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The ongoing need for effective epidemic modeling has driven advancements in capturing the
complex dynamics of infectious diseases. Traditional models, such as Susceptible-Infected-
Recovered, and graph-based approaches often fail to account for higher-order interactions
and the nuanced structure pattern inherent in human contact networks. Higher-order inter-
actions, such as those in schools, workplaces, or public transit, involve simultaneous contact
among more than two individuals. This study introduces a novel Human Contact-Tracing
Hypergraph Neural Network framework tailored for epidemic modeling called EpiDHGNN,
leveraging the capabilities of hypergraphs to model intricate, higher-order relationships from
both location and individual level. Both real-world and synthetic epidemic data are used to
train and evaluate the model. Results demonstrate that EpiDHGNN consistently outper-
forms baseline models across various epidemic modeling tasks, such as source detection and
forecast, by approximately 12.1% through effectively capturing the higher-order interactions
and preserving the complex structure of human interactions. This work underscores the
potential of representing human contact data as hypergraphs and employing hypergraph-
based methods to improve epidemic modeling, providing reliable insights for public health
decision-making.
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1. Introduction

Since the onset of the COVID-19 pandemic, there has been a growing interest in studying epi-
demiological models.1–3 Understanding and managing infection outbreaks is crucial for pub-
lic health. Traditional mechanistic models like Susceptible-Infected-Recovered (SIR), which
mathematically describe the transmission mechanisms of infectious diseases, often suffer from
limitations of oversimplified or fixed assumptions, leading to sub-optimal predictive power and
inefficiency in capturing complex epidemic patterns.4,5

Motivated by these limitations, sequential models such as GRU6 and LSTM7 are used to
model temporal relations. Compared to mechanistic models, sequential models have demon-
strated superior performance in forecasting infection counts.1,8,9 However, these models often
struggle to incorporate spatial dependencies, such as human mobility patterns and geographi-
cal distributions, which play a crucial role in epidemiology modeling.2 Mobility data captures
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Fig. 1 Illustration of how various graph encoding methods can be employed to capture complex
interactions. Hypergraphs, in particular, offer significant advantages over traditional graphs by
retaining both individual-level and location-level information, while also capturing higher-order
interactions. This enriched representation facilitates a more nuanced understanding of epidemic

dynamics.

how individuals move and interact across different locations, influencing disease transmis-
sion dynamics beyond simple temporal trends. Accounting for this drawback, graph-based
approaches have emerged as a popular tool in epidemic research. Graph Neural Networks
(GNNs)10,11 have become popular for their ability to model human mobility patterns. They
achieve this by representing nodes as regions and weighted edges as mobility volume, effec-
tively capturing movement between locations. Through a message-passing mechanism, GNNs
enable nodes to share information with their neighbors, allowing for a more comprehensive
understanding of mobility patterns. Additionally, by leveraging dynamic graph modeling and
dynamic GNNs, they can further represent changes in human movement over time, enhancing
their ability to model relational dynamics within mobility networks.5,12,13

Despite the utility of GNN-based methods, they primarily focus on pair-wise interactions
and therefore neglect the higher-order interactions that are inherent in actual human contact
networks.14–16 Specifically, higher-order interactions refer to interactions or contacts that in-
volve more than two individuals simultaneously in the context of epidemic modeling.17 For
example, public transportation, workplaces, and schools are shared spaces where groups of
people interact following higher-order transmission dynamics. As illustrated in Figure 1, while
standard graphs can model these interactions by representing individuals as nodes and forming
fully connected subgraphs for each group, this approach is often inefficient and obscures the
true higher-order structure. In contrast, hypergraphs provide a more natural and explicit way
to represent higher-order interactions through hyperedges, eliminating the artificial clique.
Additionally, hypergraphs can model overlapping interactions by representing locations as hy-
peredges, encompassing multiple individuals simultaneously. These enhancements can lead to
more accurate and interpretable modeling of epidemics than standard graphs.14,15,18

Therefore, a fundamental limitation of prior graph-based approaches lies in their inability
to simultaneously preserve both individual-level and location-level information, as well as their
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failure to capture higher-order interactions. These shortcomings significantly hinder the accu-
rate modeling of real-world human contact patterns, which are essential for understanding and
predicting the spread of infectious diseases. However, learning on hypergraphs presents unique
challenges. It is difficult to capture recurrent social contact patterns that occur at irregular
intervals, as well as to learn disentangled yet interactive representations of individuals and
locations. These challenges call for models that can handle dynamic, heterogeneous structures
in human contact networks.

To address these, we propose EpiDHGNN, a novel framework that models human contact
data as dynamic hypergraphs. This approach enables the encoding of complex, higher-order
interactions and supports a more granular representation of epidemic dynamics. The major
contributions of this paper are threefold:
(1) We propose a novel method to model human contact as dynamic hypergraphs, which

encodes nodes as individuals and hyperedges as locations, leveraging both granular-level
information and higher-order interactions.

(2) We develop EpiDHGNN, a model tailored for epidemic forecasting and source detection
with a self-supervised contact-pattern awareness module, capturing the higher-order in-
teractions and contact patterns that are inherent in human contacts.

(3) Extensive experiments are conducted to demonstrate the superiority of encoding human
contact as hypergraphs, as well as the effectiveness of our proposed models in various
epidemic tasks.

Our results indicate that EpiDHGNN significantly improve the performance. This advance-
ment holds the potential to enhance infection control strategies in healthcare environments,
ultimately contributing to better public health outcomes.

2. Related Work

Mechanistic Epidemic Modeling: In the past, when data was not sufficiently recorded,
scientists were unable to build empirical models that successfully captured the dynamics of
epidemics. Empirical models rely heavily on accurate and comprehensive data to make pre-
dictions and understand patterns. In contrast, mechanistic models19,20 are designed to capture
the underlying complexity of infections and the recovery processes of various diseases, even
with limited data. Among these, the compartmental model, exemplified by the Susceptible-
Infectious-Recovered (SIR) model,21 is considered one of the most popular and successful. The
model divides the population into compartments based on their disease status, allowing for a
structured and systematic analysis of epidemic progression. It uses two parameters, β and γ,
to account for the infection and recovery rates respectively. The model’s ability to incorporate
epidemiological principles makes it particularly valuable for understanding and predicting the
course of infectious diseases.

Graphs for Epidemic Modeling: Recent advancements in dynamic graph modeling
have underscored the utility of such models in epidemic source detection and spread prediction.
Initially developed for traffic forecasting, dynamic graph models have been rapidly adapted
to epidemiological contexts, where nodes represent geographical locations.2,5,22,23 However,
these methods overlook the higher-order interaction inherent in human contact networks.
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Furthermore, previous works also focus on utilizing the dynamic message-passing (DMP)
inference algorithm and network centrality as a tool for statistical inference to estimate the
origin of an epidemic outbreak.14,24,25 Such algorithms iteratively transmit messages along
network edges, updating each node’s state probabilities based on the states of its neighbors.
However, they operate on static graphs, thereby overlooking the inherent dynamics of contact
networks in human societies.

Hypergraphs for Epidemic Modeling: Similar to graphs, hypergraphs can be uti-
lized in epidemic modeling while encompassing higher-order interactions.26–28 In the pathogen
propagation function proposed by Hypergraph-HeterSIS,16 the infection state of each node
is first aggregated to hyperedge, which is then followed by a nonlinear function f to remove
linearity. The result is then mapped back to node level to provide the next step update.
The method has been shown that hypergraph-based approaches are better at capturing the
structural differences in contact networks and improving the accuracy of infection dynamics
modeling. However, these approaches are based on variable calibration, therefore neglecting
the higher-level representation generated through deep learning approaches.15,29,30

3. Formulation

3.1 Hypergraph: A hypergraph is a higher-order representation of a graph where an edge
can connect any number of vertices. Formally, a hypergraph G = (V, E ,X) consists of a set
of nodes V , a set of hyperedges E , where each hyperedge is a subset of V , and a feature
matrix X ∈ R|V |×d, where each row encodes the node feature. The hypergraph structure can
be described by an incidence matrix H ∈ R|E|×N , where Hi,j = 1 only when the node vi is
incident to the edge ej.

3.2 Dynamic Hypergraph: A dynamic hypergraph is an extension of a hypergraph that
evolves over time, consisting of a sequence of hypergraphs observed over T discrete time steps.
Formally, a dynamic hypergraph is represented as G(0:T ) = {G(0), G(1), . . . , G(T )}, where each
hypergraph G(t) = (V (t), E(t),X(t)) denotes the hypergraph at time step t ∈ [0 : T ]. Here, V (t) is
the set of nodes, E(t) is the set of hyperedges, and X(t) denotes the node features at time t. It
is worth noting that both the graph structure and node features are dynamic, since in some
works, dynamic graphs have static features.

3.3 Epidemic Tasks: Consider an input of a dynamic hypergraph G(0:T ) =

{G(0), . . . , G(T )}, where each node represents an individual and each hyperedge represents a
location. At an arbitrary time step t, the nodes in a hyperedge e(t) ∈ E(t) represent a single con-
tact between these entities. Each hypergraph G(t) is associated with an individual state matrix
X(t) ∈ RN×d, where d is the feature dimension of the individual. For example, in the SIR setting,
d can consist of three dimensions, which correspond to the {Suspected, Infected,Recovered}
status of a specific individual.

Additionally, we define three time steps to clarify the time interval of our downstream
epidemic tasks. [0 : tsh] where tsh stands for Time Step Hidden; [tsh : ks] where ks stands
for Known Time Step; [ks : ps] where ps stands for Prediction Time Step. The three time
steps are ordered such that 0 ≤ tsh ≤ ks ≤ ps ≤ T . Note that for a time step t ∈ T , when
t < tsh, only the contact hypergraph can be observed. When tsh ≤ t ≤ ks, both the contact
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hypergraph and individual state can be observed. When t > ps, neither contact hypergraph
nor the individual state can be observed. An illustration of the three time steps is shown in
Figure 2.
3.3.1 Source Detection: The source detection task focuses on identifying the initial node
responsible for the spread of an epidemic, often referred to as "patient zero." Given the
dynamic hypergraph G(0:ks), or its incidence matrix H(0:ks), and the corresponding state matrix
X(tsh:ks), we aim to infer the likelihood distribution over all nodes at the initial time step T = 0

using a model f parametrized by weight θ. Mathematically, we are interested in using fθ to
estimate the distribution:

fθ(H
(0:ks),X(tsh:ks)) ≈ p(X(0)|H(0:ks),X(tsh:ks)).

This task leverages both the structural properties of the hypergraph and the temporal evo-
lution of the feature maps to backtrack the probable origin of the epidemic. The node labels
ydetect are extracted from specific columns of X(0) that represent the infection state — for
example, the "infected" column in the case of the SIR model. To optimize the model, we
use weighted binary cross-entropy loss between the predictions and node labels ydetect, where
w1 =

|V |
|ydetect=1| and w0 =

|V |
|ydetect=0|

Ldetect(θ) = − 1

|V |
∑
v∈V

[w1 · ydetect log(fθ) + w0(1− ydetect) log(1− fθ)],

3.3.2 Infection Forecasting: Forecasting tasks in epidemics are usually defined as finding
the total number of infections and recoveries in a range of future time steps. This is because
previous approaches encode nodes as areas, neglecting the individual-level information. On
the other hand, when using human contact hypergraphs, we can deduce a more fine-grained
forecasting on an individual level. Therefore, we treat our forecast task as a binary node
classification task. The node labels are defined as whether a node is in the "infected" state.
Using the SIR model as an example, each node can be in one of three states, and only when it
is in the "infected" state does the label become True. Here we are interested in using a model
g parametrized by θ to estimate the distribution:

gθ(H
(0:ks),X(tsh:ks)) ≈ p(X(ks+1,ps)|H(0:ks),X(tsh:ks))

Similar to source detection, we’ll use the binary cross-entropy loss between the predictions and
node labels yforecast. The labels are extracted from specific columns of X(ks+1:ps) that represent
the infection state, similar to source detection label extraction.

Lforecast(θ) = − 1

|V |
∑
v∈V

[yforecast log(gθ) + (1− yforecast) log(1− gθ)],

4. Method

In this section, we will formulate our proposed model EpiDHGNN, which serves as fθ and
gθ defined in Section 3.3. Here we define t ∈ Tinterest where Tinterest is the corresponding input
interval for H defined in Sections 3.3.1 and 3.3.2.

EpiDHGNN is a novel dynamic hypergraph neural network that models epidemic dynam-
ics by jointly capturing spatial, temporal, and structural contact patterns. As illustrated in
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Fig. 2 Model Architecture of proposed EpiDHGNN model. The arrows in the top left corner refer
to the three time steps defined in Section 3.3, where [0 : tsh] is the black interval, [tsh : ks] is the

orange interval, and [ks+ 1 : ps] is the green interval. All individual state is masked to 0 in [0 : tsh]
as shown in the top left black module. Corresponding inputs for source detection and forecast,

defined in Sections 3.3.1 and 3.3.2, are then fed to the model as input. The light blue HyperConv
module is defined in Section 4.1; the dark blue temporal convolution module is defined in Section

4.1; and the contact pattern awareness module is defined in Section 4.2.

Figure 2, EpiDHGNN follows an encoder-decoder paradigm and integrates both supervised and
self-supervised learning objectives to enhance the quality of node embeddings. The framework
is composed of three key components: (1) a Spatial-Temporal Encoder based on hypergraph
and temporal convolution that aggregates high-order relational information among individu-
als and captures progression patterns over time, (2) a novel self-supervised Contact Pattern
Awareness Module that encourages structural consistency by reconstructing dynamic contact
patterns. This architecture allows the model to learn robust spatiotemporal embeddings of
infection states, improving performance on downstream tasks such as epidemic forecasting
and source detection.

4.1 Spatio-Temporal Encoding: To capture spatial dependencies at each time step,
we adopt the hypergraph convolution operator proposed in HGNN,15 which aggregates in-
formation from high-order neighbors via node-edge-node message passing. Formally, a single
hypergraph convolutional layer consists of:

Xl+1,t
edge = D−1

e HT,tD−1/2
v Xl,t

nodeΘ, (1)

Xl+1,t
node = D−1/2

v HtWD−1
e HT,tD−1/2

v Xl,t
nodeΘ, (2)

where Ht is the incidence matrix at time t, Dv and De are diagonal node and edge degree ma-
trices, W is an optional hyperedge weighting matrix, and Θ denotes learnable parameters. By
stacking L such layers, the node embeddings can incorporate information from L-hop neigh-
borhoods. After applying the convolution over all time steps, the node and edge embeddings
are concatenated along the temporal axis:

XL
node = [XL,t0

node | X
L,t1
node | . . .], XL

edge = [XL,t0
edge | X

L,t1
edge | . . .], ∀t ∈ Tinterest. (3)
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To capture temporal dependencies, we apply standard 1D convolution across the temporal
axis, similar to the temporal convolutional networks introduced in31 and later adapted for
dynamic graphs in.32 Letting time correspond to the width dimension, individuals to the
height, and feature channels to the depth, the operation is defined as:

X̂node = σ
(
Φk

temporal ⊛ XL
node

)
, (4)

where ⊛ denotes convolution, Φk
temporal is the convolution kernel of width k, and σ is a non-

linear activation function. This enables the model to learn progression patterns across time.
4.2 Self-supervised Contact Pattern Awareness Module: In a societal setting, hu-

man interactions occur with varying probabilities based on social structures and daily rou-
tines. For instance, individuals are highly likely to engage in frequent interactions with family
members or colleagues at home or in the workplace, while social encounters with friends or
individuals sharing similar interests may occur less frequently, such as on a weekly or monthly
basis in clubs or shopping centers. To leverage this information, we propose a self-supervised
Contact Pattern Awareness Module, designed to predict human interactions within the epi-
demic framework. Given a sequence of k hypergraphs {Gt}t0+k−1

t=t0 starting from a randomly
selected time step t0, the module aims to reconstruct the hypergraph at the final time step,
Gt0+k, using information from the preceding k − 1 hypergraphs. Successful reconstruction en-
ables HGNN to inject human-contact-aware inductive bias into the learned node embeddings
XL

node, thereby improving performance in subsequent epidemic forecasting tasks.
To effectively capture these patterns, we utilize both the individual embeddings and lo-

cation embeddings obtained from Section 4.1. These embeddings are then processed using
the temporal convolution framework introduced in Section 4.2, enabling the model to extract
temporal dependencies. Finally, the refined embeddings are passed through a fully connected
layer to produce a confidence score for contact prediction. Mathematically, this operation is
formulated as:

s = σ
(
MLP

(
Φk

pattern ⊛ XL
node ∗ Φk

pattern ⊛ XL
edge

))
, (5)

where ∗ denotes element-wise multiplication and σ is a sigmoid activation. The output s is
a predicted score for individual-location contact. The module is trained with binary cross-
entropy loss on a balanced set of positive (observed) and negative (random) samples:

Lpattern = − 1

N

N∑
i=1

[yi log si + (1− yi) log(1− si)] , (6)

where yi ∈ {0, 1} is the ground-truth label indicating whether contact occurred.
4.3 EpiDHGNN: Given an input sequence of dynamic hypergraphs {Ht}t0+ks

t=t0 and the
corresponding individual features {Xt}t0+ks

t=t0 , EpiDHGNN first encodes node representations
using the spatial and temporal modules (Sections 4.1), and then incorporates initial state
residuals before calculating task-specific loss. The overall loss is a combination of task-specific
supervision and the self-supervised contact pattern loss:

L = α Ltask + (1− α)Lpattern, (7)

where α is a weighting hyperparameter.
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5. Experiment

In this section, we perform analysis on the datasets and conduct experiments to evaluate the
proposed model. We focus on the following research questions:
• RQ1: Does EpiDHGNN outperforms baseline dynamic graph models in various tasks?
• RQ2: Does the contact pattern awareness module facilitate the performance of EpiDHGNN?
• RQ3: Is contact patterns successfully captured? To what aspect of the task does the module

helps the most?
• RQ4: Beyond individual-level prediction, can EpiDHGNN capture population-level infec-

tion dynamics over time?

Table 1 Dataset Summary

Metric UVA EpiSim

Individuals 2,500 10,000
Locations 500 11
Time Steps 169 47
Contacts 94,134 664,177

Data Description: We assess the performance of base-
line models and our proposed model on both graph and hy-
pergraph settings. Because of the privacy nature of human
contact data, we used both real-world and synthetic data. The
University of Virginia UVA dataset includes an extensive col-
lection of clinical metadata sourced from the Epic-based SQL
database at the UVA hospital. The interactions are derived
from Electronic Healthcare Records (EHRs), which document
the timing and locations of encounters between patients and
healthcare workers (HCWs). We utilized the real-world infection case calibrated pathogen pa-
rameters provided by Anand etc.16 to retrieve the patient infection states through simulations.
The EpiSim dataset is based on the Mobility Intervention of Epidemic Simulator,33 which
models human movement and disease transmission. The Human Mobility Model simulates
hourly movements from 8 A.M. to 10 P.M. On weekdays, individuals move from residential
to work areas at time Td ∼ U(a, b), stay for Tw ∼ U(c, d) hours, and may visit commercial
areas before returning home. On weekends, they visit commercial areas at Te ∼ U(g, h) with
probability Pe, staying for Tm ∼ U(i, j) hours. The Disease Transmission Model includes ac-
quaintance and stranger contacts. Each individual has fixed acquaintance contacts at home
(Kr ∼ U(m,n)) and work (Kw ∼ U(o, p)). At each timestep, infection occurs with probability
Pa from acquaintances and Ps from strangers. The simulator parameters are calibrated using
the Covid-19 R0 from WHO. The statistics for both datasets are shown in Table 1.

Setup: In our experiment, we utilize a 2-layer HGNN to capture neighborhood infor-
mation. We perform a grid search over key hyperparameters, including hidden dimensions,
learning rate, weight decay, kernel size, and α. During training, we employ the ADAM op-
timizer with weight decay and gradient clipping activated to stabilize gradient updates and
prevent exploding gradients. Models are trained for up to 100 epochs, with early stopping
activated if the validation loss does not improve for 10 consecutive epochs. The experiments
are conducted on a single NVIDIA Tesla V100 GPU with 16 GB of memory. Training time
per epoch averages around 5 seconds. To enhance reproducibility, random seeds are fixed for
data splitting, model initialization, and optimization processes. We run the baselines using
the package EpiLearn.34

RQ1 - Performance: Our experimental results for both source detection and forecast-
ing are presented in Table 2 and Table 3, respectively, with the best performance under
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Table 2 Result of Forecast Task. Best Performance under each setting is bolded.

UVA EpiSim

PS F1 AUROC F1 AUROC

H2ABM
5 0.429 ± 0.067 0.602 ± 0.016 0.538 ± 0.083 0.703 ± 0.022

10 0.258 ± 0.091 0.579 ± 0.070 0.378 ± 0.011 0.581 ± 0.048

20 0.301 ± 0.061 0.552 ± 0.043 0.097 ± 0.064 0.484 ± 0.070

STGCN
5 0.526 ± 0.022 0.714 ± 0.035 0.632 ± 0.036 0.816 ± 0.029

10 0.343 ± 0.028 0.688 ± 0.010 0.473 ± 0.025 0.692 ± 0.043

20 0.398 ± 0.031 0.655 ± 0.031 0.195 ± 0.073 0.593 ± 0.010

ASTGCN
5 0.544 ± 0.038 0.731 ± 0.060 0.624 ± 0.030 0.801 ± 0.005

10 0.376 ± 0.013 0.692 ± 0.012 0.489 ± 0.014 0.712 ± 0.009

20 0.367 ± 0.009 0.652 ± 0.011 0.154 ± 0.045 0.612 ± 0.025

MSTGCN
5 0.721 ± 0.063 0.846 ± 0.013 0.869 ± 0.084 0.895 ± 0.010

10 0.401 ± 0.041 0.647 ± 0.012 0.502 ± 0.042 0.729 ± 0.020

20 0.358 ± 0.024 0.617 ± 0.065 0.223 ± 0.035 0.658 ± 0.056

EpiDHGNN
5 0.712 ± 0.023 0.837 ± 0.019 0.918 ± 0.042 0.957 ± 0.065

10 0.576 ± 0.012 0.750 ± 0.008 0.612 ± 0.001 0.874 ± 0.017

20 0.454 ± 0.007 0.685 ± 0.008 0.298 ± 0.080 0.779 ± 0.071

each setting highlighted in bold. The baseline models we chose includes: H2ABM groups in-
teractions via hyperedges rather than pairwise edges to better capture collective dynamics;
STGCN learns spatio-temporal dependencies using stacked temporal and spatial convolution
blocks; MSTGCN serves as a multi-component spatial-temporal graph convolution network;
and ASTGCN adds spatial-temporal attention mechanisms for dynamic weighting across time
and space. Then, we evaluated the models under diverse conditions to assess their robustness.
For source detection, we masked timesteps of varying lengths (5, 10, and 20) to examine the
models’ abilities to backtrack across different scenarios. Similarly, we tested forecasting per-
formance using prediction horizons of 5, 10, and 20 timesteps. In most settings, EpiDHGNN
outperforms the majority of baseline graph-based models, underscoring the advantages of
hypergraph-based approaches in epidemic modeling through capturing the high-order contact
interaction.

RQ2 - Ablation: We conducted an ablation study on the contact pattern awareness mod-
ule to investigate Question 2. As shown in Table 4, removing this module led to a noticeable
decline in performance, indicating its crucial role in capturing individual contact patterns. The
results suggest that incorporating individual contact behaviors enhances the model’s ability
to encode social interactions more effectively, aligning with societal norms. This highlights
the importance of modeling personalized contact dynamics in improving the overall predictive
capability of our approach.

RQ3 - Module Effectiveness: To investigate whether the contact pattern is successfully
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Table 3 Result of Source Detection Task. Best performance under each setting is bolded.

UVA EpiSim

TSH MRR Hit@1 Hit@3 MRR Hit@1 Hit@3

H2ABM
5 0.291 ± 0.087 0.100 ± 0.061 0.450 ± 0.074 0.042 ± 0.082 0.092 ± 0.068 0.112 ± 0.095

10 0.412 ± 0.070 0.265 ± 0.091 0.583 ± 0.060 0.079 ± 0.078 0.050 ± 0.084 0.145 ± 0.062

20 0.382 ± 0.060 0.130 ± 0.080 0.551 ± 0.074 0.066 ± 0.085 0.044 ± 0.049 0.118 ± 0.073

STGCN
5 0.491 ± 0.056 0.300 ± 0.036 0.650 ± 0.057 0.242 ± 0.075 0.145 ± 0.052 0.282 ± 0.035

10 0.462 ± 0.064 0.315 ± 0.074 0.633 ± 0.024 0.129 ± 0.039 0.100 ± 0.103 0.195 ± 0.052

20 0.427 ± 0.033 0.175 ± 0.023 0.596 ± 0.078 0.111 ± 0.047 0.089 ± 0.042 0.163 ± 0.017

ASTGCN
5 0.501 ± 0.026 0.300 ± 0.078 0.650 ± 0.052 0.226 ± 0.036 0.167 ± 0.033 0.333 ± 0.042

10 0.486 ± 0.046 0.250 ± 0.082 0.667 ± 0.022 0.141 ± 0.067 0.100 ± 0.027 0.133 ± 0.014

20 0.416 ± 0.029 0.205 ± 0.058 0.650 ± 0.032 0.118 ± 0.087 0.076 ± 0.031 0.100 ± 0.087

MSTGCN
5 0.618 ± 0.026 0.417 ± 0.029 0.767 ± 0.076 0.333 ± 0.029 0.167 ± 0.032 0.400 ± 0.058

10 0.561 ± 0.026 0.350 ± 0.050 0.733 ± 0.058 0.213 ± 0.058 0.100 ± 0.026 0.200 ± 0.019

20 0.442 ± 0.029 0.150 ± 0.058 0.700 ± 0.052 0.192 ± 0.016 0.089 ± 0.100 0.193 ± 0.029

EpiDHGNN
5 0.704 ± 0.033 0.517 ± 0.076 0.917 ± 0.029 0.401 ± 0.074 0.200 ± 0.100 0.500 ± 0.100

10 0.662 ± 0.005 0.500 ± 0.015 0.783 ± 0.029 0.218 ± 0.037 0.133 ± 0.058 0.167 ± 0.058

20 0.582 ± 0.031 0.350 ± 0.026 0.765 ± 0.050 0.219 ± 0.061 0.100 ± 0.100 0.200 ± 0.100

Table 4 Ablation study on contact pattern awareness module.

UVA EpiSim

Setting MRR Hit@1 MRR Hit@1

Detection

w/o CT module
tsh-5 0.692 ± 0.050 0.483 ± 0.104 0.381 ± 0.027 0.167 ± 0.058

tsh-10 0.644 ± 0.032 0.467 ± 0.058 0.204 ± 0.020 0.100 ± 0.013

tsh-20 0.558 ± 0.014 0.323 ± 0.029 0.197 ± 0.006 0.100 ± 0.100

w/ CT module
tsh-5 0.704 ± 0.033 0.517 ± 0.076 0.401 ± 0.074 0.200 ± 0.100

tsh-10 0.662 ± 0.005 0.500 ± 0.005 0.218 ± 0.037 0.133 ± 0.058

tsh-20 0.582 ± 0.031 0.350 ± 0.058 0.219 ± 0.061 0.100 ± 0.092

F1 AUROC F1 AUROC

Forecast

w/o CT module
ps-5 0.709 ± 0.004 0.830 ± 0.003 0.891 ± 0.003 0.912 ± 0.007

ps-10 0.571 ± 0.008 0.747 ± 0.006 0.513 ± 0.007 0.824 ± 0.005

ps-20 0.439 ± 0.008 0.680 ± 0.004 0.253 ± 0.006 0.724 ± 0.009

w/ CT module
ps-5 0.712 ± 0.023 0.837 ± 0.019 0.918 ± 0.042 0.957 ± 0.006

ps-10 0.576 ± 0.012 0.750 ± 0.008 0.612 ± 0.001 0.874 ± 0.004

ps-20 0.454 ± 0.007 0.685 ± 0.008 0.298 ± 0.080 0.779 ± 0.071

captured, we evaluate the module’s performance in predicting contact existence at the location
level. Specifically, locations are divided into four quantiles based on their contact intensity.
For example, in the EpiSim dataset, households exhibit lower contact intensity compared to
recreational locations. For each quantile, we report the prediction accuracy along with the
overall accuracy in Table 5. The results suggest that the overall contact pattern is successfully
reconstructed. While the UVA dataset shows little correlation between contact intensity and
accuracy, the EpiSim dataset exhibits a strong negative correlation. This observation aligns
with the underlying assumptions of our dataset. The UVA dataset includes hospital contacts,
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which may fluctuate due to patient movement, whereas in the EpiSim dataset, locations with
low contact intensity likely correspond to households, where visits occur with high frequency
and regularity.

We further investigate the influence of the hyperparameter α, selecting values from 0.3,
0.5, 0.7, 0.9, 1.0, to assess its impact on overall model performance. Lower values of α were
not considered, as α = 0.3 already exhibited significantly diminished performance, failing to
effectively capture the model’s main task. As shown in Figure 3, our results indicate that α

has little correlation with the final performance, suggesting that it can be treated as a tunable
hyperparameter for future studies.

Table 5 Contact Pattern Prediction
UVA EpiSim

Quantile Range F1 Range F1

1 [:6] 0.795 [:616] 0.997

2 [6:11] 0.773 [616:1788] 0.852

3 [11:19] 0.809 [1788:1847] 0.820

4 [19:] 0.841 [1847:] 0.639

Overall — 0.804 — 0.827

Additionally, we observe that the model
with a high timestep hidden state (TSH20)
consistently outperforms other configurations
when incorporating α. This suggests that in-
tegrating contact pattern information is par-
ticularly beneficial for tasks requiring a longer
temporal memory, as it helps the model better
capture long-term dependencies in contact pat-
terns. These findings highlight the importance
of tuning α based on specific task requirements
while reinforcing the advantage of incorporat-
ing contact-aware representations for long-horizon forecasting.
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Fig. 3 Visualization of various α’s impact on source detection performance

RQ4 - Generalizability: While we have demonstrated EpiDHGNN’s ability to forecast
an individual’s probability of infection in RQ1, its effectiveness at capturing the population
infection trend cannot be concluded. To address this, we aggregated the daily sum of infected
individuals to generate population-level data across various prediction horizons with respect
to time. As shown in Figure 4, EpiDHGNN accurately captures short-term infection dynamics
and effectively tracks broader fluctuations at longer time steps, albeit with reduced precision.
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Fig. 4 Forecast generalizability analysis. The models can successfully the future infection dynamics
within various PS. We also provide the Mean Absolute Error (MAE) of Naive Model (A naive time
series model forecasts future values by assuming they will be the same as the most recent observed

value) and our method.

6. Discussion & Conclusion

This study introduced the EpiDHGNN framework, demonstrating its ability to effectively
capture the dynamics of epidemic spread through higher-order interactions in human contact
networks. Through rigorous experimentation on both real-world and synthetic datasets, we
validated the advantages of modeling human contact as a dynamic hypergraph, highlighting
the importance of higher-order relationships and contact pattern in disease transmission.

Future improvements include exploring alternative model selections within the EpiDHGNN
framework, leveraging its modular design for flexible layer substitutions. Advanced architec-
tures in hypergraph-based learning will be investigated to enhance accuracy and efficiency.
Additionally, real-world simulation remains challenging due to privacy concerns and data
scarcity. Developing realistic synthetic algorithms that capture social clustering, geographic
mobility, and temporal dynamics will refine simulations, improve model training, and provide
a stronger benchmark for epidemic modeling.

In summary, this work underscores the power of hypergraph-based epidemic modeling
and sets the stage for further exploration into both methodological advancements and data
generation strategies. By enabling more accurate identification of transmission dynamics, these
models hold promise for informing timely and targeted public health interventions, ultimately
contributing to more effective epidemic response strategies at a broader societal level.
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