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Using transcripts from 20 clinical visits, we curated and annotated 487 physician-spoken
sentences that referenced five key concepts for shared decision-making: cancer prognosis,
life expectancy, and three treatment side effects (erectile dysfunction, incontinence, and
irritative urinary symptoms). Each sentence was assigned a score from 0 to 5 based on
the precision and patient-specificity of communicated risk, using a validated scoring rubric.
We modeled this task as five multiclass classification problems and evaluated both fine-
tuned transformer baselines and GPT-4o with rubric-based and chain-of-thought (CoT)
prompting. Our best performing approach, which combined rubric-based CoT prompting
with few-shot learning, achieved micro averaged F1 scores between 85.0 and 92.0 across do-
mains, outperforming supervised baselines and matching inter-annotator agreement. These
findings establish a scalable foundation for AI-driven evaluation of physician–patient com-
munication in oncology and beyond.

Keywords: Prostate cancer; physician-patient communication; risk communication; artificial
intelligence; large language models; natural language processing; shared decision-making

1. Introduction

Effective communication of risk during treatment decision-making is essential for achieving
high-quality, patient-centered care in oncology.1,2 In prostate cancer, where multiple treatment
options exist with similar oncologic outcomes but differing side-effect profiles, shared decision-
making (SDM) is particularly critical.3,4 To support this process, the American Urological
Association (AUA) recommends that clinicians address five core domains during consultations:
cancer severity, life expectancy (LE), cancer prognosis (CP), baseline function, and treatment
side effects.5 Among these, life expectancy,6,7 cancer prognosis ,8,9 and side effects represent
the most critical factors patients must consider when evaluating treatment options.10

Despite the published guidelines, physician communication around these key concepts re-
mains highly variable in both frequency and quality.11 Recent analyses of prostate cancer
consultations revealed that life expectancy, cancer prognosis, and side effects are often omit-
ted entirely or discussed without sufficient quantification.11,12 Even when mentioned, the level
of detail ranges from general remarks to highly tailored, patient-specific risk estimates. This in-
consistency poses challenges to effective shared decision-making, particularly given that many
patients express a preference for quantified, personalized risk information.7 Such variability
not only undermines patient understanding but may contribute to poor decision quality and
future regret,12 highlighting the need for scalable tools to systematically assess the quality of
physician risk communication.

While the value of high-quality risk communication is well recognized, practical methods for
evaluating how effectively physicians communicate these key concepts are limited in real-world
clinical settings.13 Manual transcript coding remains the predominant approach for assessing
communication, but this process is labor-intensive, costly, and not feasible at scale.14 Recent
advances in natural language processing (NLP)15,16 offer new opportunities to automate these
evaluations at scale, with greater efficiency and consistency.

Our recently published study17 was the first to leverage natural language processing (NLP)
to evaluate physician communication quality in prostate cancer consultations. In that work,
we developed supervised machine learning models to accurately retrieve sentences pertaining
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to five central decision-making domains—cancer severity, life expectancy, cancer prognosis,
baseline function, and treatment side effects. We demonstrated that identifying the presence
and frequency of such domain-specific content could serve as a proxy for broader consultation
quality. However, the focus of that approach was limited to detecting whether key topics were
discussed, without evaluating the depth, precision, or patient-specificity of how risks were
communicated. In contrast, the present study moves beyond content retrieval to introduce a
structured, rubric-based assessment of communication quality for each sentence. By assigning
fine-grained quality scores that reflect not just topic presence but also the clarity, specificity,
and quantitative precision of risk information, our framework offers a substantially more nu-
anced and actionable evaluation of physician–patient communication in prostate cancer care.

We introduce a novel framework for sentence-level scoring of communication quality using
large language models (LLMs). Rather than merely detecting relevant content, we assess the
precision and patient-specificity of each sentence using a validated scoring rubric .14 Five key
concepts central to shared decision making in prostate cancer are assessed: cancer prognosis,
life expectancy, and three common treatment side effects: erectile dysfunction (ED), inconti-
nence (INC), and irritative urinary symptoms (IUS). We formulate the task as five multiclass
classification problems, one per key concept, where each sentence is assigned a numeric score
(0–5) based on communication quality corresponding to the rubric .14 To address this complex
task, we evaluate two prompting strategies: rubric-only prompting and rubric-based chain-of-
thought (CoT) prompting,18 both in a few-shot in-context learning setting.19

By assigning quality scores grounded in established rubrics, we are able to capture not
only whether key domains are discussed, but also the degree to which information is tailored,
quantified, and relevant to individual patients. This enables systematic differentiation between
vague, general statements and precise, patient-specific risk estimates—an essential distinction
for understanding and improving shared decision-making. Leveraging the reasoning capabil-
ities of advanced LLMs, our experiments demonstrate that rubric-informed assessment, par-
ticularly when combined with explicit chain-of-thought reasoning, allows models to approach
expert-level performance even with limited annotated data.

Our contributions are threefold: (1) we develop a structured and reproducible annotation
framework for scoring risk communication in prostate cancer based on previously validated
rubrics;14 (2) we demonstrate the effectiveness of GPT-4o in performing this scoring task using
rubric-aligned CoT prompting; and (3) we compare LLM-based performance to supervised
baselines and show that LLMs can achieve expert-level agreement, even with limited training
data. Ultimately, this automated sentence-level assessment establishes a scalable foundation
for evaluating and enhancing physician–patient communication quality in prostate cancer care
and lays the groundwork for applications in a broad range of clinical settings.

2. Materials and Methods

2.1. Data collection

We collected the transcripts of 20 physician-patient encounters of men with newly diagnosed
clinically localized prostate cancer. From each encounter, we extracted only the physician-
spoken content and segmented it into individual sentences. Using our recently developed NLP-
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based model,13,17 we automatically identified the top five sentences per consultation that were
most likely to contain relevant content for each of the five key concepts relevant to SDM: CP,
LE, ED, INC, and IUS. This yielded an initial set of 100 candidate sentences for each concept.
We then manually reviewed and removed sentences that were incorrectly identified by the
model as relevant. After filtering, we retained 89 sentences for CP, 100 for LE, 99 for ED,
99 for INC, and 100 for IUS. To enrich the contextual information surrounding each selected
sentence, we expanded it into a longer text window by combining three sentences before and
after the selected sentence from the original transcript.

2.2. Data Annotation

To ensure high-quality data for developing and evaluating our scoring system, we created
a structured annotation framework grounded in our previously validated methodology for
assessing the quality of risk communication related to cancer prognosis, life expectancy, and
treatment side effects for prostate cancer.14 Our objective was to quantify the level of precision
with which physicians conveyed risk-related information across the five key concepts in each
selected sentence.

Each text fragment was assigned a numeric score from 0 to 5, with higher values indi-
cating more patient-specific and quantitatively precise communication. Scores were assigned
separately for each selected sentence of the five concepts.

Table 1 summarizes the scoring rubrics. For cancer prognosis, scores reflected the extent to
which physicians quantified the risk of cancer-specific mortality, progression, or metastasis. Life
expectancy scoring captured how physicians estimated patient longevity outside of their cancer
diagnosis. Finally, the three treatment side effects—erectile dysfunction, urinary incontinence,
and irritative urinary symptoms—shared a common rubric, focused on the specificity and
clarity of communicated risk related to each outcome.

Two annotators with expertise in oncology and prior experience in prostate cancer commu-
nication research independently annotated all text fragments using the defined scoring rubrics
for each concept. The annotation guidelines also included example text fragments to illustrate
each score level. Annotations were performed using Microsoft Excel, which facilitated label
entry and identification of disagreements. Discrepant labels were automatically detected by
comparing the scores assigned by each annotator. All disagreements were reviewed in dedicated
adjudication sessions, during which annotators discussed each case and reached consensus by
referring to both the rubric criteria and the corresponding text fragments.

Table 2 presents the distribution of final annotated scores across the five key concepts.
Prior to adjudication, inter-annotator agreement (IAA), computed as the micro-averaged F1

score, was F1 = 85.39 for CP, F1 = 83.00 for LE, F1 = 83.84 for ED, F1 = 84.85 for INC, and
F1 = 87.00 for IUS. These scores reflect a moderate-to-strong level of agreement,20 supporting
the reliability of the annotation process.

2.3. Approach

In recent years, LLMs have demonstrated state-of-the-art performance across a wide range of
NLP tasks, including classification, summarization, and reasoning tasks, without the need for
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Table 1. Scoring rubric for Cancer Prognosis, Life Expectancy, and Side Effects. The
rubrics of Side Effects column apply to ED, UI, and IUS.

Score Cancer Prognosis Life Expectancy Side Effects

0 Not mentioned Not mentioned Not mentioned

1 Mention without quan-
tification (e.g., general
risk mentioned)

Mention without esti-
mation

Name only (e.g., “erectile
dysfunction”)

2 Qualitative estimate
only (e.g., “low risk”)

Qualitative es-
timate only (e.g., “long
life expectancy”)

Qualitative
terms only (e.g., “unlikely
to affect you”)

3 Numeric estimate with-
out treatment compari-
son

Rough number of years
(e.g., “20–30 years”)

Numeric estimate without
timeline (e.g., “30% will
experience it”)

4 Numeric estimate in-
cluding risk with and
without treatment

Probability
of survival/mortality at
a timepoint

Numeric estimate
with timeline (e.g., “10%
at 1 year”)

5 Patient-specific numeric
estimate
at life expectancy, with
and without treatment

Specific estimate based
on patient factors (e.g.,
age, health status)

Patient-specific nu-
meric estimate with time-
line and reference to indi-
vidual characteristics

Table 2. Distribution of annotated quality scores (0–5) across the five key concepts. Each row shows
the number and proportion (%) of scored text fragments for a given score.

Score CP LE ED INC IUS

Count % Count % Count % Count % Count %

0 22 24.72% 32 32.00% 14 14.14% 23 23.23% 65 65.00%
1 2 2.25% 16 16.00% 28 28.28% 22 22.22% 13 13.00%
2 3 3.37% 5 5.00% 11 11.11% 18 18.18% 2 2.00%
3 25 28.09% 14 14.00% 16 16.16% 2 2.02% 6 6.00%
4 27 30.34% – – 21 21.21% 30 30.30% 11 11.00%
5 10 11.24% 33 33.00% 9 9.09% 4 4.04% 3 3.00%

supervised fine-tuning methods.21 These models can be adapted to new tasks using in-context
learning (ICL) techniques, where task-specific behavior is induced through natural language
instructions and a small number of labeled examples embedded in the prompt (known as “few-
shot prompting”19). Unlike traditional supervised learning, this approach does not require
parameter updates or large amounts of labeled data, making it highly adaptable for low-
resource or rapidly evolving domains.22

For our purpose, we harness the predictive capabilities of LLMs within a few-shot ICL
framework for automatically scoring physician communication about key concepts in prostate
cancer. We formulate the problem as five independent multiclass text classification tasks, one
for each shared decision-making (SDM) concept: cancer prognosis, life expectancy, erectile
dysfunction, urinary incontinence, and irritative urinary symptoms. Given a text fragment
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from a prostate cancer consultation, the goal for each task is to assign a numeric score from
0 to 5, indicating the precision and patient-specificity with which the corresponding concept
is discussed. We deployed two prompting strategies for automatic scoring: (1) a rubric-based
strategy, where the model is expected to follow a set of explicit scoring rules; and (2) a rubric +
chain-of-thought (CoT)18 strategy, which further decomposes the scoring task into a sequence
of structured reasoning steps. We detailed each strategy next.

2.3.1. Rubric-based Prompting

In the rubric-based strategy, we constructed prompts that directly instructed the model to
assign a score based on the rubric definitions (see Section 2.2). Each prompt included task
instructions, the full scoring rubric for the target key concept, and one or more few-shot
examples consisting of a consultation fragment and its corresponding numeric score. The
output format required the model to return only a numeric score from 0 to 5. An example of
the rubric-based prompt used for scoring the cancer prognosis concept is shown in Table 3. The
same structure was used to create prompts for the other four concepts, each time substituting
in the appropriate rubric and task-specific few-shot examples.

2.3.2. Rubric + Chain-of-Thought Prompting

To encourage more interpretable and structured predictions, we also implemented a rubric
+ CoT prompting strategy. Chain-of-thought prompting is a technique that guides LLMs to
reason through problems in a step-by-step manner, rather than producing an answer directly
from the input.18 This approach has been shown to improve performance in tasks that require
multi-step reasoning, by explicitly decomposing complex decision-making into intermediate
steps.22 Here, we leverage CoT to augment the standard rubric-based prompt with an explicit
set of reasoning instructions corresponding to each decision criterion in the scoring rubric. The
model was instructed to reason through a series of decision steps that aligned with the structure
of the 0–5 scoring rubric (see Table 1). Each step represented a condition that must be met
to proceed to the next score level. The output format consisted of intermediate reasoning
steps followed by the final score prediction. An example of the rubric + CoT prompt is shown
in Table 4. The same structure was used for all five SDM key concepts, with each prompt
adapted to reflect the decision criteria and rubric levels defined for that specific concept.

2.4. Baseline

To evaluate the performance of our LLM-based method, we compared it against a conventional
supervised learning baseline using Bidirectional Encoder Representations from Transformers
(BERT)-based models.23 Unlike large autoregressive models such as GPT,19 which are opti-
mized for open-ended generation tasks, our baseline models are encoder-based transformers
trained using a masked language modeling objective.24 These models are more efficient to
fine-tune and remain widely used for classification tasks in both general and domain-specific
NLP applications. In this work, we fine-tuned BERT-based models within a multiclass text
classification framework to predict physician communication scores across the five SDM key
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Table 3. Example of rubric-based prompting for scoring the cancer prognosis concept. The prompt
begins with task instructions and the scoring rubric, followed by a series of few-shot examples, each
comprising a text fragment from a physician–patient consultation and its corresponding numeric score.

Instruction You are an expert reviewer of physician–patient prostate-cancer consultations. Your
task is to assign a single numeric score (0–5) for a given text segment according
to the cancer-prognosis rubric below. Read the entire segment carefully, then
follow the rubric exactly.

RUBRIC
• Score 0: No mention of prostate-cancer mortality, metastasis, or progression.

• Score 1: Risk is mentioned, but not described qualitatively or numerically.

• Score 2: Risk is described qualitatively only.

• Score 3: Risk is quantified numerically without a comparison of risk with vs.
without treatment.

• Score 4: Risk is quantified numerically and includes a comparison of risk with
vs. without treatment.

• Score 5: Risk is quantified numerically, includes a treatment comparison, and is
quoted at the patient’s projected life expectancy.

Input Text: “Well, we have data from about 25 years out from the diagnosis in cancers
like this. And what we found in those trials is that for cancer like you have, the
risk of those cancers over, say, 25 years may be around 15 to 20 percent
risk of dying of the cancer. And if you do treatment, the risk of dying
of the cancer goes down to, say, something like five to 10 percent. So it
roughly cuts the risk of the cancer in half.”
Provide a numeric score (0-5) based on the entire text segment:

Output 4

. . . . . .

Inference Text: “This nomogram is saying that you’re going to live 11 years. So, you’re living
to 71 years of age. None of us live forever, we all die of something, so the question
is what is the likelihood you’ll die of this cancer if you do nothing? And it’s 47
percent.”
Provide a numeric score (0-5) based on the entire text segment:

concepts. Specifically, we evaluated the following two model variants:
RoBERTa-large A large-scale variant of the RoBERTa model, pretrained on 160 GB of
general-domain text using a masked language modeling objective.25 With approximately 355
million parameters, it removes BERT’s next-sentence prediction objective and incorporates
dynamic masking to improve contextual representations.

PubMedBERT-large A domain-specific transformer model with 335 million parameters,
pretrained from scratch on PubMed abstracts.26 Designed for biomedical NLP tasks, Pub-
MedBERT is better suited to capture domain-specific terminology than general-domain mod-
els.
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Table 4. Example of rubric + chain-of-thought prompting for scoring the cancer prognosis concept.
Reasoning steps are required to justify the final numeric score.

Instruction You are an expert reviewer of physician-patient prostate cancer consultations. Your
task is to assign a single numeric score (0–5) for a given text segment based on
the cancer-prognosis rubric by following the structured reasoning steps
below.

STEP-BASED RUBRIC
• Step 1: Does the text mention risk of mortality, survival, or metastasis due to

prostate cancer?
– If no, score 0

– If yes, proceed to step 2

• Step 2: Is the risk described qualitatively or numerically?
– If risk is not quantified, score 1

– If risk is described qualitatively, score 2

– If risk is described numerically, proceed to step 3

• Step 3: Is a comparison made between risk with and without treatment?
– If no, score 3

– If yes, proceed to step 4

• Step 4: Is the risk quoted at the patient’s projected life expectancy?
– If no, score 4

– If yes, score 5

Input Text: “Well, we have data from about 25 years out from the diagnosis in cancers
like this. And what we found in those trials is that for cancer like you have, the
risk of those cancers over, say, 25 years may be around 15 to 20 percent
risk of dying of the cancer. And if you do treatment, the risk of dying
of the cancer goes down to, say, something like five to 10 percent. So it
roughly cuts the risk of the cancer in half.”
Provide step-by-step reasoning for the score (0–5) based on the entire text segment:

Output
• Step 1: Yes, the text mentions “risk of dying of the cancer.”

• Step 2: A numerical risk is provided (“15 to 20 percent”).

• Step 3: Yes, a comparison is made between with and without treatment (“goes
down to 5 to 10 percent”).

• Step 4: No, the risk is quoted at 25 years but not explicitly linked to the patient’s
life expectancy.

Score: 4

. . . . . .

Inference Text: “This nomogram is saying that you’re going to live 11 years. So, you’re living
to 71 years of age. None of us live forever, we all die of something, so the question
is what is the likelihood you’ll die of this cancer if you do nothing? And it’s 47
percent.”
Provide step-by-step reasoning for the score (0–5) based on the entire text segment:

2.5. Experiments

We split each annotated dataset into training and testing sets using stratified sampling to
preserve the distribution of scores (0–5). For each key concept, 40% of the data was used for
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training and 60% for testing. Specifically, the number of examples used for training/testing
per concept was: CP (35/54), LE (40/60), ED (39/60), INC (39/60), and IUS (40/60).

To construct the input text fragments used for both LLM prompting and baseline classi-
fiers, we expanded each selected sentence by including the three preceding and three following
sentences from the original consultation transcript. This 7-sentence context window was cho-
sen based on prior experimentation, where we systematically compared different window sizes
and found that including three sentences before and after led to the best scoring performance
across key concepts.

Both prompting strategies were implemented using the GPT-4o model, accessed via the
Microsoft Azure OpenAI API. To reduce response variability and encourage more deterministic
scoring outputs, we set the generation temperature to 0.3 and the top-p sampling parameter
to 0.4, based on initial experimentation. All other generation parameters were kept at their
default values. We evaluated both few-shot and zero-shot variants of each prompting strategy:

Zero-shot prompting. The model received only task instructions, with no examples
included in the prompt.

Few-shot prompting. Prompts included a small number of annotated examples spanning
the full 0–5 score range. The number of examples per concept (6–10) was empirically selected
based on training performance, with no consistent gains observed beyond these values: 10 for
CP, 7 for LE, 7 for ED, 8 for INC, and 6 for IUS.

For baseline comparisons, we trained RoBERTa-large and PubMedBERT-large classifiers
on the same 40% training splits. For each concept, we fine-tuned the models as 6-class (0–5
scores) classifiers using cross-entropy loss. Input text fragments were tokenized and padded to
a maximum sequence length of 512 tokens. Models were trained for 10 epochs using a batch
size of 6 and learning rate of 2× 10−5.

2.6. Evaluation Metrics

We evaluated the multiclass classification performance of the baseline models and generative
approaches using standard metrics: Precision, Recall, and F1-score. For each class label (scores
0 through 5), we define true positives (TP) as the number of fragments correctly classified
with a given score, false positives (FP) as the number of fragments incorrectly predicted to
have that score, and false negatives (FN) as the number of fragments with that score in the
ground truth but misclassified by the model. Precision (P) measures the proportion of correct
predictions for a given score among all instances predicted with that score (P = TP

TP+FP );
Recall (R) measures the proportion of correct predictions for a given score among all true
instances of that score (R = TP

TP+FN ); and the F1-score (F1) is the harmonic mean of precision
and recall, balancing the trade-off between the two metrics (F1 = 2 × P×R

P+R). We evaluated
each SDM key concept independently and report the micro-averaged F1 score to aggregate
performance across all classes for each concept.

3. Results

Table 5 presents the micro-averaged F1 scores for both baseline classifiers and LLM-based
prompting strategies across the five SDM key concepts. The results show that our best-
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performing method (rubric + CoT with few-shot prompting) consistently outperforms both
baseline classifiers and alternative prompting strategies. Specifically, this approach achieved
the highest F1 scores across all five concepts: cancer prognosis (92.00), life expectancy (86.67),
erectile dysfunction (85.00), incontinence (85.00), and irritative urinary symptoms (91.67).

When comparing baseline classifiers to LLM-based approaches, we observe a substantial
performance gap across all key concepts. While the fine-tuned transformer models achieved
moderate F1 scores, most notably RoBERTa-large on IUS and LE (78.33 and 73.33, respec-
tively), they consistently underperformed relative to the prompting-based methods. This dis-
crepancy is likely due to the limited size of the training datasets. With only 35 to 40 training
fragments available per concept, the baseline models lacked sufficient data to effectively learn
the complex and domain-specific scoring patterns required for this task. In contrast, the use
of rubric-based and rubric + CoT prompting strategies enabled LLMs to effectively perform
the scoring task with minimal reliance on annotated training data.

Comparing different prompting strategies, we observe two consistent trends. First, incor-
porating few-shot examples improves performance over zero-shot prompting. For instance, the
rubric-only approach improved from 60.00 to 73.33 F1 on ED and from 71.67 to 86.67 F1 on
LE when moving from zero-shot to few-shot prompting. Second, adding CoT reasoning further
enhances performance. For example, rubric + CoT with zero-shot prompting achieved 78.00
F1 on CP and 88.33 F1 on IUS, outperforming rubric-only prompting in both zero-shot and
few-shot settings.

Table 5. Micro-averaged F1 scores (%) for baseline classifiers and LLM-based prompting
strategies across the five key concepts. The best-performing method for each concept is shown
in bold.

Approach Model/Setting CP LE ED INC IUS

Baseline
RoBERTa-large 42.00 73.33 41.67 53.33 78.33
PubMedBERT-large 52.00 63.33 45.00 41.67 68.33

LLM (Rubric)
Zero-shot 58.00 71.67 60.00 63.33 78.33
Few-shot 76.00 86.67 73.33 65.00 85.00

LLM (Rubric + CoT)
Zero-shot 78.00 76.67 70.00 78.33 88.33
Few-shot 92.00 86.67 85.00 85.00 91.67

4. Discussion

Our findings show that rubric + CoT prompting is the most effective strategy for scoring
physician communication and the most interpretable. By guiding the LLM to reason through
each scoring criterion in a structured, stepwise manner, this approach makes the rationale
behind each prediction transparent. In healthcare, such interpretability is critical not only
to build trust in AI-assisted evaluations but also to support their integration into clinical
practice. Interpretable scoring systems can also offer more actionable and targeted feedback
to physicians, highlighting specific aspects of their communication that could be improved.

To examine the performance of this strategy, we conducted a detailed error analysis of the
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LLM’s predictions using rubric + CoT prompting with few-shot examples. The confusion ma-
trices for each concept (Figure 1) show that, despite strong overall results, the LLM exhibited
difficulty distinguishing between adjacent score levels for certain key concepts, particularly
LE, ED, and INC.

For LE, the most frequent pattern included three instances where the LLM predicted a
score of 5 instead of 3. In these cases, the text provided a rough estimate of years (e.g., “40
years”) alongside general references to the patient’s age (e.g., “you’re 52”). However, such
expressions lacked the detailed patient-specific estimate required for score 5.

In the case of ED, five errors involved the LLM predicting score 0 instead of 1. These
fragments typically referenced surgical procedures or anatomical structures related to erectile
function (e.g., “nerve-sparing techniques”) without explicitly naming ED as a side effect.
Although suggestive, the absence of direct mention led the LLM to conclude that the key
concept was not discussed.

For INC, in four cases the LLM predicted score 1 instead of 2. These cases involved
qualitative but vague language, often using generalized statements like “everybody has urinary
incontinence”, which the LLM interpreted as a mere mention rather than a qualitative risk
estimate.

Importantly, many of the ambiguous cases that challenged the LLM also proved difficult
for human annotators to score consistently. These fragments, often characterized by imprecise,
indirect, or incomplete references to risk, were a common source of disagreement during the
initial annotation phase. Given this context, the performance of our best LLM-based approach
is particularly promising: its F1 scores are broadly comparable to the pre-adjudication IAA
values (see Section 2.2), suggesting that the system can approximate expert-level scoring in
this complex classification task.

4.1. Limitations and Future Work

While our rubric + CoT prompting with the GPT-4o model achieves strong performance across
all five key concepts, several limitations warrant further investigation. First, the dataset was
drawn from a relatively small set of prostate cancer consultations (N=20), which may limit
generalizability across institutions, clinicians, and patient populations. Future work will ex-
plore larger and more diverse corpora that encompass a wider range of provider communication
styles and patient demographics. Second, our approach relies on the accuracy of a preceding
NLP-based model used to identify candidate sentences for scoring.17 While this model has
been previously developed and validated to identify key concept-related sentences in prostate
cancer consultations, any misclassifications at this selection stage may impact downstream
scoring performance. Third, our study evaluated communication quality at the fragment level,
using short, context-rich segments centered on key sentences. This design reflects how the sys-
tem is intended to operate in clinical practice alongside our NLP-based content identifier.
Nevertheless, ongoing efforts will focus on developing encounter-level scoring strategies—such
as selecting the highest-scoring fragment—to better represent overall communication quality
across a full consultation. Future work will also explore the integration of these components in
real-world clinical workflows to evaluate physician risk communication at scale and ultimately
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Fig. 1. Confusion matrices for each of the five key concepts using the best-performing system
(rubric + CoT with few-shot prompting). Each matrix displays the distribution of predicted versus
true scores (0–5).

support more informed, patient-centered decision making. Lastly, our methodology has thus
far been applied only to prostate cancer, which may limit its applicability to other clinical
domains. However, the underlying framework combining scoring rubrics with LLM-based ap-
proaches, has the potential to be adapted for risk communication assessment across other
cancer types and medical decision-making contexts.

5. Conclusion

We present a novel framework for evaluating the quality of physician risk communication in
prostate cancer consultations using LLMs. By combining validated scoring rubrics with CoT
prompting, our method enables interpretable, sentence-level assessment of how precisely and
patient-specifically key concepts are communicated. Across five clinically relevant domains,
including cancer prognosis, life expectancy, and three side effects, our best-performing model
achieved strong results and expert-level agreement. These findings highlight the potential of
LLMs to support scalable, automated evaluations of physician–patient communication and lay
the groundwork for real-time feedback tools to improve shared decision-making in oncology
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and beyond.
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