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Prioritizing targeted perturbation experiments remains a central challenge in systems bi-
ology, where experimental constraints limit network manipulation. We introduce NORSP
(Network Optimal Retrieval of Sparse Perturbations). This novel computational framework
integrates network propagation with supervised subset selection to identify minimal pertur-
bation sets that can shift a system from its initial to a desired steady state. NORSP lever-
ages a sensitivity matrix derived solely from network topology, enabling control prediction
without requiring full knowledge of system dynamics. Applicable to undirected, directed,
and signed networks, NORSP accommodates a broad range of biological models and ex-
perimental scenarios. We validate its effectiveness using YBX1 knockdown transcriptomics
data and 61 curated metabolic networks from the BioModels repository, demonstrating
NORSP’s robustness, scalability, and experimental relevance. Even under constraints that
obscure true perturbations, the algorithm reliably infers alternative targets that achieve
comparable control. Control is confirmed both in graphical approximations and through
full dynamical model simulations. Overall, NORSP provides a practical and generalizable
solution for steady-state control in complex biological systems, laying the foundation for
multi-omics hypothesis generation and systems-level experimental design.
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1. Introduction

Network analysis is central to systems biology, enabling the exploration of gene regulation,
protein interactions, and metabolic control. Mathematical modeling has transformed this do-
main, offering powerful frameworks to simulate biological responses and drive hypothesis gen-
eration. Computation manipulations of network components, known as in silico experiments,
allow for systematic investigation of system perturbation, guiding experimental design and
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accelerating discovery. Despite their utility, computational models face a critical bottleneck:
identifying which perturbations are most informative. Network flexibility and high dimension-
ality introduce uncertainty, while practical considerations such as experimental cost, biological
feasibility, and node accessibility constrain the number of feasible interventions. Addressing
this challenge requires control strategies that are both tractable and biologically grounded.

Recent advances have accelerated the integration of network modeling, causal infer-
ence, and perturbation data for the discovery of therapeutic targets. Integrated regula-
tory–metabolic frameworks couple probabilistic gene regulatory networks with constraint-
based metabolic models to predict cell type–specific responses to interventions and priori-
tize therapeutic strategies.1 Causal inference methods such as Causal Differential Networks
(CDN) identify intervention targets by comparing causal graphs derived from observational
and interventional single-cell data, outperforming existing approaches on Perturb-seq bench-
marks.2 Bayesian frameworks like BaCaDI further address unknown interventions by jointly
inferring causal structures and targets.3 Network-based approaches, including NETPERT, use
perturbation theory to prioritize druggable intermediates,4 while data-driven control methods
enable optimal network manipulation without explicit dynamical models.5 Together, these de-
velopments highlight emerging strategies that combine causal modeling, network theory, and
data-driven methods to identify minimal and effective intervention sets in complex biological
systems.

Beyond causal inference and control frameworks, network propagation provides a com-
plementary strategy for modeling how perturbations diffuse through biological networks. By
iteratively updating the state of each node based on its neighbors, propagation estimates the
spread of information across a graph, effectively simulating how biological signals disseminate
through molecular systems. This approach has been widely applied in systems biology for iden-
tifying disease-associated genes,6,7 uncovering genetic associations,8 characterizing biological
networks,9 and investigating cancer.10,11 In this work, we build on the PRINCE (PRIori-
tizatioN and Complex Elucidation) algorithm,12 which was originally developed to identify
associations between protein complexes and human diseases using network propagation.

Building on propagation concepts, the DYNAMO (DYNamics-Agnostic Network MOdels)
framework13 extended network propagation to approximate perturbation responses in biolog-
ical systems. DYNAMO introduced the key insight that a sensitivity matrix, derived solely
from network topology, can serve as a surrogate for the Jacobian matrix of partial derivatives.
This matrix quantifies the local influence of perturbations across the network and enables
meaningful predictions when kinetic parameters or reaction mechanisms are unavailable. By
leveraging structural information alone, DYNAMO outperformed traditional centrality-based
metrics across several biological models.

More recently, the IGPON (Integrated Graph-based Perturbation Optimization using Net-
work propagation) algorithm14 used the sensitivity matrix to optimize perturbations through
Broyden’s quasi-Newton method, reframing network reprogramming as an unconstrained opti-
mization problem without requiring explicit system dynamics. As a proof of concept, IGPON
showed that propagation-based approximations can guide networks toward desired steady
states. However, it assumes perturbations can be applied to all N nodes, which is rarely
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feasible experimentally, as only a limited subset of nodes can typically be targeted.
This work introduces NORSP (Network Optimal Retrieval of Sparse Perturbations), a

computational framework for identifying minimal, biologically actionable subsets of perturba-
tions capable of steering a system toward a desired steady state. NORSP integrates network
propagation with subset selection, reformulating network reprogramming as a tractable su-
pervised learning problem. By using a sensitivity matrix derived solely from network topology
to guide a greedy search, the method enables targeted intervention design without requiring
detailed dynamical models.

In relation to existing strategies, NORSP fills a distinct methodological gap. Frameworks
such as DYNAMO and IGPON prioritize individual nodes based on influence or centrality,
whereas this approach identifies the minimal subset of nodes needed to achieve a specified
perturbation. Causal inference methods like CDN and BaCaDI focus on inferring targets from
perturbation data rather than determining how to intervene to control network states. By
contrast, NORSP emphasizes control under experimental constraints, making it well suited
for prioritizing limited, biologically feasible interventions.

NORSP is broadly applicable to undirected, directed, and mixed-direction networks. Its
performance was evaluated using YBX1 knock-out gene expression data from breast cancer cell
lines15 and 61 curated metabolic models from BioModels.16 Across these applications, the algo-
rithm identified biologically meaningful targets in Wnt, T-cell receptor, and Jak–Stat signaling
pathways, and reliably found minimal perturbation sets capable of shifting metabolic systems
to desired steady states. Even when exact perturbations were not recovered, the NORSP
identified alternative nodes that achieved comparable control, underscoring its potential as a
scalable and practical tool for hypothesis generation in complex biological networks.

2. Materials and Methods

2.1. Network Optimal Retrieval of Sparse Perturbations

A network (graph), G, is defined by a set of nodes (vertices), V , and the edges, E, represent-
ing the connections between the nodes. Propagation is a process that simulates the flow of
information through a network and can be used to estimate a node’s influence. Mathemati-
cally, we define the graph adjacency matrix, G = (V,E,w) ∈ RN×N , where w defines an edge
weight. This work assumes that the connections are unweighted (wi = 1, ∀i) and that G is
a binary adjacency matrix. Undirected graphs are symmetric, whereas directed graphs are
binary matrices with gi,j = 1 if there is a directed edge between vi and vj.

A normalized version of the adjacency matrix that accounts for node degree17 is defined as:
G′ = D

−1/2
1 GD

−1/2
2 , where D1 and D2 are the diagonal matrices with entries d1(i, i) and d2(i, i)

as the sum of the absolute values of the rows and columns, respectively. This normalization
creates a smoothing effect over the network.18 The sensitivity matrix is defined as: S = (1 −
α)(I−αG′)−1, where α ∈ [0, 1] denotes a tuning parameter for the propagation strength.13 The
sensitivity matrix captures the effect of node perturbations on other nodes in the network, and
has been shown to be a good proxy for the Jacobian matrix.13 Unlike the Jacobian matrix,
which relies on partial derivatives of the system, the sensitivity matrix is estimated directly
from the network structure (Figure 1A).
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Fig. 1. Schematic of the NORSP framework. (A) The graph, G, serves as input and is used to
generate a sensitivity matrix, S. (B) The optimization problem is to identify the optimal perturba-
tions to drive an initial steady-state, F 0, to a target steady-state, F T . (C) Subset selection generates

sets of perturbed candidate states, F̂ T , that are compared to the target, F T , via error calculations.
Candidate states are sorted in terms of proximity to the target to identify the optimal perturbation
that drives the initial steady-state closest to the target.

This work aims to identify optimal perturbations that drive an observed network, F 0, to a
target state, F T (Figure 1B). This requires the selection of nodes to perturb, and an estimation
of the nature of their perturbation. The methodology integrates machine learning via subset
selection and network propagation, and we define it as: Network Optimal Retrieval of Sparse
Perturbations (NORSP). Mathematically, we want to identify a perturbation vector, ∆ ∈ RN ,
such that:

F T = F 0 + S∆. (1)
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In other words, we want to find a small change S∆, that will drive F 0 to the target F T .
Rewriting Equation 1, we obtain the following linear model:

F T − F 0 = S∆+ ϵ. (2)

Let the dependent variable be y = F T − F 0, then the regression model is defined as:

y = S∆+ ϵ, (3)

where ϵ ∼ N(0, σ2I). The elements of the sensitivity matrix, S(i, j), express the sensitivity of
node vi to small changes in node vj.

A single or a small number of perturbations are typically possible in experimental systems.
Thus, we aim to find a parsimonious solution to this problem that perturbs only a subset of
nodes. NORSP uses subset selection to identify the solution that minimizes ∥y−S∆∥22.19 This
feature selection approach will yield the selected nodes for perturbation and the estimated
regression coefficient that serves as the perturbation value. Forward subset selection is em-
ployed in this work, although alternative methods can be used. NORSP can be understood
in Figure 1C, where different sets of nodes are selected for perturbation and propagated to
a candidate perturbed state, F̂ T . Candidate models arising from subset selection are again
contrasted against the target state to identify the optimal solution. Model selection criteria,
such as Bayesian Information Criteria (BIC) or adjusted R2, can be used for selection. No-
tably, due to the nature of the graph representation, it is not possible to use data splitting or
cross-validation without changing the structure.

2.2. Simulations and Biological Data

To rigorously assess NORSP’s capabilities, we designed a series of simulations that evaluate
its accuracy in perturbation recovery, performance across networks from different organisms
and biological contexts and robustness to noise and structural misspecification.

Knockdown data: We applied NORSP to mean gene expression data for YBX1, a pro-
oncogenic transcription factor, from the KnockTF database (GEO: GSE63565). The dataset
includes 24 control and 24 knockdown samples, with expression profiles derived from log-
transformed means. Significant KEGG pathways (Wnt, MAPK, and JAK–STAT) were se-
lected to test NORSP’s ability to identify perturbations that drive the system from control
(F 0) to knockdown (F T ). YBX1 itself is not present in these pathways, reflecting downstream
effects of the knockdown. Pathway graphs were imported using KEGGgraph, mapped via Entrez
Gene IDs and gene symbols (org.Hs.eg.db), and trimmed to exclude unmapped nodes.

Evaluation on BioModels Repository: BioModels16 are previously published peer-
reviewed mathematical models of dynamical biochemical and cellular systems. The BioModels
repository contained XML files in the Systems Biology Markup Language (SBML) format.
BioModels were manually downloaded from the repository and read into Matlab using the
libSBML 5.19.0 API library.20 The Biomodels include both the dynamical systems and the
parameter specifications and initial concentration levels of biochemical species.

Simulations were performed by running each Biomodel to steady-state with the initial-
izations provided in the database. The resulting concentration values represent an initial
steady state, F 0. A perturbation was made to F 0, which sets the biochemical species with
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the highest concentration to zero (a knock-out). The system was run to a new steady-
state, F T , representing the target state. The Jacobian matrices were estimated for each
BioModel using finite differences. Following Santolini et al.,13 the Jacobian estimates were
used to construct the influence diagram that depicts the network representation we use with
NORSP. For each Biomodel, three networks were constructed from the Jacobian: undirected,
directed, and directed signed. Biomodels with unconnected nodes in the network were not
considered. A total of 61 Biomodels, ranging across organisms and processes, were used
for simulation. Network sizes ranged from 7 to 77; details are in the Supplementary Table
(https://github.com/krithikakrishnan04/norsp). The inputs to NORSP include the network
structure along with the initial and target states for each BioModel.

To evaluate the accuracy of node selection, we ranked the list of perturbed nodes identified
in the optimal solution based on the order in which they were selected during the forward
subset selection process. The first validation criterion assessed whether the actual perturbed
node appeared in the optimal solution. The second criterion evaluated whether the perturbed
gene was ranked first in the list. These metrics collectively characterize the effectiveness of
NORSP’s node selection strategy.

To assess control efficacy in BioModels, we evaluated whether NORSP-identified pertur-
bations could drive the dynamical system toward its target steady state. This was done by
reintroducing the top-ranked perturbation into each full dynamical model and simulating the
system’s response. This step mirrors experimental validation by examining how closely the
perturbed system approaches the desired target state. If the top-ranked node matches the true
perturbed node, F T is recovered exactly. If not, alternate perturbations must be considered.

To quantify control efficacy, we define a control performance metric: F ctr
dyn =

∥FT−F̂T
dyn∥2

∥FT−F 0∥2
, which

indicates movement toward the target state when F ctr
dyn < 1, and divergence when F ctr

dyn > 1. We

also consider the relative prediction error of the dynamical model prediction, F err
dyn =

∥FT−F̂T
dyn∥2

∥FT ∥2
.

Sensitivity to noise and misspecification of the network structure: To assess the
robustness of NORSP to observational noise and network misspecification, we generated scale-
free networks with Nn = 30 nodes using a Barabási–Albert model. Two perturbation regimes
were considered: sparse (Np = 5 perturbed nodes) and dense (Np = 25). Target states were
generated by propagating ground-truth perturbation vectors through the sensitivity matrix.
Additive Gaussian noise with mean zero and varying variance was then introduced either to
the initial state (linear model) to mimic measurement error, or to the sensitivity matrix to
mimic structural uncertainty. Noise levels ranged from 10−7 to 10−1. For each noise level and
condition, NORSP was applied to 100 simulated networks. Performance was quantified using
the average relative error in recovering the target steady state (F̄ err) and the average relative
error in estimating the perturbation vector (∆̄err).

NORSP will be released to CRAN (https://cran.r-project.org/) as an open-source R pack-
age upon publication, providing an accessible platform for researchers and practitioners to
apply the method across biological domains. The package will include simulation tools, visu-
alization features, and support for custom network formats. Code for the simulations can be
found on github (https://github.com/krithikakrishnan04/norsp).
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3. Results

NORSP was evaluated across two main types of datasets: transcriptomic knockdown data
and a diverse collection of 61 dynamic models from the BioModels repository. These datasets
span a range of biological scales and modeling formalisms, allowing us to assess NORSP’s
generalizability and robustness. In both contexts, NORSP successfully identified sparse sets
of perturbation targets capable of shifting the system from an initial state (F 0) to a target
state (F T ), even under constraints typical of real-world experimental scenarios. The results
demonstrate NORSP’s ability to accommodate networks of varying sizes, topologies, and bio-
logical complexity, providing both accurate target approximations and interpretable, minimal
intervention strategies.

We investigated pathway-level control using YBX1 knockdown data. Adjusted R2 values
were computed to assess the quality of the F T approximation across different pathways. Over-
all, we found that F T can be accurately approximated, with model fit naturally improving as
the number of selected nodes increases. Using a selection threshold of 0.90, we achieved high
accuracy across the three pathways while obtaining a parsimonious solution. Figure 2 shows
the adjusted R2 as a function of the selected nodes in the respective pathways. The selected
nodes at the 0.90 threshold are indicated in red. Results indicate the relative error (F err) of
0.0008 with 38 nodes selected from 115 in the Wnt signaling pathway (Figure 2A). The T cell
receptor signaling pathway yielded a F err of 0.0006 with 39 out of 113 nodes selected (Figure
2B), while the JAK-STAT signaling pathway showed a F err of 0.0003 with 33 of 92 nodes
selected (Figure 2C). In addition to model performance, the selected profiles help identify key
targets for perturbation. These typically correspond to the earliest genes selected during the
subset selection process and are thus prioritized for intervention.

In addition to the error rates, we also examined functions of the top-selected genes. In our
application of NORSP, forward subset selection is used; thus, the prioritization is according
to the order in which they are selected. In the Wnt signaling pathway, 18 of the 38 selected
nodes were differentially expressed genes. The top three—MYC, DKK1, and PRKCA—are
well-established components or downstream effectors of the pathway. MYC plays a central
role in regulating genes essential for Wnt activation,21–23 while DKK1 is a known inhibitor
of Wnt signaling.24,25 Notably, MYC has also been shown to suppress DKK1, promoting
Wnt activation in breast cancer.22,26 PRKCA encodes PKCα, which has been implicated in
the negative regulation of Wnt signaling.27 In the T-cell receptor signaling pathway, the top
selected perturbation targets were CSF2, JUN, and MAPK9. Of these, CSF2 and JUN were
among 10 enriched genes within the 39 selected nodes. In the JAK-STAT signaling pathway,
SPRY1, MYC, and JAK1 emerged as top perturbation targets. All three were among 17
enriched genes out of the 33 selected. JAK1, in particular, is known to physically associate
with the oncogene v-Abl, a key activator of the JAK-STAT pathway.28

NORSP was evaluated using metabolic models in the BioModel repository. To illustrate
the methodology, we first present results from a single model before summarizing perfor-
mance across all 61 systems. The metabolic model of the Calvin cycle (Figure 3A) was used
to generate an influence network, serving as input to NORSP. The corresponding influence
matrix, derived from the system’s Jacobian, is shown in Figure 3B, with the perturbed node
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Fig. 2. NORSP results for YBX1 knockdown data, aiming to transition breast cancer cell lines
(F 0) toward a healthy cell state (F T ). Subset selection results are shown for the top enriched KEGG
pathways: (A) Wnt signaling, (B) MAPK signaling, and (C) JAK-STAT signaling. Adjusted R2 is
plotted as a function of the selected genes. Genes corresponding to the adjusted R2 threshold are
highlighted in red.

G6P, which was fixed at zero, circled in red. Using subset selection based on adjusted R2,
NORSP identified optimal perturbations across three types of influence networks: undirected,
directed, and directed signed. In each case, the target node G6P was ranked among the top
candidates (Figure 3C, shown in red). To better understand factors influencing network con-
trollability, we examined structural properties of the BioModels under different graph repre-
sentations—including node count, average degree, and clustering coefficients. However, these
features did not consistently predict controllability outcomes (data not shown), suggesting
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that control properties may depend on more complex, model-specific interactions.
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Fig. 3. An overview of NORSP applied to a single BioModel of the Calvin Cycle. (A) Schematic
of the dynamic model representing the Calvin Cycle metabolism,29 which is run to steady state and
to obtain F 0, and perturbed to obtain a new target steady state, F T . (B) The network influence
diagram serves as the structural input to NORSP. The graph is extracted from the Jacobian and
can be represented as undirected, directed, and signed. In this example, G6P is the perturbed node.
(C) NORSP applied to the undirected, directed, and signed networks, and the corresponding model
selection results using adjusted R2 for target state approximation. The highest-ranked perturbation
is G6P in all results, indicating that NORSP was able to identify the correct solution.

The results of the 61 BioModel simulations are summarized in Table 1. We evaluated
graphical models derived from the influence matrix, which captures the network dynamics of
each biological system, using the relative F error ratio. Three network propagation strategies
were tested: undirected, directed, and directed signed. Model performance was assessed using
two criteria: (1) adjusted R2, and (2) the successful selection of the perturbed node among
the top-ranked features, labeled as “target found.” Under the adjusted R2 criterion, 56, 57,
and 55 models (out of 61) were correctly identified for the undirected, directed, and directed
signed propagation methods, respectively (Table 1, Columns 1 and 2). This corresponds to 5,
4, and 6 misses, indicating a high success rate in selecting relevant perturbations across all
three propagation strategies. We also examined the selected features to assess which models
had identified the target as the top-ranked (Table 1, Column 3). We found that 48, 49, and
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51 models correctly identified the perturbed node for the undirected, directed, and directed
signed approaches, respectively. Finally, we counted the models for which the target was missed
altogether, which were low 13, 12, and 10 (Table 1, Columns 4). These results highlight the
robustness of the proposed framework in identifying meaningful perturbations across a broad
range of biological models.

Table 1: Controllability results for the 61 Biomodels.

The F ctr
err ratio is evaluates controllability (< 1) in the graphical (gm) and dynamical models (dyn).

Biomodel
graph

representation

Target
found

(# models)

Target
ranked #1
(# models)

Target
missed

(# models)

Top hits
in control
graph

(F ctr
gm <1)

Top hits
in control
dyn. sys.
(F ctr

dyn <1)

Missed target
in control
dyn. sys.
(F ctr

dyn <1)

Undirected 56 48 13 48/48 35/48 9/13
Directed 57 49 12 49/49 33/49 11/12

Directed + Signed 55 51 10 51/51 36/51 10/10

A second mode of evaluation focused on system control, wherein the predicted perturbation
was reintroduced into the system. Control was defined as the system’s ability to approach
the desired target state and was assessed both in the graphical model and the underlying
dynamical system. When the target node was ranked as a top-priority candidate, control was
consistently achieved across all models, as indicated by F ctr

gm < 1 in the graphical model (Table
1, Column 5). Importantly, only the top-ranked perturbation of the selected set was introduced
into the corresponding dynamical systems. System control was observed in the cases when the
actual target was selected as the highest ranking (Table 1, Column 6). Notably, even in cases
where the actual target was not ranked highest, the systems frequently remained controllable,
especially when perturbations were derived from directed and signed-directed network models.
This observation underscores the robustness of NORSP in identifying effective, experimentally
actionable perturbations, even in the presence of uncertainty in target ranking.

To further assess NORSP’s robustness, we simulated networks and introduced Gaussian
noise either in the sensitivity matrix S or in the linear model. Table 2 summarizes the average
prediction and perturbation errors across noise levels up to 10−1. NORSP maintained low
relative errors across both sparse and dense perturbation regimes when noise was confined
to either the linear model or the sensitivity matrix. For small noise levels (ϵ ≤ 10−3), both
F̄rel.err and ∆̄rel.err remained stable, typically below 0.01 and 0.07, respectively, demonstrating
strong numerical stability. As noise increased to 10−1, moderate increases in perturbation
error were observed, most notably for the sensitivity matrix in the dense perturbation regime
(Np = 25), while target state errors remained low. These results indicate that NORSP is robust
to moderate levels of measurement error and network misspecification, accurately recovering
target states and perturbation patterns across a wide noise range.
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Table 2: Noise added to the initial state of the system. Prediction errors of Ftarget were
averaged over 100 simulations for networks with Nn = 30 nodes, under two perturbation

regimes: sparse (Np = 5) and dense (Np = 25).

Noise-level
ϵ

Linear error Sensitivity matrix error
Np = 5 Np = 25 Np = 5 Np = 25

F̄ err ∆̄err F̄ err ∆̄err F̄ err ∆̄err F̄ err ∆̄err

1e-07 0.007 0.069 0.023 0.171 0.006 0.053 0.023 0.174

1e-06 0.006 0.061 0.022 0.172 0.007 0.061 0.022 0.169

1e-05 0.007 0.060 0.022 0.166 0.006 0.062 0.022 0.168

1e-04 0.006 0.057 0.022 0.169 0.007 0.066 0.022 0.167

1e-03 0.000 0.065 0.022 0.178 0.007 0.065 0.022 0.165

1e-02 0.006 0.062 0.023 0.171 0.006 0.060 0.021 0.162

1e-01 0.006 0.056 0.022 0.164 0.007 0.288 0.024 0.257

4. Discussion

In this study, we introduced NORSP, a novel algorithm designed to identify sparse pertur-
bations capable of guiding a system from an initial to a target steady state. By reframing
the problem of network control as a subset selection task informed by network propagation,
NORSP brings a practical approach to biological network optimization. It integrates graph-
based sensitivity matrices with supervised learning, enabling direct prioritization of candidate
perturbations without assuming full access to or manipulability of all network nodes.

A critical challenge in systems biology is to identify effective control strategies that are
both interpretable and experimentally feasible. Traditional approaches, such as structural con-
trollability theory,30 offer important theoretical insights by identifying Minimum Driver Sets
(MDSs)-the minimal number of nodes that must be controlled to steer the system. This frame-
work has been widely applied in biological networks to classify nodes as critical, ordinary, or
redundant,31–33 and has informed analysis in domains such as metabolic regulation, disease
gene identification, and signaling pathway dynamics.34–36 Extensions of this theory have fur-
ther characterized control modes and revealed emergent properties in complex systems.37

Despite its contributions, structural controllability also presents limitations. It often re-
quires perturbation of a large proportion of nodes to achieve control, which is not compatible
with experimental or clinical constraints.38,39 It may also lack robustness in nonlinear sys-
tems, and typically does not estimate the magnitude or directionality of perturbations. These
methods can be computationally expensive and may be less flexible in incorporating biological
noise or measurement uncertainty.40,41 Alternative strategies that involve iterative adjustment
of system states, such as gradient-based approaches or local state feedback,42,43 can also be
computationally burdensome and sensitive to parameter initialization. NORSP is distinct from
prior approaches that prioritize influential nodes (e.g., DYNAMO,13 IGPON14) or rely on rich
perturbation time-series data (e.g., CDN,3 BaCaDI,3 NETPERT4). Instead, NORSP operates
in a realistic setting where only the network structure is available and perturbations must be
experimentally actionable. Using gold-standard BioModels, knockdown data, and controlled
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noise simulations, we showed that NORSP can recover true perturbations and effectively drive
systems toward target states using only top-ranked candidates.

A significant strength of NORSP is the ability to find alternative paths towards perturba-
tion when the true node target is not selected or is inaccessible. Simulation studies demonstrate
that even when the actual perturbation is not among the top-ranked candidates, the system
can still be driven toward the target state using alternate paths. This flexibility is particu-
larly valuable in experimental contexts where not all network components are druggable or
measurable. NORSP was also shown to be robust to misspecifications in the network struc-
ture and measurement error, which can be expected in models of biological systems. NORSP
also expands the methodological toolkit for network control by using propagation-based sen-
sitivity matrices as surrogates for the Jacobian. This allows the method to generalize across
undirected, directed, and signed networks, accommodating the diverse structures found in
biological systems. The use of subset selection aligns with a supervised learning framework,
providing interpretability and scalability, especially when implemented with greedy forward
selection or information criteria.

Nevertheless, several limitations warrant discussion. First, the propagation strength pa-
rameter must be manually tuned, as there is currently no theoretical guideline for optimal
selection.12,13 Second, while the subset selection framework simplifies the search space, the
combinatorial nature of the optimization introduces heuristic dependencies. Furthermore, a
threshold must be selected in subset selection according to model selection criteria. The use
of forward subset selection can be viewed as modular, and alternatives could be considered.
Future work could explore more sophisticated search strategies or Bayesian model averag-
ing to enhance stability in parameter selection. Finally, an important limitation lies in the
propagation assumption itself. Specifically, NORSP approximates the system Jacobian using
a static network-derived sensitivity matrix. This simplification enables tractable optimization
across large networks but does not capture nonlinear feedback, context-specific regulation, or
time-dependent effects inherent to real biological dynamics. Future work could incorporate
hybrid models that combine propagation-based inference with local dynamical refinement or
explore adaptive sensitivity estimation from data.

Beyond theoretical utility, NORSP’s targeted perturbation predictions may assist in prior-
itizing gene knockdowns or metabolic interventions for experimental validation. In particular,
this framework could support early-stage drug screening by identifying mechanistically infor-
mative nodes whose control shifts replicate desired therapeutic outcomes. Its integration of
sparse feasibility with network topology makes NORSP adaptable to both pathway-centric
disease modeling and tissue-specific gene expression studies.

In summary, NORSP provides a principled yet practical framework for driving biological
networks to target states using sparse, experimentally tractable interventions. By integrating
ideas from network science, machine learning, and systems biology, it offers a new direction
for hypothesis generation, experimental design, and therapeutic prioritization in complex bio-
logical systems. Its effectiveness across gene regulatory and metabolic networks highlights its
versatility and potential as a tool for discovery.
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