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Uncertainty quantification remains an underdeveloped aspect of AI-based clinical decision tools. As 
AI systems become increasingly prevalent in healthcare, it is essential not only to measure 
uncertainty but also to manage it in ways that support clinical decision-making. In this study, we 
investigate abstention as a practical mechanism for managing uncertainty in diagnostic classifiers. 
To stress-test this approach, we deliberately evaluate abstention performance on a purposefully noisy 
dataset of pediatric autism video assessments comprising heterogeneous video sources and a diverse 
range of human raters. We apply abstention strategies to existing autism classifiers trained on 
diagnostic assessment data, comparing baseline performance to a range of thresholding 
configurations that trade off retained sample coverage against key clinical metrics. We compare 
performance gains from prioritizing sensitivity or specificity to targeting a balanced increase in 
Youden’s J to demonstrate a wide variety of use cases that abstention can enable. This work 
demonstrates a concrete use case of introducing abstention into the output range of clinical decision 
models, enabling both uncertainty quantification and management in diagnostic classifiers. 
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1. Introduction

Autism is a developmental disorder that is diagnosed by clinician observation and behavioral 
assessment. Current diagnostic approaches for autism rely on specialists who are outnumbered,1 use 
myriad diagnostic aids, e.g. Autism Diagnostic Observation Schedule,2 Autism Diagnostic 
Interview,3 Social Responsiveness Scale,4 with over 20 clinically recommended tools5 that are time 
intensive (up to 8 hours of test time), subjective,6, 7 disagree on outcome,7 and that do not produce a 
numerical score that has consistent performance and reliability across the 1 in 318 who will be 
diagnosed with autism. The wait to access diagnostic assessments exceeds 12 months.9 This delayed 
process has kept the average age of first diagnosis close to 5 years10 (and 8 if from an 
underrepresented group11). Evidence supports the importance of early intervention. Like diagnosis, 
wait periods to access treatments often exceed 12 months,12, 13 and are not quality monitored or 
modified with objective endpoints. 

The difficulties navigating the healthcare system, variability in diagnostic practices, and 
consequent delays in diagnosis strongly underscores the need for an alternative system for diagnosis 
that is objective, quantified, reproducible, and consistent across geographies and demographics. 
Previous work has shown that machine learning models can effectively classify autism from 
neurotypical development when using an optimal feature set from clinical instrument data; our team 
previously trained models using data from 11,298 children with autism and 2,540 controls (including 
attention-deficit/hyperactivity disorder (ADHD), speech and language delays, and typical 
development) that resulted in 8 AI classifiers that use between 5 and 10 social-behavioral features 
each.14-18 Together, the models use 30 different social-behavioral features. We have since tested the 
ability to run these models using human-labeled feature ratings on videos submitted by parents. 
Experiments show that video feature tagging by video analyst “crowdworkers”19-28 requires a median 
of only 4 minutes and can be done with clinical accuracy >=92% in independent validation.29-31,32 
While the models were trained to produce binary outcomes, they produce point estimates that 
indicate the severity of the phenotype and range from severe forms of autism to typical development 
with no signs of developmental delay.   

We seek to build upon this body of work by exploring the concept of uncertainty quantification 
and management in AI-powered diagnostic tools, with a specific emphasis on abstention-based 
thresholding as a way to make AI predictions more clinically interpretable and trustworthy. In 
clinical contexts like autism diagnosis, where behavioral variation is high, the incoming video 
quality can vary, symptom presentations may be complex, and even high-performing models may 
not perform at a level needed for clinical decision support. Forcing a model to make a binary 
decision in such cases can lead to overdiagnosis or missed opportunities for early intervention. This 
highlights the need for tools that can identify when they are uncertain and explicitly defer judgment, 
a concept known as abstention. Abstention allows models to say “I don’t know” when presented 
with low-confidence inputs, enabling a safety-aware approach that aligns with clinical practice, 
where ambiguous cases are often escalated for further review. 
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This approach is especially relevant in behavioral health domains where ground truth is often 
fuzzy and diagnostic boundaries overlap. When implemented via thresholding on a model’s 
probabilistic outputs, abstention can be tuned to meet the needs of a particular use case, for example 
by maximizing sensitivity for screening or maximizing Positive Predictive Value (PPV) for referral 
decisions. Despite its importance, abstention remains underutilized in diagnostic AI tools, and its 
integration with video-based autism assessment has not been systematically studied. 

One prominent exception is CanvasDx, a machine learning-based medical device approved by 
the U.S. Food and Drug Administration (FDA) for autism diagnosis. This software device uses video 
submitted by a caregiver and human-provided feature ratings to produce a diagnostic classification 
using machine learning.33, 34 As AI-informed clinical diagnostics are developed, it is critical to 
improve the quantification and management of uncertainty for these diagnostic tools.35, 36 One key 
mechanism for improving these is adding an abstention mechanism with clinical performance-
informed threshold values. CanvasDx improved its management of uncertainty using thresholding 
scores where if this score is above or below two prespecified thresholds, a positive autism or 
negative autism output is produced.37, 38 

The focus of the current paper is to examine how we can apply such thresholding methods to a 
naturalistic but noisy set of video and ratings data that utilizes videos sourced from multiple settings 
(clinical, mobile game, and home, sourced from the U.S. and abroad) and ratings from raters of 
different backgrounds (cultural, geographic, professional).  By testing performance on this larger 
dataset containing wildtype videos and nonexpert human ratings (as reflected in real-world 
scenarios), we perform a comprehensive evaluation of abstention as an uncertainty management 
mechanism and describe the tradeoffs between diagnostic coverage and performance on clinically 
informative performance metrics. 

2. Methods

2.1 Noisy Dataset Creation 

We sought to collect, aggregate, and curate a purposefully noisy and heterogeneous dataset as a 
representative but inherently challenging collection in which abstention for certain samples may be 
warranted. This combined dataset was collected through a series of studies conducted following 
approval by the Stanford University Institutional Review Board (IRB), protocol #39562. The data 
include videos submitted by parents/guardians of children with and without a diagnosis of autism 
via several different studies conducted by our team (N=665 videos) as well as videos sourced via 
Youtube.com (N=366 videos). Most videos in the dataset originated from smartphone videos taken 
by a parent of their child playing alone or with others. For these videos, parents were instructed to 
take short 1.5–5-minute videos of their children playing. Smaller subsets of videos were taken by 
clinical coordinators or behavioral therapists, following parent consent, of children waiting for 
therapy in a medical research center (N=217). Some of these clinically sourced videos are from 
Bangladesh.31  Another subset of videos were collected via a mobile game app39-41 where parents are 
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asked to play a charades style game with their child, while the phones front camera records the child 
acting out a prompt presented with a corresponding image (i.e., elephant, astronaut, playing 
basketball) (N=380). Our video dataset contained children who have been clinically confirmed to 
have a diagnosis of autism, another condition, such as speech language condition (SLC), or 
neurotypical development. For the purposes of this study, we classified videos as depicting a child 
with autism or a child without autism. Demographics including age and gender provided by the 
parent and/or clinician, and for Youtube videos, video meta data and descriptions were used to 
assign age and gender.  

To safeguard against the potential for self-reporting bias in parent submitted video, we required 
the caregiver to confirm that their child's autism diagnosis came from a formal medical assessment42 
and asked parents to provide answers to a set of clinical instruments that included the Vineland 
Adaptive Behavior Scales-Parent Report,43 Social Responsiveness Scale,4 Mobile Autism Risk 
Assessment,44 Social Communication Questionnaire,45 and Autism Symptom Dimensions 
Questionnaire46 to establish the autism diagnosis or lack thereof. Additionally, videos from 
YouTube and Caregivers were independently examined in a blinded fashion by a clinician with 
expertise in autism diagnosis to provide a clinical diagnostic impression.22, 47 We required the parent 
reported diagnosis to match the clinician's observational diagnosis to include the video for analysis. 
This rigorous two-point consensus was used to ensure diagnostic ground truth while minimizing 
parental burden in the participation. 
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Figure 1. (A) Parents consented to participate in a study where they submitted short home videos 
of their child to be rated by human labelers in a secure rating platform. Video raters accessed a 
secure rating platform where 30 behavioral features were rated on a 4-point scale. (B) These 
features were then used in the following analysis by our previously developed machine learning 
classifiers to determine an autism risk classification. (C) The current study examines how we can 
determine and utilize thresholding values to tell the machine learning models to abstain when a 
certain level of uncertainty is reached. 



2.2 Thresholding Experiments 

We leveraged an established and previously-validated set of binary logistic regression (LR) autism 
classifiers that have previously demonstrated high performance in more homogenous video and 
rater settings.26, 30, 31 These models were trained on medical records generated through the clinical 
administration of popular autism instruments, with training feature sets ranging in size from 30 to 
over 100. Each identified a specific subset of behavioral features particularly salient to their 
performance. Given this, we use a short form notation to indicate the number of features for each 
of the models used in our evaluations, namely LR5, LR6, LR9 and LR10. 

We then supplied the ratings from the dataset described above as inputs for inference to the 
models, taking the median of all ratings available for each video, due to the crowdsourced nature 
of the ratings and the potential for outliers. The results serve as baseline performance for the 
thresholding experiments, representing the initial metrics based on a default single 0.5 threshold. 

We then introduced an abstention window by replacing that single threshold with dual 
thresholds tL and tU. For each prediction pi that the model makes, if pi < tL, we consider it a 
negative diagnosis, whereas if pi > tU, we consider it a positive diagnosis. If pi instead falls on or 
between the two thresholds, we consider it an abstention. In turn, we can reevaluate each model 
with different threshold pairs to demonstrate the modified performance alongside an abstention 
rate (= abstained cases/total cases). 

We first measure baseline performance on our dataset using the logistic regression models. 
Then, to better understand how abstention might improve clinical performance, we conducted a 
comprehensive grid search over possible upper and lower decision thresholds for each model. 
Rather than fixing a single decision boundary (e.g., 0.5), we examined the full landscape of trade-
offs between diagnostically-relevant performance metrics (sensitivity, specificity, Positive 
Predictive Value (PPV), and Negative Predictive Value (NPV)) and the rate at which the model 
abstains from making a prediction. In the grid search, we set the minimum value as the lowest 
predicted probability (pmin) and the maximum value as the highest (pmax). We utilized 2000 evenly 
spaced steps between pmin and pmax to iterate through all pairs of tL and tU along those steps, 
generating millions of threshold combinations. For each valid combination (where tL < tU), we 
calculated the same performance metrics as before, as well as the abstention rate. 

This enables us to ask, for example: if we want a classifier that achieves 80% sensitivity and 
80% specificity, what is the minimum abstention rate required to meet that target? Or 
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Feature ratings were collected via a process we previously designed and evaluated (Figure 1) 
where raters recruited by our research lab under the same IRB protocol were asked to view a set of 
videos in a secure portal and rate a set of 30 features (i.e., answers to multiple choice questions that 
are clinically relevant to diagnosing autism).26, 30 Video raters composed of clinicians (N=56 raters 
and N=3,025 sets of 30-feature ratings) and non-clinician students and crowdworkers (N=50 raters 
and N=5119 sets of 30 feature ratings) provided numerically coded responses to each of the 30
questions necessary to create the feature vectors for input into the models. 



 
 
 

 

alternatively: if we can tolerate an abstention rate of up to 25%, what is the best performance we 
can achieve? By evaluating these scenarios across all valid threshold pairs, we create a flexible 
framework for tailoring model behavior to different clinical priorities. 
 
3. Results 

 
3.1 Dataset Compilation  

 

In the dataset, we identified a total of 8144 sets of ratings across 1031 unique children after 
preprocessing for videos deemed ‘unscorable’ by raters and duplicate entries. Of those, 588 
children had a confirmed positive ASD diagnosis while 443 did not, including those who were 
neurotypical or had other diagnoses that were not ASD (Table 1). Several children in our dataset 
had video ratings from multiple independent raters (Figure 2). 

 
Figure 2. Frequency distribution of the number of raters per child, where the majority of children 
were given at least three sets of ratings. 
 
Table 1. Demographic characteristics of the children in the video ratings utilized in the analysis. 

  Number of Children Average Age (Months) Gender Distribution 

Autism 588 65.07 (SD=29.77) M: 456; F: 132 

Non-Autism 443 (38% with other 
DD) 

60.04 (SD=123.14) M: 257; F:186 

Total 1031 62.91 (SD=83.8) M: 713; F: 318 
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3.2 Baseline Classification  
 

As seen in Table 2, accuracies for our baseline classification ranged from 62% to 72%, with LR9 
achieving the highest accuracy (71.87%) and sensitivity (82.31%) but lower specificity (58.01%). 
The other models demonstrated more balanced sensitivity and specificity, though at slightly lower 
overall accuracy. These results suggest that while our baseline classifiers perform reasonably well 
given the noisiness (by design) of the video data and human ratings, the addition of abstention 
may boost performance into more clinically acceptable levels.  
 

Table 2. Baseline performance of logistic regression binary classifiers on the curated 
collection of 1031 naturalistic video samples.  

Model Accuracy Sensitivity Specificity PPV NPV 

LR5 62.08% 56.12% 69.98% 71.27% 54.58% 

LR6 68.57% 66.50% 71.33% 75.48% 61.60% 

LR9 71.87% 82.31% 58.01% 72.24% 71.19% 

LR10 66.92% 64.63% 69.98% 74.07% 59.85% 

 
 
3.3 Thresholding Experiments  
 

First, we ran a preliminary empirical scan of the data in which we moved the thresholds 
incrementally further apart for all 4 models. This showed that the general behavior remained 
consistent across models and further showed for all 4 models a near linear relationship between 
the threshold width (tU – tL) and the abstention rate, indicating that widening the distance, and 
consequently decreasing coverage, expectedly improves performance metrics. We then chose LR6 
for the additional in-depth evaluation steps described below due to the fact that it showed the 
greatest equivalence between sensitivity and specificity, likely offering more room and 
opportunity to study the impact of uncertainty management on performance (while LR9 showed 
the highest baseline accuracy (Table 2), its performance favors positives (given the high sensitivity 
and comparably low specificity), making it potentially less balanced overall). 

We evaluated LR6 over a grid of performance targets. For each metric pair 
(Sensitivity/Specificity and NPV/PPV), we varied the target values from 0.5 to 1.0 in increments 
of 0.0025, calculating the minimum abstention rate required to simultaneously satisfy both target 
constraints at each point. Subsequently, we calculated a maximum performance we can achieve 
under a clinically viable abstention rate. We choose Youden’s J (sensitivity + specificity - 1) as a 
balanced metric for performance for each set of thresholds and iterate through a set of abstention 
ceilings, finding the set of thresholds that achieved the maximum Youden’s J. Additionally, we set 
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a sensitivity requirement and measure the effect of the ceiling on the best possible specificity and 
vice versa. 
 
Table 3. LR6 model performance with optimized thresholds (tL,tU ) under varying abstention 
ceilings, searching for the highest Youden’s J. 

Abstain ceiling Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Youden’s J tL tU 

Baseline 68.57 66.50 71.33 .3783 N/A N/A 

0.1 71.77 71.37 72.28 .4365 0.4027 0.5480 

0.2 73.58 69.89 78.33 .4822 0.3685 0.6923 

0.3 76.31 74.45 78.78 .5323 0.2966 0.7530 

0.4 79.64 85.87 70.52 .5639 0.1944 0.7060 

0.5 81.59 86.38 74.88 .6126 0.1645 0.8459 

 
Table 4. LR6 model performance with optimized thresholds (tL,tU ) under varying abstention 
ceilings and a baseline condition for sensitivity/specificity while searching to maximize the other.  

Abstain ceiling Additional 
Condition 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

tL tU 

Baseline N/A 68.57 66.50 71.33 N/A N/A 

0.1 Sensitivity>=71.33 71.58 71.70 71.43 0.3944 0.5382 

0.2 Sensitivity>=71.33 73.70 75.43 71.47 0.3235 0.5867 

0.3 Sensitivity>=71.33 75.90 79.15 71.33 0.2384 0.6532 

0.4 Sensitivity>=71.33 78.04 82.51 71.43 0.2032 0.7060 

0.5 Sensitivity>=71.33 81.48 88.05 71.43 0.1640 0.7593 

0.1 Specificity>=66.50 70.72 66.73 75.79 0.4619 0.5969 

0.2 Specificity>=66.50 72.92 66.60 81.04 0.4155 0.7354 

0.3 Specificity>=66.50 74.52 67.26 83.08 0.3524 0.8400 

0.4 Specificity>=66.50 75.08 66.56 84.54 0.3206 0.8841 
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Abstain ceiling Additional 
Condition 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

tL tU 

Baseline N/A 68.57 66.50 71.33 N/A N/A 

0.1 Sensitivity>=71.33 71.58 71.70 71.43 0.3944 0.5382 

0.2 Sensitivity>=71.33 73.70 75.43 71.47 0.3235 0.5867 

0.3 Sensitivity>=71.33 75.90 79.15 71.33 0.2384 0.6532 

0.4 Sensitivity>=71.33 78.04 82.51 71.43 0.2032 0.7060 

0.5 Specificity>=66.50 77.76 66.67 89.58 0.2643 0.9320 

 
As displayed in Table 3, increasing the maximum tolerated abstention rate allows the model to 

achieve a significantly higher optimal performance. The maximum Youden’s J consistently 
improves with higher ceilings, and each ceiling shows a significant increase in performance over 
the baseline in terms of sensitivity and specificity. We can also see in Table 4 how setting a 
baseline for sensitivity or specificity and maximizing the other displays monotonic growth as the 
abstention ceiling is raised. Moreover, a particularly compelling point can be found at the 30% 
ceiling in the Youden’s J optimization, as this level of data coverage would make it viable in 
clinical contexts while also displaying a clear performance benefit: both sensitivity and specificity 
are enhanced, rising to 74.5% and 78.8% respectively, compared to the baseline's 66.5% and 
71.3%. 

 
Figure 3. Performance trade-off landscapes for the LR6 model, showing achievable targets at an 
abstention rate of 50% or less. The grey area represents target combinations that are either 
impossible to achieve or require an abstention rate greater than 50%. 
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We also plot the results of our model evaluation over ranges of performance targets in Figure 

3. This illustrates a promising result, displaying the minimum abstention rate required to 
simultaneously achieve target performance levels for two key pairs of metrics: 
sensitivity/specificity (left) and NPV/PPV (right). While some targets are not feasible with any 
threshold pair at all, we also intentionally drop any data points where the minimum required 
abstention is greater than 50% as a reasonable ceiling for a scenario where a model would be 
clinically viable. 

Figure 3 demonstrates that the model's performance can be significantly improved over the 
baseline performance in Table 2 by allowing it to abstain from making predictions on low-
confidence samples. For instance, in the left panel, achieving an approximate balanced 80% 
sensitivity and 80% specificity requires an abstention rate of approximately 20-30%. Pushing for 
higher targets, such as 90% in both metrics, drastically pushes the abstention rate past 40%, or it 
may not be possible within our parameters. 

A particularly promising result is seen in the NPV/PPV plot. The model can achieve a high 
target NPV (e.g., 0.95) while maintaining a moderate but still clinically useful target PPV (e.g., 
0.75) with a minimal abstention rate of less than 20%, demonstrating its potential promise as a 
triaging tool, confidently identifying negative cases while flagging a smaller, manageable subset 
of potential positive cases for further review. This is particularly valuable in the context of autism, 
where it could help reduce the backlog of patients waiting for full evaluation by prioritizing those 
that pass this initial screening.  
 
4. Discussion  

We demonstrate that abstention-based thresholding can serve as a flexible mechanism for 
managing uncertainty in AI-based clinical diagnostic tools, and the possibilities that this dual-
threshold approach can provide in the context of pediatric autism classification.  By applying 
abstention strategies to video-based autism classifiers trained on traditional instruments, we were 
able to explore trade-offs between PPV, NPV, and the proportion of samples retained for 
classification. Our results show that carefully selecting upper and lower thresholds can 
meaningfully shift clinical performance metrics without retraining the underlying model, offering 
a post-hoc yet clinically interpretable mechanism to tailor model behavior to the needs of diverse 
deployment contexts. These findings build on prior work in medical AI that emphasizes the 
importance of communicating uncertainty36, 37 by offering a concrete pathway to operationalize it 
within the diagnostic process. 

Additionally, our results demonstrate that dynamic thresholding can permit us to utilize the 
existing models in many different contexts. For instance, as described above, it could be employed 
as a triage tool, with a fixed high NPV and trading off PPV to fit abstention requirements. Another 
use case would be as a “first pass” model, requiring a high PPV and NPV but also accepting a 
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large abstention rate. This would permit one to filter for “easier” cases (i.e. cases where a model 
has high confidence) cheaply then transfer the remaining cases to a more resource intensive next 
step. Overall, working with abstention allows us to explore a plethora of new applications for a 
single model, all without requiring retraining.  

There are limitations worth highlighting that will be the target of future work. First, our 
dataset, though diverse and significantly larger than in prior work, is still constrained by the 
availability of labeled videos with verified diagnoses. Publicly available videos, especially those 
sourced from platforms like YouTube, often lack complete demographic or clinical metadata, 
limiting the ability to perform stratified or subgroup analyses. Second, the crowdsourced ratings 
used to construct the input features, although aggregated, may contain suboptimal variations in 
rater quality. While we employed clinicians and trained raters in many instances, we did not 
systematically quantify or control for inter-rater reliability across the full dataset. This introduces 
uncertainty that may impact classifier threshold optimization. Given that the goal of this study was 
to demonstrate the general tradeoffs of sweeping across a wide span of threshold points and 
abstention windows, as opposed to the identification of specific points for clinical decision making 
based on thresholds aligned with real-world distribution, we used pre-existing classifiers without 
additional calibration. However, we acknowledge that model calibration is a critical step for any 
future work that would target such real-world clinical goals. Furthermore, we note that future work 
exploring feature importance contributing to abstain decisions would provide additional insight 
into specific factors that drive models to identify samples as indeterminate, resulting in increased 
model explainability, a key facet of uncertainty management. Finally we acknowledge that 
selecting thresholds and evaluating performance on the same inference outputs could introduce 
optimistic bias. Although inference was performed using frozen classifiers that were previously 
trained on an entirely different dataset, and our thresholds were utilized to examine the tradeoffs of 
abstain windows and performance, future work will benefit from use of a dedicated evaluation 
dataset and/or nested-cross validation. 

The paradigm of abstention in clinical informatics leads to several opportunities for future 
work. A natural follow up of this work is to study patient and clinician-facing consequences of 
abstention from a human-centered design perspective (e.g., user trust, follow-up burden, and 
missed diagnosis costs). Future work should incorporate decision-analytic frameworks or 
prospective studies to align abstention behavior and threshold selection with clinical utility and 
patient outcomes. In addition, adaptive thresholding strategies that respond to contextual features, 
such as demographic variables, symptom severity, or prior history, may enable more personalized 
uncertainty management decision making. Exploring abstention in multi-class or multi-label 
diagnostic settings, including differential diagnosis among overlapping developmental conditions, 
would enable abstention management in more challenging diagnostic scenarios (e.g., 
distinguishing between autism vs. ADHD vs. both vs. none).48, 49 Finally, we plan to explore the 
concept of abstention in less noisy contexts, such as by using a single source of videos and a 
highly filtered subset of human raters. 
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5. Conclusion 

Abstention is a powerful mechanism for enhancing the quantification and management of 
uncertainty in AI-based clinical diagnostic tools. We demonstrated how adjusting classification 
thresholds on models trained with traditional autism measurement tools can meaningfully trade off 
between performance metrics, such as PPV, NPV, and coverage, without requiring retraining or 
architectural changes. These thresholding strategies provide more “degrees of freedom” to align 
model outputs with diverse clinical success criteria, depending on the setting, population, and 
tolerance for false positives or negatives. 

As AI tools increasingly move from research settings into regulated clinical workflows, it is 
essential to develop and formalize strategies for managing uncertainty in ways that are 
interpretable, clinically relevant, and adaptable. Abstention offers one such strategy, enabling 
systems to defer low-confidence predictions and support safer, more trustable decision-making. 
Future work should build upon this paradigm by integrating abstention into clinician-facing 
interfaces, evaluating its real-world impact, and developing guidelines that support its responsible 
use across a range of clinical domains. 
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