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Endoscopic procedures play a central role in the diagnosis and management of gastrointesti-
nal (GI) diseases, yet the field lacks large-scale, clinically diverse benchmarks and unified
datasets to evaluate vision foundation models. We introduce PanEndoSuite, the first unified
ecosystem for endoscopic Al, developed through systematic collaboration between Al re-
searchers and practicing gastroenterologists. PanEndoSuite consists of three complementary
components: PanEndoAtlas, PanEndoX, and PanEndoFM. PanEndoAtlas is a harmonized
dataset of over 420,000 labeled images from 30 public endoscopy datasets across 13 coun-
tries and 26 hospitals, creating a clinically-grounded hierarchical taxonomy that mirrors
diagnostic reasoning patterns across 111 GI diseases. PanEndoX is a benchmark of 10
clinically grounded tasks, including hierarchical GI-tree classification, Barrett’s esophagus
grading, ulcerative colitis scoring, polyp subtyping, Boston Bowel Preparation Scale assess-
ment, multi-organ disease classification, and anatomical landmark identification—designed
to probe generalization across anatomical regions, disease presentations, and annotation
granularities. PanEndoFM is a foundation model pretrained on a 10 million-image corpus
curated from public data sources, spanning the entire GI tract. We benchmark PanEnd-
oFM against two endoscopy-specific foundation models (EndoFM-LV, EndoSSL) and two
general-purpose vision models (ViT-B/16, ResNet-50). PanEndoFM achieves the highest
macro-AUC on 6 of 10 tasks, demonstrating broad clinical generalization; EndoFM-LV per-
forms best on colon-focused tasks, EndoSSL excels in polyp subtyping, and ViT-B/16 shows
strengths on small-intestine conditions. Together, PanEndoSuite establishes a foundation
for building robust, generalist Al systems in gastrointestinal endoscopy that bridge current
AT capabilities and clinical practice.

Keywords: Endoscopic Diagnosis; Vision Foundation Models; Datasets and Benchmark;
PanEndoSuite; PanEndoAtlas; PanEndoFM

1. Introduction

Clinical integration of foundation models requires rigorous evaluation for real-world clinical
use cases. Large and diverse datasets, along with robust benchmarks featuring clinically mean-
ingful tasks, are essential to ensure this alignment. In domains like pathology and radiology,
large-scale vision foundation models have demonstrated strong generalization with minimal
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Fig. 1: PanEndoAtlas and PanEndoX Overview. PanEndoAtlas curates more than 420,000
labeled images spanning 111 GI abnormalities, from 13 countries and over 26 hospitals. Pa-
nEndoX is a benchmark suite of 10 clinically important GI tasks.

fine-tuning.'® This progress has been accelerated by curated datasets and benchmarks de-
signed to evaluate generalizability, robustness, and foundational capability.*?

In contrast, gastroenterology lacks unified benchmarks despite the central role of endoscopy
in diagnosing gastrointestinal (GI) diseases, including early cancer detection.®” Diagnostic
accuracy is often hampered by subtle disease presentations and clinician fatigue during high-
throughput procedures.®® Although several open-source and commercial vision models have
been proposed for endoscopy,!® !4 their general-purpose utility remains unproven. Existing
public datasets are fragmented, narrowly focused on common conditions such as colon polyps,
and lack standardized annotations,'® 17 limiting clinical relevance and model generalization.

To address these limitations, we introduce PanEndoSuite, the first unified ecosystem for
endoscopic Al, developed in collaboration between Al researchers and gastroenterologists.
PanEndoSuite consists of three complementary components: PanEndoAtlas, PanEndoX and
PanEndoFM. PanEndoAtlas is a harmonized dataset of more than 420,000 labeled images
across 111 GI abnormalities, curated from 30 public datasets spanning 13 countries and 26
hospitals, with standardized hierarchical labels based on the MST-3.0 framework.'® PanEn-
doX is a benchmark of 10 clinically grounded tasks including clinical disease classification,
severity grading, and anatomical localization, to evaluate the foundational capabilities of en-
doscopic vision models. PanEndoFM is a vision foundation model pretrained via DINOv2'?
methodology on 10 million endoscopic images.

We benchmark PanEndoFM against two endoscopy-specific foundation models (EndoFM-
LV, EndoSSL) and two general-purpose vision models (ViT-B/16, ResNet). PanEndoFM
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achieves the highest AUC on 6 out of 10 benchmark tasks, demonstrating strong general-
ization across clinical scenarios. Additionally, we observe domain-specific strengths in other
models, highlighting the influence of pretraining data on downstream performance. Together,
these contributions establish PanEndoSuite as a foundation for building robust, generalist Al
systems in gastrointestinal endoscopy that bridge current Al capabilities and clinical practice.

2. Related Work

Endoscopy Datasets: Public endoscopy datasets are fragmented and institution-specific,
limiting their generalizability. Early datasets consisted of only a few hundred labeled im-
ages,??2! and while more recent efforts have scaled to several thousand examples,?? they re-
main isolated contributions. Since 2012, over 25 public datasets have been released from more
than 13 countries,?® yet these are typically built independently, using different imaging pro-
tocols and patient populations, which hinders efforts to create unified training or evaluation
sets.

Labeling across datasets is also highly inconsistent. While some groups maintain internal
consistency within their own releases,?*?> the broader landscape lacks a standardized an-
notation vocabulary. As a result, conceptually similar findings are labeled differently across
datasets, or the same label is used for different anatomical contexts. For example, the label
“polyp” may refer to lesions found in the colon, stomach, small intestine, or esophagus, creat-
ing semantic ambiguity. These inconsistencies make it difficult to merge datasets or perform
cross-dataset evaluation without extensive re-labeling and clinical review.

Finally, current datasets are clinically narrow, with a strong bias toward colorectal polyps.
Despite endoscopy being routinely used to diagnose and monitor over 100 distinct gastroin-
testinal conditions, most public datasets focus almost exclusively on polyp detection or seg-
mentation.!?1626 A few recent datasets attempt to broaden disease coverage,?? but they tend
to be highly imbalanced, with a long tail of underrepresented conditions that models struggle
to learn from. This limits the clinical relevance and diagnostic scope of models trained on
existing resources.

To overcome these limitations, we introduce a large-scale benchmark dataset that is stan-
dardized, clinically diverse, and built using a hierarchical labeling system aligned with real-
world endoscopic practice.

Endoscopy Foundation Models: A growing number of endoscopy foundation models
have been developed using diverse pretraining strategies and datasets, yet their evaluations
remain narrow in clinical scope. EndoSSL! used a masked siamese network pretrained on
2 million colonoscopy frames enriched for polyp-containing images, and was evaluated on
polyp detection and classification tasks using single-center datasets focused exclusively on
colon-polyps. EndoFM! scaled pretraining to 33,000 colonoscopy videos (5 million frames)
and adopted a video transformer to capture spatiotemporal features for lesion detection and
segmentation. Its variant, EndoFM-LV,'? further extended training to over 12 million frames
for longer video sequences. Both EndoFM and EndoFM-LV have been evaluated on tasks
involving colon-polyp classification, detection, and segmentation. EndoMamba'?® adopted a
state-space model architecture*? in place of transformers,*? and trained on combined 8 million
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Table 1: Datasets encompassing PanEndoAtlas.

S.No. | Year \ Dataset \ Country \ Hospital
1. 2012 ETIS-Larib?® France Lariboisiere Hospital-APHP
2. 2015 CVC-ClinicDB?! Spain Hospital Clinic Barcelona
3. 2016 Kvasir?? Norway Baerum Hospital
4. 2017 Nerthus?” Norway Baerum Hospital
5. 2019 Kvasir-SEG?® Norway Beerum Hospital
6. 2020 EDD2020%° France, TItaly, | Ambroise Pare Hospital of Boulogne-
UK Billancourt, Paris, France; Centro Rifer-
imento Oncologico IRCCS, Aviano, Italy;
Istituto Oncologico Veneto, Padova, Italy;
John Radcliffe Hospital, Oxford, UK
7. 2020 HyperKvasir?® Norway Baerum Hospital
8. 2020 CP-CHILD®® China, Hunan Children’s Hospital
9. 2021 KvasirCapsule3! Norway Beaerum Hospital
10. 2021 | KvasirCapsule-SEG?? | Norway Beerum Hospital
11. 2021 Kvasir-Sessile?? Norway Baerum Hospital
12. 2021 KUMC?? UsS University of Kansas Medical Center
13. 2021 SUN® Japan Showa University Northern Yokohama
Hospital
14. 2021 CrohnIPT3® France Nantes University Hospital
15. 2022 SUN-SEG?7 Japan Showa University Northern Yokohama
Hospital
16. 2022 ERS?? Poland Gdansk University of Technology
17. 2023 PolypGen™ France, Ambroise Paré Hospital, Paris; Istituto
Italy, Norway, | Oncologico Veneto, Padova, Italy; Cen-
UK, Egypt tro Riferimento Oncologico, IRCCS, Italy;
Oslo University Hospital, Oslo; John
Radcliffe Hospital, Oxford; University of
Alexandria, Alexandria
18. 2023 GastroVision® Norway, Swe- | Baerum Hospital, Karolinska University
den Hospital
19. 2023 MedFMC-Endo®” China Renji Hospital
20. 2023 AICE™ Japan Kyushu University Hospital
21. 2023 POLAR™ Netherlands, 8 hospitals
Spain

still images and 10,000 videos. Its evaluations, like other models, have focused on colon-polyp
tasks. Finally, EndoDINO,' a commercial model, trained DINOv2 on 10 million images,
selected from a larger pool of 3.5 billion video frames, and performed validation on individual
datasets. However, due to the unavailability of their model weights publicly, independent
validation is limited.

Evaluation protocols across these models vary widely and remain constrained to colon-
polyp related tasks and single-center datasets. The lack of standardization in validation data
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and task diversity makes it difficult to perform fair comparisons or assess model generalization
across different clinical settings and gastrointestinal conditions.

To address these gaps, we introduce a multi-center benchmark dataset that spans a broader
spectrum of GI diseases and enables consistent, comprehensive evaluation of endoscopy foun-
dation models across diverse diagnostic tasks.

3. Dataset
3.1. PanEndoAtlas

We introduce PanEndoAtlas which is a multi-source benchmark dataset designed to support
standardized evaluation of Al models across a wide range of gastrointestinal endoscopy tasks.
It comprises over 420,000 labeled images drawn from 21 public datasets, representing 13
countries and more than 26 clinical institutions (Table 1, Figure 2). The dataset spans all
major anatomical regions of the GI tract, including the esophagus, stomach, small intestine,
and colon, and includes a range of visual content, such as normal anatomy, pathological
findings, therapeutic interventions, and quality control annotations.

Fig. 2: World map showing geographic distribution of PanEndoAtlas’ constituent datasets
across 13 countries and more than 26 clinical institutions. The dataset spans all major anatom-
ical regions of the GI tract.

To unify the diverse label spaces in the constituent datasets, all annotations were sys-
tematically mapped into a standardized vocabulary inspired by MST-3.0 taxonomy.'® These
labels were further organized into a clinically-relevant four-level hierarchy to support training
and evaluation of models on rare or sparsely represented categories (Figure 3).

e Level 1: Anatomical Region. Each image was assigned to one of four regions, upper
GI (esophagus, stomach) or lower GI (small intestine, colon), based on available meta-
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Fig. 3: PanEndoAtlas.

data, associated publications, or the type of imaging instrument used. Images with no
definitive anatomical metadata were labeled as ‘unknown’.

e Level 2: Broad Clinical Category. Images were categorized into one of five clin-
ically relevant types: normal findings, anatomical landmarks, pathological findings,
therapeutic procedures, and quality control measures.

e Level 3: Fine-Grained Clinical Labels. This level provides more specific diagnoses
or findings within each broad category. Examples include pathological conditions such
as polyps, ulcerative colitis, and Barrett’s esophagus; anatomical landmarks such as
the z-line, pylorus, and cecum; and procedural annotations such as polyp resection.

e Level 4: Subtype and Severity Annotations. Where available, additional clinical
detail was included. For example, polyps were subclassified into adenomatous, hyper-
plastic, serrated, sessile and invasive-cancer. Ulcerative colitis cases included MAYO
severity scores, and Barrett’s esophagus cases were labeled according to subtype (e.g.,
short-segment, high-grade-dysplasia).
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3.2. Label Harmonization

Each individual dataset in PanEndoAtlas had its own mapping dictionary, created in collab-
oration with a Gastroenterology Fellow. These mappings aligned original dataset labels with
the standardized PanEndoAtlas schema, using three main sources: the original labels, dataset
descriptions from the associated publications, and documentation from the datasets’ GitHub
repositories. During this process, two major types of ambiguity were resolved: location ambi-
guity, where anatomical location was absent from the label (e.g., ‘polyp’, ‘ulcer’), and medical
synonym ambiguity, where different terms referred to the same clinical condition or find-
ing (e.g., ‘angiodysplasia’ and ‘angiectasia’; ‘diverticulosis’, ‘diverticulum’, and ‘diverticula’;
‘edema’, ‘erosion’,; ‘hyperemic’, ‘erythema’; and ‘mucosal inflammation’).

Level-1 (Anatomical Region): Inferred using endoscope type and clinical label. Am-
biguous cases (e.g., ‘potential-cancer’ in a study containing images from multiple GI regions)
were labeled ‘unknown’. All images have a level-1 label.

Level-2 (Broad Clinical Category): Derived from fine-grained labels or taken directly
from existing annotations. All images have a valid level-2 label.

Level-3 (Fine-Grained Clinical Label): Harmonization occurred in two stages. First,
labels were made anatomically specific (e.g., ‘polyp” — ‘colon-polyp’, ‘stomach-polyp’ etc.).
Second, clinically guided combinations were applied (e.g., BBPS-0 and BBPS-1 were combined
into ‘BBPS-0-1" since both indicate inadequate bowel preparation clinically). Distinctions were
preserved when clinically meaningful e.g., ‘colorectal-cancer’ and ‘colon-polyp’ were merged
for intramucosal cancers but kept separate for invasive lesions. All images have a level-3 label.

Level-4 (Subtype/Severity): Present in only some datasets; harmonized to standard
terminology. Multiple grading systems were retained where relevant. Missing annotations were
labeled ‘None’. Tasks for subtype/severity were built from the subset with valid level-4 labels.

3.3. Pretraining Dataset

We assembled a pretraining corpus of 10 million unlabeled endoscopic images for training
PanEndoFM. These images were sourced from five public datasets: ColonoscopicDS* | LD-
PolypVideo?¢ , ERS?? , RI-VCE* | and EndoFM-pretrain'! . These span the full GI tract,
including the esophagus, stomach, small intestine, and colon. It incorporates images captured
using a variety of endoscopic instruments, such as colonoscopes, gastroscopes, and capsule
endoscopes. The data reflect clinical and geographical diversity, with contributions from 5
countries, and capture variation in anatomical presentation, imaging protocols, disease states,
and bowel preparation quality.

4. Methods
4.1. PanEndoFM Pretraining

We used a ViT-L architecture as the backbone for PanEndoFM, initialized with the official
DINOv2 weights.'® We then continued pretraining using DINOv2 methodology on the 10
million-image corpus described above. Model performance during pretraining was monitored
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using Top-5 K-nearest neighbors (KNN) accuracy, computed over 100 neighbors using the
Kvasir dataset,?* which contains eight equally balanced classes. The best checkpoint was
selected based on this validation metric. Training was conducted for two epochs, after which
early stopping was triggered due to convergence in KNN accuracy. All other hyper-parameters
were kept same as default.

4.2. PanEndoX Benchmark

We benchmark the performance of PanEndoFM against four additional models: 2 existing
open-source endoscopy foundation models (EndoSSL, EndoFM-LV) and 2 general-purpose
vision models (ViT-B/16, ResNet-50). We used linear probing, where the backbone was frozen
and only a classification head was trained. This enabled a true assessment of image encoding
generated by different vision encoders. A set of clinically relevant gastrointestinal (GI) tasks
were used to assess the generalization ability (Table 2).

Baseline Methods: We adapted EndoFM-LV!? and EndoSSL! foundation models for
image-level evaluation. We further implemented the ViT-B/16 and ResNet-50 model architec-
tures, initialized with ImageNet pretrained weights.

Dataset Splits: For each task, the data was split into training, validation, and test sets
in a 75:10:15 ratio to support reproducibility. Splits were first performed at the dataset level,
ensuring that all images from a given patient appeared in only one of the three sets. In cases
where patient identifiers were not available, samples were randomly assigned. Within each
dataset, label proportions were preserved across the splits to maintain class balance. Finally,
the splits from individual datasets contributing to a given task were merged into a single
unified file.

Hyper-parameter Search: All models, including baseline and comparison models, were
fine-tuned using a hyperparameter search over learning rates [le™*, 5e¢75, 1e7%,5¢7%,1e7¢]. The
best model was selected based on validation AUC, and performance on independent test set
is reported. Optimization was performed using AdamW (weight decay = 0.01) with a cosine
learning rate scheduler (9, = 1€75, T = 2). Other fine-tuning settings were held constant
across experiments: batch size = 128, and early stopping after 10 epochs without improvement
on the validation set.

Loss Function: We use binary cross-entropy (BCE) loss for our multi-label classification
setup:

Lrce(y,§) = — [ylog(y) + (1 - y)log(1 - )], (1)
where y € {0,1} is the ground-truth label and g € [0,1] is the predicted probability.

To address class imbalance, the BCE loss is weighted using a log-scaled class prevalence
term. The weight for class i is computed as:

w; = log (1 + N) : (2)

g
where N is the total number of samples and n; is the number of samples belonging to class i.
The resulting weighted BCE loss is:

L(y,9) = —w[ylog(g) + (1 —y)log(1 - 9)], (3)
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Table 2: Task descriptions for PanEndoX Benchmark.

Task Name

Description

GI-Tree Classification

Hierarchical classification of GI anatomy, visual label type (e.g., normal,
abnormal), and specific disease category.

Barrett’s Grading

Grading of Barrett’s esophagus severity: normal-barretts, barretts-short-
segment, high-grade-dysplasia.

Ulcerative Colitis Grad-
ing

Inflammation severity scoring (MAYO-0, MAYO-1, MAYO-2).

Polyp Subtyping

Classification into the following subtypes: hyperplastic, adenomatous,
serrated, or invasive-cancerous.

BBPS Scoring

Boston Bowel Preparation Scale scoring for colon cleanliness across three
segments: BBPS-0-1 (well-prepared), BBSP-2-3 (not well-prepared),
impacted-stool

Esophagus Disease

Classification

Classification of esophageal diseases: esophagitis, esophageal-
varices, esophageal-cancer, barretts, esophageal-candidiasis, esophageal-
stricture, fistula-esophageal, esophageal-polyp, weiss-tear, diverticulum-
esophageal, barretts-short-segment, achalasia, esophageal-caustic-injury.

Stomach Disease Classi-
fication

Classification of stomach diseases: portal-hypertensive-gastropathy,
stomach-polyp, gastric-ulcer, erosion-gastric, gastric-varices, gastric-
cancer, hyperemic-gastric, stomach-cancer, hemorrhagic-gastropathy,
stenosis-stomach, gastric-lymphoma, hiatus-hernia, dieulafoy-lesion,
gastric-caustic-injury

Small Intestine Disease
Classification

Classification of small bowel conditions: erosion-SI, crohns, polyp-like,
Sl-ulcer, lymph-follicle, lymphangiectasia, angiectasia-SI, erythema,
angiodysplasia-SI, blood-SI, stenosis-SI, submucosal-tumor, edema,
intestinal-polyp, Sl-cancer, hyperemic-SI, coeliac-disease, diverticulum-
SI, duodenal-bulb-deformity

Colon Disease Classifi-
cation

Classification of colonic diseases: colon-polyp,
colorectal-cancer, ulcerative-colitis, colon-ulcer, angiodysplasia-colon,
erosion-colon, diverticulosis, polyposis-syndrome, proctitis, lipoma, par-
asites, colon-stricture, fistula-colon, melanosis, hemorrhoids, ischemic-
colitis, mucosal-inflammation, colon-diverticula, angiectasia-colon.

Stomach Anatom-
ical Landmark Classifi-
cation

Identification of anatomical landmarks in the stomach: non-landmark,
pylorus, retroflex-stomach.

where w is the weight corresponding to the sample’s class. For the GI-Tree classification task,
the BCE loss was computed independently at each level of the hierarchy.

5. Results

We conducted a comprehensive evaluation of PanEndoFM, endoscopy-specific foundation
models (EndoFM-LV, EndoSSL) and general-purpose vision models (ViT-B/16 and ResNet-
50) on the PanEndoAtlas (Table 3). Performance was assessed using macro-AUC on the test
set, which averages AUC across all classes to mitigate the effects of class imbalance and better
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reflect model robustness in clinically heterogeneous settings.

We conducted a comprehensive evaluation of PanEndoFM, prior endoscopy-specific foun-
dation models (EndoFM-LV, EndoSSL), and general-purpose vision models (ViT-B/16 and
ResNet-50) on the PanEndoAtlas benchmark (Table 3). Performance was measured using
macro-AUC, which averages AUC across all classes to mitigate class imbalance and provide
a fairer measure of robustness in clinically heterogeneous settings. Across all 10 tasks, Pa-
nEndoFM ranked first on 6 tasks, second on 3 tasks, and third on 1 task, showing consistent
superiority over both endoscopy-specific and general-purpose baselines.

PanEndoFM. PanEndoFM achieved the highest performance on the most comprehen-
sive task, GI-Tree classification (111 classes, three-level hierarchy), with a macro-AUC of
0.648 (95% CI: 0.621-0.669), outperforming all other models. It also led performance on mul-
tiple upper GI tasks, including Barrett’s grading (macro-AUC 0.775, 95% CI: 0.643-0.902)
and esophageal disease classification (macro-AUC 0.772, 95% CI: 0.742-0.809). For stomach-
related tasks, PanEndoFM achieved the best results in both disease classification (macro-AUC
0.539, 95% CI: 0.520-0.558) and anatomical landmark identification (macro-AUC 0.950, 95%
CI: 0.943-0.956). It also topped ulcerative colitis grading with a macro-AUC of 0.571 (95%
CIL: 0.499-0.649). These results suggest that pretraining with broader anatomical coverage
improves generalization across diverse disease types and organs.

Table 3: Macro-AUCs (95%CI) reported on test set for tasks in the PanEndoX Benchmark.
Highest value is bolded, second highest is italicized.

Task Name Classes | PanEndoFM | EndoFM-LV | EndoSSL | ViT-B/16 | ResNet-50
GITree 111 classes 0.648 0.570 0.551 0.500 0.515
Classification (0.621, 0.669) (0.560, 0.578) (0.510, 0.599) (0.491, 0.510) (0.505, 0.526)
Barrett’s Grading 4 classes 0.775 0.733 0.581 0.681 0.707
Classification (0.643, 0.902) (0.608, 0.850) (0.447, 0.719) (0.559, 0.796) (0.573, 0.843)
UCC Grading 3 classes 0.571 0.565 0.507 0.550 0.525
Classification (0.499, 0.649) (0.476, 0.650) (0.425, 0.583) (0.470, 0.625) (0.435, 0.614)
Polyp Subtyping 4 classes 0.575 0.500 0.704 0.542 0.643
Classification (0.562, 0.589) (0.490, 0.511) (0.696, 0.712) (0.532, 0.552) (0.631, 0.655)
BBPS Scoring 3 classes 0.809 0.913 0.524 0.830 0.685
Classification (0.773, 0.843) (0.885, 0.936) (0.479, 0.567) (0.800, 0.860) (0.648, 0.724)
Esophagus Disease 13 classes 0.772 0.590 0.550 0.682 0.446
Classification (0.742, 0.809) (0.564, 0.612) (0.519, 0.581) (0.645, 0.713) (0.418, 0.478)
Stomach Disease 14 classes 0.539 0.539 0.521 0.438 0.498
Classification (0.520, 0.558) (0.509, 0.582) (0.475, 0.554) (0.410, 0.467) (0.457, 0.536)
SI Disease 20 classes 0.59/ 0.481 0.591 0.597 0.528
Classification (0.577, 0.612) (0.458, 0.507) (0.573, 0.618) (0.577, 0.621) (0.509, 0.548)
Colon Disease 30 classes 0.552 0.615 0.455 0.494 0.503
Classification (0.517, 0.586) (0.583, 0.644) (0.430, 0.484) (0.470, 0.519) (0.467, 0.540)
Stomach Landmark 3 classes 0.950 0.869 0.788 0.879 0.820
Identification (0.943, 0.956) (0.851, 0.886) (0.749, 0.831) (0.866, 0.891) (0.800, 0.838)

EndoFM-LV. EndoFM-LV demonstrated strong performance on colon-focused tasks, out-

performing all models on BBPS scoring (macro-AUC 0.913, 95% CI: 0.885-0.936) and colon
disease classification (macro-AUC 0.615, 95% CI: 0.583-0.644). It also ranked second across

five additional tasks. This advantage likely reflects its pretraining corpus, which was dominated

51



Pacific Symposium on Biocomputing 2026

by colonoscopy videos, including HyperKvasir and SUN datasets. Because these datasets are
also part of PanEndoAtlas, EndoFM-LV may benefit from pretraining-test overlap on colon-
related tasks, inflating apparent generalization performance.

EndoSSL. EndoSSL performed best on polyp subtyping (macro-AUC 0.704, 95% CI:
0.696-0.712), consistent with its pretraining dataset being enriched for polyp-containing
frames. However, it ranked outside the top two on most other tasks, particularly those involv-
ing non-colonic regions. This highlights the limitations of organ-specific pretraining strategies
when models are applied to broader endoscopic practice.

General-purpose models. Interestingly, ViT-B/16 outperformed all models on small
intestine disease classification (macro-AUC 0.597, 95% CI: 0.577-0.621) and achieved the
second-highest performance on BBPS scoring, esophageal disease classification, and stomach
landmark identification. We note that these tasks had least diversity in data sources.

Task-level difficulty. Macro-AUC values across multi-center tasks in PanEndoX were
generally lower than those reported on single-center or task-specific datasets.?® Easier tasks
included anatomical landmark detection and bowel preparation scoring, where all models
achieved relatively high performance. In contrast, grading-based tasks (e.g., ulcerative colitis
grading, polyp subtyping) and multi-class disease classification tasks (e.g., GI-Tree) proved
more difficult, with larger inter-model performance gaps. This spread highlights the value of
PanEndoAtlas in exposing task difficulty and dataset diversity that are not captured by prior
benchmarks.

Error analysis. Certain disease categories reflect intrinsic visual similarity rather than
data scarcity and were often confused. For example, diverticulitis was frequently misclassified
as diverticulosis, both involve diverticula; only inflamed ones count as diverticulitis. Similarly,
ulcerative-colitis, ischemic-colitis, angiodysplastic-colitis, and infectious-colitis were often mis-
classified since all show inflamed, ulcerated mucosa, but with subtle cause-specific differences.
Class-wise metrics for each task and model are provided in Supplementary Data.

Subgroup analysis. To assess generalization, we compared model performance on indi-
vidual datasets against overall performance within each task. We observed substantial vari-
ance, with certain datasets consistently yielding higher metrics than others (Supplementary
Data). The extent of this variance depended on the specific model-task combination, under-
scoring the strong influence of pretraining data on generalization performance. These findings
demonstrate that reliance on single datasets can lead to overly optimistic performance esti-
mates and reinforce the need for diverse, multi-center benchmarks.

Clinical interpretation. Although absolute improvements in macro-AUC may appear
modest, they are clinically meaningful. Because macro-AUC weights rare and common dis-
eases equally, even small gains can reduce missed diagnoses in less prevalent but high-risk
conditions such as Barrett’s esophagus or early gastric cancer. For tasks already approaching
high accuracy (e.g., bowel preparation, anatomical landmark detection), incremental gains
instead reflect greater robustness across institutions and devices.
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6. Discussion

This work directly addresses the core limitations outlined in the introduction: the lack of large-
scale, standardized, and clinically diverse benchmarks in endoscopy; the absence of clinically
meaningful evaluation tasks; and the need to assess generalist versus specialist models in ways
that reflect clinical reasoning.

First, PanEndoAtlas resolves the fragmentation of existing resources. Prior datasets have
been narrowly focused, often on polyps, and inconsistent in their label vocabularies. By harmo-
nizing 21 public datasets into a unified schema spanning 111 gastrointestinal abnormalities,
PanEndoAtlas provides a standardized, hierarchical taxonomy that mirrors real diagnostic
reasoning. This structure not only enables evaluation across rare and common conditions but
also captures clinically relevant misclassifications that would be obscured in flat-label systems.

Second, PanEndoX introduces benchmarks grounded in clinical practice. The ten tasks
span hierarchical classification, severity grading, disease subtyping, bowel preparation scoring,
and anatomical landmark identification. Together, they probe the full spectrum of diagnostic
reasoning in endoscopy—moving beyond single-center, polyp-focused tasks toward clinically
meaningful evaluation. Our results demonstrate that task difficulty varies systematically, with
multi-class grading and disease classification posing greater challenges than landmark detec-
tion or bowel preparation scoring. This reinforces the importance of diverse benchmarks for
exposing gaps in model generalization.

Third, PanEndoFM demonstrates the value of broad, multi-organ pretraining for endo-
scopic AI. While prior models like EndoSSL and EndoFM-LV show strong performance on
niche domains (polyp subtyping and colon disease tasks, respectively), PanEndoFM outper-
formed both endoscopy-specific and general-purpose models on six of ten tasks. Therefore,
PanEndoSuite provides a rigorous foundation for evaluating generalization and robustness,
thereby bridging AI development with real-world practice.

Limitations and future directions. We note that some prior endoscopy foundation
models incorporated public datasets included in PanEndoAtlas for pretraining, even if labels
were not used, partially limiting the independence of certain comparisons. Future work should
establish clear dataset disjointness to enable standardized evaluation. We further note that a
few of the images in the public datasets are low quality. We provide auto-generated quality
annotations for each image in PanEndoAtlas.

7. Data and Code Availability

The dataset, code and supplementary data is publicly available is publicly available at:
https://github.com/rajpurkarlab/panendosuite.
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