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Uncertainty quantification remains an underdeveloped aspect of Al-based clinical decision tools. As
Al systems become increasingly prevalent in healthcare, it is essential not only to measure
uncertainty but also to manage it in ways that support clinical decision-making. In this study, we
investigate abstention as a practical mechanism for managing uncertainty in diagnostic classifiers.
To stress-test this approach, we deliberately evaluate abstention performance on a purposefully noisy
dataset of pediatric autism video assessments comprising heterogeneous video sources and a diverse
range of human raters. We apply abstention strategies to existing autism classifiers trained on
diagnostic assessment data, comparing baseline performance to a range of thresholding
configurations that trade off retained sample coverage against key clinical metrics. We compare
performance gains from prioritizing sensitivity or specificity to targeting a balanced increase in
Youden’s J to demonstrate a wide variety of use cases that abstention can enable. This work
demonstrates a concrete use case of introducing abstention into the output range of clinical decision
models, enabling both uncertainty quantification and management in diagnostic classifiers.

Keywords: Uncertainty Management; Human-In-The-Loop Al; Autism; Pediatrics;Al health; Al
medicine; Al uncertainty

© 2025 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.

114



Pacific Symposium on Biocomputing 2026

1. Introduction

Autism is a developmental disorder that is diagnosed by clinician observation and behavioral
assessment. Current diagnostic approaches for autism rely on specialists who are outnumbered,! use
myriad diagnostic aids, e.g. Autism Diagnostic Observation Schedule,? Autism Diagnostic
Interview,* Social Responsiveness Scale,* with over 20 clinically recommended tools that are time
intensive (up to 8 hours of test time), subjective,® 7 disagree on outcome,’” and that do not produce a
numerical score that has consistent performance and reliability across the 1 in 31* who will be
diagnosed with autism. The wait to access diagnostic assessments exceeds 12 months.” This delayed
process has kept the average age of first diagnosis close to 5 years!® (and 8 if from an
underrepresented group'!). Evidence supports the importance of early intervention. Like diagnosis,
wait periods to access treatments often exceed 12 months,! 13
modified with objective endpoints.

and are not quality monitored or

The difficulties navigating the healthcare system, variability in diagnostic practices, and
consequent delays in diagnosis strongly underscores the need for an alternative system for diagnosis
that is objective, quantified, reproducible, and consistent across geographies and demographics.
Previous work has shown that machine learning models can effectively classify autism from
neurotypical development when using an optimal feature set from clinical instrument data; our team
previously trained models using data from 11,298 children with autism and 2,540 controls (including
attention-deficit/hyperactivity disorder (ADHD), speech and language delays, and typical
development) that resulted in 8 Al classifiers that use between 5 and 10 social-behavioral features
each.'*" Together, the models use 30 different social-behavioral features. We have since tested the
ability to run these models using human-labeled feature ratings on videos submitted by parents.
Experiments show that video feature tagging by video analyst “crowdworkers”"*® requires a median
of only 4 minutes and can be done with clinical accuracy >=92% in independent validation.”'-
While the models were trained to produce binary outcomes, they produce point estimates that
indicate the severity of the phenotype and range from severe forms of autism to typical development
with no signs of developmental delay.

We seek to build upon this body of work by exploring the concept of uncertainty quantification
and management in Al-powered diagnostic tools, with a specific emphasis on abstention-based
thresholding as a way to make Al predictions more clinically interpretable and trustworthy. In
clinical contexts like autism diagnosis, where behavioral variation is high, the incoming video
quality can vary, symptom presentations may be complex, and even high-performing models may
not perform at a level needed for clinical decision support. Forcing a model to make a binary
decision in such cases can lead to overdiagnosis or missed opportunities for early intervention. This
highlights the need for tools that can identify when they are uncertain and explicitly defer judgment,
a concept known as abstention. Abstention allows models to say “I don’t know” when presented
with low-confidence inputs, enabling a safety-aware approach that aligns with clinical practice,
where ambiguous cases are often escalated for further review.
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This approach is especially relevant in behavioral health domains where ground truth is often
fuzzy and diagnostic boundaries overlap. When implemented via thresholding on a model’s
probabilistic outputs, abstention can be tuned to meet the needs of a particular use case, for example
by maximizing sensitivity for screening or maximizing Positive Predictive Value (PPV) for referral
decisions. Despite its importance, abstention remains underutilized in diagnostic Al tools, and its
integration with video-based autism assessment has not been systematically studied.

One prominent exception is CanvasDx, a machine learning-based medical device approved by
the U.S. Food and Drug Administration (FDA) for autism diagnosis. This software device uses video
submitted by a caregiver and human-provided feature ratings to produce a diagnostic classification
using machine learning.** ** As Al-informed clinical diagnostics are developed, it is critical to
improve the quantification and management of uncertainty for these diagnostic tools.*> *® One key
mechanism for improving these is adding an abstention mechanism with clinical performance-
informed threshold values. CanvasDx improved its management of uncertainty using thresholding
scores where if this score is above or below two prespecified thresholds, a positive autism or
negative autism output is produced.’”*

The focus of the current paper is to examine how we can apply such thresholding methods to a
naturalistic but noisy set of video and ratings data that utilizes videos sourced from multiple settings
(clinical, mobile game, and home, sourced from the U.S. and abroad) and ratings from raters of
different backgrounds (cultural, geographic, professional). By testing performance on this larger
dataset containing wildtype videos and nonexpert human ratings (as reflected in real-world
scenarios), we perform a comprehensive evaluation of abstention as an uncertainty management
mechanism and describe the tradeoffs between diagnostic coverage and performance on clinically
informative performance metrics.

2. Methods

2.1 Noisy Dataset Creation

We sought to collect, aggregate, and curate a purposefully noisy and heterogeneous dataset as a
representative but inherently challenging collection in which abstention for certain samples may be
warranted. This combined dataset was collected through a series of studies conducted following
approval by the Stanford University Institutional Review Board (IRB), protocol #39562. The data
include videos submitted by parents/guardians of children with and without a diagnosis of autism
via several different studies conducted by our team (N=665 videos) as well as videos sourced via
Youtube.com (N=366 videos). Most videos in the dataset originated from smartphone videos taken
by a parent of their child playing alone or with others. For these videos, parents were instructed to
take short 1.5-5-minute videos of their children playing. Smaller subsets of videos were taken by
clinical coordinators or behavioral therapists, following parent consent, of children waiting for
therapy in a medical research center (N=217). Some of these clinically sourced videos are from
Bangladesh.’' Another subset of videos were collected via a mobile game app***' where parents are
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asked to play a charades style game with their child, while the phones front camera records the child
acting out a prompt presented with a corresponding image (i.e., elephant, astronaut, playing
basketball) (N=380). Our video dataset contained children who have been clinically confirmed to
have a diagnosis of autism, another condition, such as speech language condition (SLC), or
neurotypical development. For the purposes of this study, we classified videos as depicting a child
with autism or a child without autism. Demographics including age and gender provided by the
parent and/or clinician, and for Youtube videos, video meta data and descriptions were used to
assign age and gender.

To safeguard against the potential for self-reporting bias in parent submitted video, we required
the caregiver to confirm that their child's autism diagnosis came from a formal medical assessment*
and asked parents to provide answers to a set of clinical instruments that included the Vineland
Adaptive Behavior Scales-Parent Report,” Social Responsiveness Scale,® Mobile Autism Risk
Assessment,* Social Communication Questionnaire,” and Autism Symptom Dimensions
Questionnaire*® to establish the autism diagnosis or lack thereof. Additionally, videos from
YouTube and Caregivers were independently examined in a blinded fashion by a clinician with
expertise in autism diagnosis to provide a clinical diagnostic impression.?>4” We required the parent
reported diagnosis to match the clinician's observational diagnosis to include the video for analysis.
This rigorous two-point consensus was used to ensure diagnostic ground truth while minimizing
parental burden in the participation.

Features run through each classifier

Expressive vocalization
Eye Contact
Emotion Expression
Communicative Engagement
Joint Attention/Pointing
Calls Attention to Objects
Indicates Pleasure to Others
Features extracted Stereotyped Speech
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Speech patterns
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Figure 1. (A) Parents consented to participate in a study where they submitted short home videos
of their child to be rated by human labelers in a secure rating platform. Video raters accessed a
secure rating platform where 30 behavioral features were rated on a 4-point scale. (B) These
features were then used in the following analysis by our previously developed machine learning
classifiers to determine an autism risk classification. (C) The current study examines how we can
determine and utilize thresholding values to tell the machine learning models to abstain when a
certain level of uncertainty is reached.
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Feature ratings were collected via a process we previously designed and evaluated (Figure 1)
where raters recruited by our research lab under the same IRB protocol were asked to view a set of
videos in a secure portal and rate a set of 30 features (i.e., answers to multiple choice questions that
are clinically relevant to diagnosing autism).?% 3° Video raters composed of clinicians (N=56 raters
and N=3,025 sets of 30-feature ratings) and non-clinician students and crowdworkers (N=50 raters
and N=5119 sets of 30 feature ratings) provided numerically coded responses to each of the 30
questions necessary to create the feature vectors for input into the models.

2.2 Thresholding Experiments

We leveraged an established and previously-validated set of binary logistic regression (LR) autism
classifiers that have previously demonstrated high performance in more homogenous video and
rater settings.?% 3% 3! These models were trained on medical records generated through the clinical
administration of popular autism instruments, with training feature sets ranging in size from 30 to
over 100. Each identified a specific subset of behavioral features particularly salient to their
performance. Given this, we use a short form notation to indicate the number of features for each
of the models used in our evaluations, namely LR5, LR6, LR9 and LR10.

We then supplied the ratings from the dataset described above as inputs for inference to the
models, taking the median of all ratings available for each video, due to the crowdsourced nature
of the ratings and the potential for outliers. The results serve as baseline performance for the
thresholding experiments, representing the initial metrics based on a default single 0.5 threshold.

We then introduced an abstention window by replacing that single threshold with dual
thresholds #; and ty. For each prediction p; that the model makes, if p; < #7, we consider it a
negative diagnosis, whereas if p; > ty, we consider it a positive diagnosis. If p;instead falls on or
between the two thresholds, we consider it an abstention. In turn, we can reevaluate each model
with different threshold pairs to demonstrate the modified performance alongside an abstention
rate (= abstained cases/total cases).

We first measure baseline performance on our dataset using the logistic regression models.
Then, to better understand how abstention might improve clinical performance, we conducted a
comprehensive grid search over possible upper and lower decision thresholds for each model.
Rather than fixing a single decision boundary (e.g., 0.5), we examined the full landscape of trade-
offs between diagnostically-relevant performance metrics (sensitivity, specificity, Positive
Predictive Value (PPV), and Negative Predictive Value (NPV)) and the rate at which the model
abstains from making a prediction. In the grid search, we set the minimum value as the lowest
predicted probability (pmin) and the maximum value as the highest (pma). We utilized 2000 evenly
spaced steps between pmin and pmax to iterate through all pairs of #, and ¢y along those steps,
generating millions of threshold combinations. For each valid combination (where 7 < tv), we
calculated the same performance metrics as before, as well as the abstention rate.

This enables us to ask, for example: if we want a classifier that achieves 80% sensitivity and
80% specificity, what is the minimum abstention rate required to meet that target? Or
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alternatively: if we can tolerate an abstention rate of up to 25%, what is the best performance we
can achieve? By evaluating these scenarios across all valid threshold pairs, we create a flexible
framework for tailoring model behavior to different clinical priorities.

3. Results

3.1 Dataset Compilation

In the dataset, we identified a total of 8144 sets of ratings across 1031 unique children after
preprocessing for videos deemed ‘unscorable’ by raters and duplicate entries. Of those, 588
children had a confirmed positive ASD diagnosis while 443 did not, including those who were
neurotypical or had other diagnoses that were not ASD (Table 1). Several children in our dataset
had video ratings from multiple independent raters (Figure 2).

250 A

200 A

150 A

100 4

Number of Unique Children

50 A

16 21 26 31 36
Number of Raters

Figure 2. Frequency distribution of the number of raters per child, where the majority of children
were given at least three sets of ratings.

Table 1. Demographic characteristics of the children in the video ratings utilized in the analysis.
Number of Children Average Age (Months) | Gender Distribution

Autism 588 65.07 (SD=29.77) M: 456; F: 132
Non-Autism 443 (38% with other 60.04 (SD=123.14) M: 257; F:186
DD)

Total 1031 62.91 (SD=83.8) M: 713; F: 318
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3.2 Baseline Classification

As seen in Table 2, accuracies for our baseline classification ranged from 62% to 72%, with LR9
achieving the highest accuracy (71.87%) and sensitivity (82.31%) but lower specificity (58.01%).
The other models demonstrated more balanced sensitivity and specificity, though at slightly lower
overall accuracy. These results suggest that while our baseline classifiers perform reasonably well
given the noisiness (by design) of the video data and human ratings, the addition of abstention
may boost performance into more clinically acceptable levels.

Table 2. Baseline performance of logistic regression binary classifiers on the curated
collection of 1031 naturalistic video samples.

Model Accuracy Sensitivity Specificity PPV NPV

LRS 62.08% 56.12% 69.98% 71.27% 54.58%
LR6 68.57% 66.50% 71.33% 75.48% 61.60%
LR9 71.87% 82.31% 58.01% 72.24% 71.19%
LR10 66.92% 64.63% 69.98% 74.07% 59.85%

3.3 Thresholding Experiments

First, we ran a preliminary empirical scan of the data in which we moved the thresholds
incrementally further apart for all 4 models. This showed that the general behavior remained
consistent across models and further showed for all 4 models a near linear relationship between
the threshold width (tu — t) and the abstention rate, indicating that widening the distance, and
consequently decreasing coverage, expectedly improves performance metrics. We then chose LR6
for the additional in-depth evaluation steps described below due to the fact that it showed the
greatest equivalence between sensitivity and specificity, likely offering more room and
opportunity to study the impact of uncertainty management on performance (while LR9 showed
the highest baseline accuracy (Table 2), its performance favors positives (given the high sensitivity
and comparably low specificity), making it potentially less balanced overall).

We evaluated LR6 over a grid of performance targets. For each metric pair
(Sensitivity/Specificity and NPV/PPV), we varied the target values from 0.5 to 1.0 in increments
of 0.0025, calculating the minimum abstention rate required to simultaneously satisfy both target
constraints at each point. Subsequently, we calculated a maximum performance we can achieve
under a clinically viable abstention rate. We choose Youden’s J (sensitivity + specificity - 1) as a
balanced metric for performance for each set of thresholds and iterate through a set of abstention
ceilings, finding the set of thresholds that achieved the maximum Youden’s J. Additionally, we set
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a sensitivity requirement and measure the effect of the ceiling on the best possible specificity and
vice versa.

Table 3. LR6 model performance with optimized thresholds (t,tv ) under varying abstention
ceilings, searching for the highest Youden’s J.

Abstain ceiling Accuracy | Sensitivity | Specificity | Youden’sJ tL tu
(%) (%) (%)
Baseline 68.57 66.50 71.33 3783 N/A N/A
0.1 71.77 71.37 72.28 4365 0.4027 0.5480
0.2 73.58 69.89 78.33 4822 0.3685 0.6923
0.3 76.31 74.45 78.78 .5323 0.2966 0.7530
0.4 79.64 85.87 70.52 .5639 0.1944 0.7060
0.5 81.59 86.38 74.88 .6126 0.1645 0.8459

Table 4. LR6 model performance with optimized thresholds (t,tv ) under varying abstention
ceilings and a baseline condition for sensitivity/specificity while searching to maximize the other.

Abstain ceiling Additional Accuracy | Sensitivity | Specificity to tu
Condition (%) (%) (%)

Baseline N/A 68.57 66.50 71.33 N/A N/A
0.1 Sensitivity>=71.33 71.58 71.70 71.43 0.3944 0.5382
0.2 Sensitivity>=71.33 73.70 75.43 71.47 0.3235 0.5867
0.3 Sensitivity>=71.33 75.90 79.15 71.33 0.2384 0.6532
0.4 Sensitivity>=71.33 78.04 82.51 71.43 0.2032 0.7060
0.5 Sensitivity>=71.33 81.48 88.05 71.43 0.1640 0.7593
0.1 Specificity>=66.50 70.72 66.73 75.79 0.4619 0.5969
0.2 Specificity>=66.50 72.92 66.60 81.04 0.4155 0.7354
0.3 Specificity>=66.50 74.52 67.26 83.08 0.3524 0.8400
0.4 Specificity>=66.50 75.08 66.56 84.54 0.3206 0.8841
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Abstain ceiling Additional Accuracy | Sensitivity | Specificity to tu
Condition (%) (%) (%)
Baseline N/A 68.57 66.50 71.33 N/A N/A
0.1 Sensitivity>=71.33 71.58 71.70 71.43 0.3944 0.5382
0.2 Sensitivity>=71.33 73.70 75.43 71.47 0.3235 0.5867
0.3 Sensitivity>=71.33 75.90 79.15 71.33 0.2384 0.6532
0.4 Sensitivity>=71.33 78.04 82.51 71.43 0.2032 0.7060
0.5 Specificity>=66.50 77.76 66.67 89.58 0.2643 0.9320

As displayed in Table 3, increasing the maximum tolerated abstention rate allows the model to
achieve a significantly higher optimal performance. The maximum Youden’s J consistently
improves with higher ceilings, and each ceiling shows a significant increase in performance over
the baseline in terms of sensitivity and specificity. We can also see in Table 4 how setting a
baseline for sensitivity or specificity and maximizing the other displays monotonic growth as the
abstention ceiling is raised. Moreover, a particularly compelling point can be found at the 30%
ceiling in the Youden’s J optimization, as this level of data coverage would make it viable in
clinical contexts while also displaying a clear performance benefit: both sensitivity and specificity
are enhanced, rising to 74.5% and 78.8% respectively, compared to the baseline's 66.5% and
71.3%.

Sensitivity/Specificity NPV/PPV
1.0 - 1.0 -

- 50%

0.9

<]
]
Target PPV

Target Specificity
=]

Minimum Abstention Rate

0.6

0.5 '
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

Target Sensitivity . Target NP\/
Figure 3. Performance trade-off landscapes for the LR6 model, showing achievable targets at an
abstention rate of 50% or less. The grey area represents target combinations that are either
impossible to achieve or require an abstention rate greater than 50%.
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We also plot the results of our model evaluation over ranges of performance targets in Figure
3. This illustrates a promising result, displaying the minimum abstention rate required to
simultaneously achieve target performance levels for two key pairs of metrics:
sensitivity/specificity (left) and NPV/PPV (right). While some targets are not feasible with any
threshold pair at all, we also intentionally drop any data points where the minimum required
abstention is greater than 50% as a reasonable ceiling for a scenario where a model would be
clinically viable.

Figure 3 demonstrates that the model's performance can be significantly improved over the
baseline performance in Table 2 by allowing it to abstain from making predictions on low-
confidence samples. For instance, in the left panel, achieving an approximate balanced 80%
sensitivity and 80% specificity requires an abstention rate of approximately 20-30%. Pushing for
higher targets, such as 90% in both metrics, drastically pushes the abstention rate past 40%, or it
may not be possible within our parameters.

A particularly promising result is seen in the NPV/PPV plot. The model can achieve a high
target NPV (e.g., 0.95) while maintaining a moderate but still clinically useful target PPV (e.g.,
0.75) with a minimal abstention rate of less than 20%, demonstrating its potential promise as a
triaging tool, confidently identifying negative cases while flagging a smaller, manageable subset
of potential positive cases for further review. This is particularly valuable in the context of autism,
where it could help reduce the backlog of patients waiting for full evaluation by prioritizing those
that pass this initial screening.

4. Discussion

We demonstrate that abstention-based thresholding can serve as a flexible mechanism for
managing uncertainty in Al-based clinical diagnostic tools, and the possibilities that this dual-
threshold approach can provide in the context of pediatric autism classification. By applying
abstention strategies to video-based autism classifiers trained on traditional instruments, we were
able to explore trade-offs between PPV, NPV, and the proportion of samples retained for
classification. Our results show that carefully selecting upper and lower thresholds can
meaningfully shift clinical performance metrics without retraining the underlying model, offering
a post-hoc yet clinically interpretable mechanism to tailor model behavior to the needs of diverse
deployment contexts. These findings build on prior work in medical Al that emphasizes the
importance of communicating uncertainty® 37 by offering a concrete pathway to operationalize it
within the diagnostic process.

Additionally, our results demonstrate that dynamic thresholding can permit us to utilize the
existing models in many different contexts. For instance, as described above, it could be employed
as a triage tool, with a fixed high NPV and trading off PPV to fit abstention requirements. Another
use case would be as a “first pass” model, requiring a high PPV and NPV but also accepting a

123



Pacific Symposium on Biocomputing 2026

large abstention rate. This would permit one to filter for “easier” cases (i.e. cases where a model
has high confidence) cheaply then transfer the remaining cases to a more resource intensive next
step. Overall, working with abstention allows us to explore a plethora of new applications for a
single model, all without requiring retraining.

There are limitations worth highlighting that will be the target of future work. First, our
dataset, though diverse and significantly larger than in prior work, is still constrained by the
availability of labeled videos with verified diagnoses. Publicly available videos, especially those
sourced from platforms like YouTube, often lack complete demographic or clinical metadata,
limiting the ability to perform stratified or subgroup analyses. Second, the crowdsourced ratings
used to construct the input features, although aggregated, may contain suboptimal variations in
rater quality. While we employed clinicians and trained raters in many instances, we did not
systematically quantify or control for inter-rater reliability across the full dataset. This introduces
uncertainty that may impact classifier threshold optimization. Given that the goal of this study was
to demonstrate the general tradeoffs of sweeping across a wide span of threshold points and
abstention windows, as opposed to the identification of specific points for clinical decision making
based on thresholds aligned with real-world distribution, we used pre-existing classifiers without
additional calibration. However, we acknowledge that model calibration is a critical step for any
future work that would target such real-world clinical goals. Furthermore, we note that future work
exploring feature importance contributing to abstain decisions would provide additional insight
into specific factors that drive models to identify samples as indeterminate, resulting in increased
model explainability, a key facet of uncertainty management. Finally we acknowledge that
selecting thresholds and evaluating performance on the same inference outputs could introduce
optimistic bias. Although inference was performed using frozen classifiers that were previously
trained on an entirely different dataset, and our thresholds were utilized to examine the tradeoffs of
abstain windows and performance, future work will benefit from use of a dedicated evaluation
dataset and/or nested-cross validation.

The paradigm of abstention in clinical informatics leads to several opportunities for future
work. A natural follow up of this work is to study patient and clinician-facing consequences of
abstention from a human-centered design perspective (e.g., user trust, follow-up burden, and
missed diagnosis costs). Future work should incorporate decision-analytic frameworks or
prospective studies to align abstention behavior and threshold selection with clinical utility and
patient outcomes. In addition, adaptive thresholding strategies that respond to contextual features,
such as demographic variables, symptom severity, or prior history, may enable more personalized
uncertainty management decision making. Exploring abstention in multi-class or multi-label
diagnostic settings, including differential diagnosis among overlapping developmental conditions,
would enable abstention management in more challenging diagnostic scenarios (e.g.,
distinguishing between autism vs. ADHD vs. both vs. none).*® 4’ Finally, we plan to explore the
concept of abstention in less noisy contexts, such as by using a single source of videos and a
highly filtered subset of human raters.
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5. Conclusion

Abstention is a powerful mechanism for enhancing the quantification and management of
uncertainty in Al-based clinical diagnostic tools. We demonstrated how adjusting classification
thresholds on models trained with traditional autism measurement tools can meaningfully trade off
between performance metrics, such as PPV, NPV, and coverage, without requiring retraining or
architectural changes. These thresholding strategies provide more “degrees of freedom” to align
model outputs with diverse clinical success criteria, depending on the setting, population, and
tolerance for false positives or negatives.

As Al tools increasingly move from research settings into regulated clinical workflows, it is
essential to develop and formalize strategies for managing uncertainty in ways that are
interpretable, clinically relevant, and adaptable. Abstention offers one such strategy, enabling
systems to defer low-confidence predictions and support safer, more trustable decision-making.
Future work should build upon this paradigm by integrating abstention into clinician-facing
interfaces, evaluating its real-world impact, and developing guidelines that support its responsible
use across a range of clinical domains.
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