.2. Hierarchical model for prediction performance

We compared three prediction strategies: (i) a fine-grained model that directly predicts all
1,085 biological process and disease labels; (ii) a coarse-grained model that predicts the 30
categories, which collectively cover all 1,085 fine-grained labels; (iii) a hierarchical model that
first scores the categories and then uses those scores to guide fine-grained label predictions
through a category-guided gating mechanism. Each strategy was trained and evaluated over
30 data splits using the same architecture and training protocol. Table 4 reports mean test
performance over the 30 runs.

Table 4. Average test performance across 30 data splits for the three prediction strategies

Model Micro-P Micro-R Micro-F1 AUROC AUPRC

fine-grained 0.684 0.622 0.647 0.913 0.286
coarse-grained 0.959 0.863 0.908 0.959 0.751
hierarchical 0.520 0.644 0.573 0.919 0.307

Bold values indicate the best performance between fine-grained and hierarchical models.

As expected, the coarse-grained model exhibited the strongest performance, achieving a
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Fig. 4. Interactive visualization of SNCA variant network showing path to Parkinson’s Disease.
Blue nodes represent proteins, purple nodes indicate variants, green nodes denote intermediate
processes, and orange nodes mark biological process or disease endpoints.

Micro-F1 of 0.908. This result reflects the relative ease and reliability of coarse-grained classi-
fication, which benefits from stronger label signals and reduced sparsity. A more informative
comparison concerns the two models that address the full 1,085-label space. The fine-grained
model, which assigns probabilities to every label in a single step, achieves higher precision and
an F1 score, indicating stronger threshold-based classification on the frequent labels. By con-
trast, the hierarchical model achieves higher recall and slightly better AUROC and AUPRC.
Because AUROC and especially AUPRC are less biased toward majority classes, these gains
suggest that hierarchical supervision slightly helps find rare but relevant variant-label asso-
ciations. Training all three models across the 30 random splits (100 epochs each) required
approximately 12-14 hours using 4 H100 GPUs.

3.3. Ablation study to assess feature contributions

To evaluate the contribution of different features (Fig. 2), we conducted an ablation study in
one of the 30 splits combining UniProt domain, ClinVar, and path-based inputs under three
prediction strategies. The results are shown in Table 5. Among single-feature inputs, the path-
only setting consistently outperformed domain or ClinVar in every prediction mode. With path
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features alone, the coarse-grained model reaches an F1 = 0.922, while hierarchical and fine-
grained models attain 0.595 and 0.414, respectively. In contrast, using only domain or ClinVar
information yields F1 values below 0.3 across all modes, underscoring the comparatively weak
signal carried by these annotations.

Table 5. Ablation results for different feature combinations and prediction strategies

Feature Model Micro-P Micro-R Micro-F1 ACC AUROC AUPRC

Domain
fine-grained 0.201 0.196 0.199 0.016 0.564 0.056
coarse-grained 0.462 0.117 0.187 0.059 0.596 0.160
hierarchical 0.233 0.205 0.218 0.012 0.587 0.059

ClinVar
fine-grained 0.216 0.198 0.207 0.018 0.592 0.056
coarse-grained 0.416 0.221 0.288 0.065 0.617 0.166
hierarchical 0.219 0.253 0.235 0.008 0.574 0.059

Path
fine-grained 0.459 0.377 0.414 0.089 0.872 0.130
coarse-grained 0.960 0.886 0.922 0.811 0.961 0.782
hierarchical 0.527 0.683 0.595 0.175 0.925 0.279

Domain+ClinVar
fine-grained 0.263 0.205 0.230 0.008 0.594 0.061
coarse-grained 0.522 0.124 0.200 0.075 0.611 0.172
hierarchical 0.267 0.240 0.253 0.010 0.593 0.062

Domain+Path
fine-grained 0.501 0.482 0.491 0.142 0.890 0.177
coarse-grained 0.969 0.895 0.931 0.815 0.974 0.791
hierarchical 0.529 0.685 0.597 0.181 0.927 0.300

ClinVar+Path
fine-grained 0.563 0.545 0.554 0.258 0.900 0.182
coarse-grained 0.961 0.911 0.936 0.823 0.964 0.779
hierarchical 0.521 0.693 0.595 0.199 0.929 0.314

Domain+ClinVar+Path
fine-grained 0.578 0.562 0.570 0.268 0.902 0.200
coarse-grained 0.968 0.908 0.937 0.827 0.969 0.783
hierarchical 0.545 0.695 0.611 0.215 0.926 0.317

Bold values indicate the best performance between fine-grained and hierarchical models.

Adding path features to domain type or ClinVar inputs produces substantial gains, es-
pecially for fine-grained and hierarchical prediction. For example, adding path features to
domain feature raises fine-grained F1 from 0.198 to 0.491 and hierarchical F1 from 0.218 to
0.597. A similar trend is observed for the ClinVar + path combination, where hierarchical F1

goes to 0.595 and AUROC exceeds 0.928.
When all three feature types are combined, the hierarchical model achieves the best overall

balance (Micro-F1 = 0.611; AUPRC = 0.317), while the fine-grained model records its high-
est precision (0.578) and accuracy (0.268). These results confirm that path-derived context
provides the dominant functional signal, while ClinVar pathogenicity annotation and UniProt
domain type features add some complementary evidence that can further enhance precision
and broaden label coverage when integrated with path information.

Pacific Symposium on Biocomputing 2026

747



3.4. De novo variant impact prediction

To demonstrate the practical utility of our trained hierarchical model, we developed a pre-
diction tool that annotates protein variants with biological process and disease associations.
During inference, the model queries external databases to construct feature vectors, with miss-
ing features imputed using appropriate default values, as summarized in Fig. 2 and Table 2.
The prediction tool outputs sigmoid-normalized probability scores (0-1) for each label and
category, with predictions ranked by confidence to facilitate experimental prioritization.

Figure 5 illustrates a representative prediction for two variants, VPS35 R524W and PSEN1
L435F. VPS35 encodes a retromer complex component involved in endosomal trafficking,20

and the R524W substitution was not present in our training data. Our model predicts high-
confidence associations with translation (62.9%), DNA damage processes (49.7%), and Parkin-
son’s Disease (49.0%). These predictions align with VPS35 known trafficking functions and
established links between variants and neurodegeneration. Similarly, for PSEN1 L435F, the
model highlights associations with localization (74.1%), translation (62.5%), and apoptotic
signaling (51.0%), consistent with PSEN1 role in γ-secretase complex activity and its involve-
ment in Alzheimer’s Disease pathology. These examples demonstrate the predictor ability to
capture both direct molecular consequences and downstream pathological processes.

Variant

Query

Predict

VPS35_R524W

MPTTQQSP...PIYEGLIL (796 AA)

REGION

Pathogenicity: not provided
Review: 0

biological process/disease                 probability
----------------------------------------------------------
 translation (protein synthesis degradation)    62.9%
 DNA damage (DNA chromatin processes)           49.7% 
 Parkinson disease (neurological disorders)     49.0%
 ……

Domain

ClinVar

PSEN1_L435F

biological process/disease                 probability
-----------------------------------------------------------
 localization (cellular transport)              74.1%
 translation (protein synthesis degradation)    62.5% 
 apoptotic process (cell death survival)        51.0%
……

Sequence

Domain

ClinVar

Sequence MTELPAPLSYF... QLAFHQFYI (467 AA)

REGION, MOTIF

Pathogenicity: not provided
Review: 0

Fig. 5. Predicted process and disease for novel variants VPS35 R524W and PSEN1 L435F;
predictor queries external databases for sequences, domain types, and ClinVar annotations
based on the input variant, outputs probability scores.

4. Discussion

The mechanistic paths reconstructed by our framework address a gap in variant interpretation
in that it is able to generate specific, experimentally tractable hypotheses about variant func-
tion. Unlike pathogenicity scores that classify variants as “pathogenic” or “benign”, our pre-
dictions identify particular molecular mechanisms that could facilitate targeted experimental
validation and therapeutic design. This mechanistic understanding is valuable for interpreting
variants of uncertain significance (VUS), where clinical care teams need biological context
beyond pathogenicity scores to guide treatment decisions and experimental follow-up.

It is important to mention that this is not the first approach that attempts to predict
molecular mechanisms of disease upon mutation. Prediction of disruption of protein stability
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has been a long-standing problem in the community.21,22 The MutPred23–27 suite of tools
has used unsupervised and supervised approaches to predict loss and gain of more than fifty
different types of structural and functional disruption (e.g., loss of metal binding, gain of post-
translational modification sites). Most recently, predictors capable of predicting disruption of
specific protein-protein interactions have also emerged.28 However, none of these approaches
go beyond the effect of the variant on the protein’s structure and function. They therefore
do not identify a causal path from the variant to a broad biological process disrupted by the
variant and ultimately a specific disease phenotype.

The network we constructed illustrates the power of automated literature synthesis for bi-
ological knowledge integration. It organizes mechanistic knowledge previously scattered across
publications, with each path reconstructed from individual studies describing complete causal
chains from variant to phenotype. Since they are constructed from the same publications, these
paths provide internal consistency and minimize potential confounding effects from unrelated
variants in the same protein. Such network-level analysis provides insights into complex dis-
eases where multiple molecular pathways contribute to pathogenesis. Thus, our framework
offers a distinct perspective on variant interpretation that prior pathogenicity predictors that
focus on binary classification or local molecular effects do not capture, in particular, how these
effects propagate through biological networks to influence disease outcomes.

The mechanistic insights provided by our framework have direct implications for preci-
sion medicine applications.29 By identifying specific biological pathways disrupted by variants
observed in patients, clinicians could select targeted therapies that address underlying molec-
ular mechanisms rather than relying solely on pathogenicity scores. For instance, variants
predicted to affect DNA repair pathways might guide the selection of PARP inhibitors, while
those affecting metabolic processes could inform dietary or pharmacological interventions. The
resolution of predictions can be adapted to specific use cases: 1085 fine-grained mechanistic
labels support detailed experimental design for lab-based molecular studies, while broader 30
biological categories may suffice for initial clinical assessment and disease area identification.

While our literature-derived networks capture the latest findings and can identify novel
mechanistic relationships not yet represented in curated databases, they are subject to inherent
biases in the scientific literature. Well-studied proteins and diseases tend to have richer path
coverage, while emerging areas of biology may be underrepresented until sufficient experimen-
tal evidence accumulates. The reliance on literature-curated pathways may limit prediction
for novel variants lacking prior experimental characterization. Future developments should in-
tegrate multiple knowledge sources, including structural predictions and functional genomics
data, to provide more complete mechanistic characterization of variant effects.

Availability

Code and data are available at https://github.com/gyorilab/indra_variants.
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