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Identifying repurposable therapeutic targets for Alzheimer’s disease (AD) remains chal-
lenging due to various clinical and biological factors. This study aimed to identify candidate
genes for AD therapy. We hypothesize that gene and disease-specific network properties—
learnable from these large-scale biomedical knowledge graphs—can inform implicit gene-AD
connections and prioritize repurposable AD drug targets. To evaluate the hypothesis, we
focused on druggable genes curated from Drug-Gene Interaction Database and Alzheimer’s
Knowledge Base (AlzKB). We applied scalable random walk methods to Hetionet to learn
unbiased gene and disease embeddings, representative of their topological and semantic
network properties. The embeddings were then used to compute gene-AD similarity and
derive network-based scores for each gene. To validate the scores, using Alzheimer’s Disease
Sequencing Project (ADSP) data, we constructed AD classifier models with Tree-based
pipeline optimizer 2 (TPOT2), an automated machine learning framework. Models were
optimized for performance, model complexity, and high aggregate network-based scores.
Network-based scores successfully prioritized diverse feature sets—many not previously as-
sociated with AD—that are enriched in biologically meaningful body parts such as brain,
and pathways including neuronal signaling, potassium channels, and creatine metabolism.
The results suggested that knowledge graphs and network-informed embeddings can cap-
ture both known and novel insights into AD mechanisms. Additionally, integrating network-
based scores with feature-set-guided TPOT2 offers a scalable and biologically interpretable
framework for AD drug repurposing and discovery.
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1. Introduction

Therapeutic intervention for Alzheimer’s disease (AD) remains a significant challenge, largely
due to pronounced clinical and etiological heterogeneity as well as a limited understanding
of the genetic mechanisms underlying its pathogenesis.!™ Over 80 genetic loci have been
associated with AD, including well-known risk factors such as common gene polymorphisms
in APOE as well as rare mutations in APP, PSEN1, and PSEN2.* Despite advances in AD
genotypic characterization, these variations explain only a limited fraction of the overall disease
risk and offer few actionable insights for therapeutic development.

To address this gap, computational drug discovery methods provide a cost-efficient, sys-
tematic approach to identifying novel therapeutic targets.>% These include methods such as
computational molecular docking, pathway or network mapping, retrospective clinical analy-
sis of electronic health records, and genetic associations. In addition, the utility of knowledge
graphs (e.g., Hetionet,” PrimeKG,® and AlzKB?) can facilitate the drug discovery process
by providing a framework to systematically integrate structured, relational information (e.g.,
gene—drug interactions) across diverse biomedical entities into disease-specific network con-
texts. For example, prior work identified AD therapy candidates using the AlzKB network
mining of AD genes and their first neighbors, reflecting nonspecific gene-gene interactions.'?
Knowledge graphs also enable the inference of indirect relationships among domain-specific
entities, such as predicting latent associations between drugs and diseases. Drug repurposing
is sometimes modeled as a link prediction task in a knowledge graph to infer novel associations
between drugs and diseases.!!

The overall aim of this study is to identify novel, biologically relevant gene candidates
for AD therapy by systematically leveraging insights derived from the knowledge graphs by
using network learning models. We hypothesize that network properties learnable from these
large-scale biomedical knowledge graphs can inform implicit gene-AD connections to prioritize
repurposable, druggable gene targets. Note that druggability is based on an evidence-based
interaction score derived from the Drug-Gene Interaction Database (DGIdb).!? DGIdb is a
knowledge repository built from expert curation and text mining of over 40 curated biological
resources, with a specific focus on confirmed and potential drug—gene interactions.

A variety of computational approaches have been developed to exploit the topological
and semantic structures of knowledge graphs for the link prediction task, including graph
neural networks (GNNs),!3 random walk-based techniques (e.g., node2vec,'4 edge2vec!?), and
rotation-based embedding models (e.g., RotatE!6). Collectively, these methods are capable of
learning continuous vector representations that capture the complex relational patterns em-
bedded within the knowledge graph. In this study, we applied random-walk-based approaches
on Hetionet to learn gene and disease embeddings that could potentially encode useful topo-
logical and semantic properties. The walk-based approaches are scalable and can preserve
both local connectivity and global network structural features. Given that Hetionet comprises
relational information among heterogeneous biomedical entities beyond AD, extracting gene
and disease embeddings from the network should mitigate biases towards AD and overfit-
ting in downstream analysis. The learned embeddings are subsequently used to compute the
similarity between a druggable gene node and the disease (AD) node. These similarities are
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applied to derive network-based scores for each gene, under the hypothesis that such scores
approximate the likelihood of a gene as an AD drug target by integrating network topology
and biological relevance.

To evaluate the efficacy of network-based learning approaches in uncovering novel drug
targets, we constructed AD predictive models informed by network-derived scores using an
automated machine learning framework, Tree-based Pipeline Optimizer 2 (TPOT2). TPOT2
incorporates both multi-objective optimization and a feature set selector, enabling the model
selection process to be guided by both predictive performance and the relevance of prede-
fined feature groups. By exploring two feature sets derived from pathways and drug—gene
interactions, we identified a pareto front of optimal machine learning pipelines that produced
AD-relevant solutions that were high-performing and minimally complex. Enrichment analysis
of the top-performing models revealed functionally diverse gene sets, highlighting promising
candidates for future investigation.

2. Methods
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Fig. 1. Flowchart of overall study design

2.1. Selection of druggable genes and construction of feature sets

To identify actionable AD therapeutic targets, we restricted our analysis to druggable protein-
coding genes found in AlzKB,? as detailed in prior work.! This yielded 3,612 druggable genes
for downstream analysis. We constructed two biologically informed feature sets (drug—gene
interaction and pathway-based) from these genes based on specific edge relationships in AlzKB.

Drug-gene sets, defined as groups of genes associated with a given drug, were obtained
by extracting drug nodes from the AlzKB knowledge graph that are directly connected to
druggable genes, denoting interactions. Each set consists of gene nodes that are linked to a
specific drug node via defined relationships including general interactions (chemicalbindsgene)
and specific mechanisms of drug action (chemicaldecreasesexpression and chemicalincreasese-
pression). Likewise, pathway-based feature sets, defined as groups of genes associated with a
given pathway, are generated by mapping druggable genes to biological pathways from AlzKB
(geneinpathway). These pathway capture functional relationships relevant to clinical applica-
tions, particularly for AD pathology.
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2.2. Learning embeddings via random walk on Hetionet

To learn the gene and disease embeddings from Hetionet, we applied two types of random-walk-
based methods: node2vec!* and edge2vec.'® (Note that other types of random walk methods,
such as DREAMwalk,!'” are not explored in this work as they require a diverse set of homo-
geneous network datasets, rather than a single heterogeneous knowledge graph.) Node2vec
captures the sequence of nodes that a random walk traverses in the graph, while edge2vec in-
cludes the edge type information as well. The Hetionet network was downloaded as TSV files
from the repository (https://github.com/hetio/hetionet), read into Python as a NetworkX
object, and pruned to include only connected nodes. Node2vec was performed using using the
Node2Vec function from PyTorch Geometric while edge2vec was done based on scripts ob-
tained from the edge2vec GitHub repository (https://github.com/RoyZhengGao/edge2vec).
The extracted walk sequences were input into Word2vec to learn the continuous feature repre-
sentations (embeddings). The hyperparameters used to learn the embeddings were optimized
through grid search, guided by the prediction (XGBoost) performance on established gene-AD
associations. The details of the optimized parameter sets are listed in the supplementary file #
Finally, the similarity between each gene node and the derived AD embeddings was computed
using the cosine similarity metric. These gene-level similarity scores (S(G)) were subsequently
used to derive the feature set network scores.

2.3. Computation of feature set network score

The network scores for each feature set (per drug for the drug-gene sets while per pathway for
the pathway sets) were computed as an aggregate of similarity-based scores for all genes within
the set. There are four variations of network scores based on multiple levels of constraints on
the raw similarity scores derived from the random walk step (see Section 2.2) from both
individual gene and gene set levels. At the individual gene level, we imposed a constraint to
penalize genes for proximity to known AD genes by discretizing S(G) (Sq(G)) into five ordinal
categories using quantile-defined thresholds (<50%, 50—75%, 75—85%, 85—95%, and >95%),
corresponding to the scores —2, —1, 0, +1, and +2, respectively. An AD penalty score, P(G), is
mapped to each gene. P(G) denotes the penalty for a gene (G) being a known AD gene (—2), a
first-degree neighbor of AD gene (—1), or none of the above (+1). Thus S*(G) = S4(G) + P(G).
At the feature set level, we imposed a constraint to exclude AD genes, i.e., all AD genes present
in the feature set are excluded prior to computing the network score as an aggregate of the
remaining genes. This yielded the following four setups for network scores. Let NS; denote
the network score for a feature gene set i (FS;).

e Setup 1 (S1): NS, is simply the average of all the raw similarity scores (S(G)), obtained
from the random walk step, of the genes in set i. NS} = avg(S(GQ)) VG € FS;. This served
as the baseline experiment, as no constraints were imposed.

e Setup 2 (S2) adds a biological constraint by introducing penalties for proximity to
known AD genes. NS? =3, S4(G) + P(G) VG € FS,.

#Supplementary information: https://github.com/EpistasisLab/ADSP_Network_Score/
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e Setup 3 (S3) excludes AD genes from network score computation. NS = avg(S(G) VG €
FSi_AD genes, Where F'S;_AD genes denotes feature set ¢ without the AD genes.

e Setup 4 (S4) assigns the strictest constraint of both AD penalty and excluding AD
genes. NS =3, S4(G) + P(G) VG € FS;_AD genes-

Note that the four types of aggregated network score are computed per feature set (for all
drug-gene and pathway sets) per random walk type (node2vec vs. edge2vec).

2.4. Multi-objective optimization with feature sets selector

To assess the efficacy of using network scores with the gene feature sets, we construct AD
case/control prediction models using TPOT2 with the feature selector set (FSS) module.!®19
We configured the F'SS using our predefined gene (drug-gene vs. pathway) feature sets (see Sec-
tion 2.1). TPOT2 uses multi-objective optimization via the NSGA-II evolutionary algorithm?®
to balance performance (AUC) and model complexity (i.e., number of learned parameters).
This generates a Pareto front, a set of solutions that are non-dominated by each other. We
employed a custom objective function designed to jointly optimize three criteria: maximiz-
ing predictive performance, maximizing the feature set network score, and minimizing the
complexity score P. This approach ensures that the selected solutions are simple, biologically
relevant, and exhibit optimal model performance.

Optimal solutions were selected from the Pareto front set of solutions by applying me-
dian thresholds to each objective function component. Specifically, a solution was required
to exceed the median AUC test set and median network score while remaining below the
median model complexity. If no solution satisfied all three criteria, the first two thresholds
(AUC and network score) were applied, and the solution with the lowest complexity among
the remaining candidates was selected. Each selected solution was subsequently analyzed us-
ing permutation feature importance, knowledge graph-based network analysis, and functional
gene set enrichment analysis.

2.5. Model interpretation

We examined the biological entities in the AlzKB that are associated with genes within a spe-
cific drug-gene or pathway set. For each gene in a given feature set, we retrieved the connected
AlzKB entities, including body parts (anatomical structures) and biological pathways.

Enrichment analyses are also conducted on each drug or pathway set using hypergeometric
tests to evaluate the over-representation of particular biological entities and context. For each
biological entity (body parts or pathways), p-values from hypergeometric tests were corrected
for multiple testing using the Benjamini-Hochberg method.

2.6. AD data sample and curation

This study utilized genetic data obtained from the Alzheimer’s Disease Sequencing Project
(ADSP), R4 v11 2023 release.?! Data preprocessing and population stratification adjustments

bSupplementary information: https://github.com/EpistasisLab/ADSP_Network_Score/

819



Pacific Symposium on Biocomputing 2026

followed the methodology in Orlenko et al.!® Quality control was performed to exclude du-
plicate samples, singletons, rare variants, low-call-rate variants (missing at >1%), and poorly
genotyped samples (missing at >5%). Only common variants (MAF >1%) were selected, re-
sulting in 9,520,653 variants and 34,971 samples.

A novel propensity score matching (PSM) method was used to correct for population
stratification in the ADSP dataset.!® Principal component analysis (PCA) was performed on
a subset of independent loci (MAF > 2%, Hardy-Weinberg equilibrium p > le-7, linkage dis-
equilibrium R? < 0.1) to derive eight principal components. To balance Alzheimer’s disease
cases and controls, PSM was applied using logistic regression and k-nearest neighbor algo-
rithms, resulting in a matched dataset of 22,560 samples. A quarter of the matched dataset
was reserved for GWAS to generate gene-level risk scores (GRS). The remainder was evenly
divided into training, validation, and test sets (5,640 samples each) using a multi-objective
optimization method that preserved both case—control matching and the distribution of 30
significant SNPs identified from the Lancet 2023 review study* and additional filtering.

To compute GRS, GWAS was performed on the held-out subset using the SAIGE pack-
age,?? which corrects for relatedness and imbalanced case-control ratios. Post-GWAS filtering
involved clumping via PLINK223 with settings (--clump pl=Ile-4, p2=1, r2=0.1), retaining
only SNPs that met the threshold of p < 0.05. The GWAS variants were annotated using
the Variant Effect Predictor),?* and those located in the gene region or within 500 kilobases
upstream were mapped to corresponding genes. Gene-level risk scores were computed using
the PLINK2 --score function by multiplying individual genotype (0, 1, or 2) with GWAS-
derived beta coefficients for each variant. These weighted values were summed per gene and
normalized by the number of variants in the gene to account for gene size differences.

3. Results and Analysis
3.1. Hetionet learned simailarity scores

The distributions of the cosine similarities be-
tween the AD disease node and the druggable gene
nodes differed substantially between edge2vec and
node2vec (Fig. 2). Node2vec produced a unimodal
cosine similarity distribution centered around 0.08,
with values ranging from —0.24 to 0.36. In contrast,
edge2vec yielded a left-shifted distribution with a
higher median value of 0.56 and a range from 0.10 0
to 0.81. These results suggest that the two embed-

ding methods capture distinct aspects of the net- Fig. 2. Distribution of Hetionet gene
work structure relative to AD node proximity. similarity scores: edge2vec vs. node2vec.

-02 0.0

0.2 0.4 06 08
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3.2. Multi-objective optimization with
feature set selector identifies biologically informed AD predictive models

The druggable gene space yielded 2,169 drug—gene feature sets and 4,233 pathway sets. The
distribution of drug-gene set sizes was highly skewed, with a small number of drugs associated
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with large gene sets and most drugs linked to fewer than 10 genes (Fig.3(a)) The largest set,
corresponding to drug DB01254 (Dasatinib), comprised 243 genes, while the median set size
was 7 genes. Pathway gene sets displayed a broader range with a median size of 9 genes and
the largest set, Signal Transduction, containing 878 genes. The distribution was also skewed,
indicating a prevalence of smaller pathways (Fig.3(b)).
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Fig. 3. Distribution of the gene feature sets’ size

The distribution of the Pareto front solutions produced by TPOT2 with FSS varied greatly
across all experiments (Fig.4, Table 1). The drug-gene feature set analysis based on node2vec
yielded the largest number of Pareto front solutions. Its S2 experimental setup produced 98
models and 46 unique feature sets, while S3 had 97 with 54 distinct feature sets (Table 1).
For edge2vec, the drug-gene feature set analysis produced fewer solutions and less unique
feature sets: 55/30 (S1), 68/26 (S2), 56/39 (S3), and 43/26 (S4), but still substantially more
solutions than pathway feature set analyses based on either walk methods, suggesting that
biological constraints shaping drug-gene feature sets provide more flexibility in exploration
of the tradeoffs among the three objectives. Drug-gene feature set analyses based on either
node2vec or edge2vec prioritized feature sets containing a greater number of genes compared to
pathway analyses. Notably, drug-gene feature set based on node2vec led to the best-performing
models, specifically S1 (64.2%), S2 (63.9%), S3 (64.9%), and S4 (64.2%).

Pathway feature set analyses produced less complex models, likely due to smaller feature
set sizes, while maintaining performance comparable to the more complex solutions. Specif-
ically, in edge2vec S2 and node2vec S1 experiments, we observed the least complex median
models. Network scores associated with Pareto front solutions from edge2vec-based pathway
set analyses were notably higher than those from the corresponding drug-gene feature set
setups (S2, S3, and S4); however, this trend was not observed in the node2vec experiments.
Note that network scores are only directly comparable between S1 and S3, and between S2
and S4, due to differences in score computation methods across setups (see Section 2.3).
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Table 1. Summary of Pareto front models for different walk methods (edge2vec and node2vec) on
drug-gene and pathway feature sets across four experimental setups of network scores calculations.

# unique feature . Network Test

Setup 7 models sets [range size] Complexity score ROC AUC (%)

Walk method: edge2vec - Drug-gene feature set analysis

S1 55 0 [1, 221] 7 [1.1, 13.4] 0.6 [0.4, 0.7] 60.4 [49.7, 63.7]
S2 68 6 1, 172] 7 (1. 1 13.6] -0.3 [-2.5, 3.0] 60.8 [49.9, 64.0]
S3 56 39 [1, 198] 4 [1.1, 13.6] 0.6 [0.4, 0.7] 59.9 [49.9, 62.8]
S4 43 6 [1, 166] 6 [1.1, 12.5] -0.1 [-2.7, 3.0] 60.5 [49.6, 63.7]
Walk method: node2vec - Drug-gene feature set analysis
S1 95 43 [1, 180] 2.1 [1.1,13.9] 0.2 [0.1, 0.4] 59.9 [48.7, 64.2]
S2 98 46 [1,174] 2.4 [1.1,13.6] -0.4 [-1.7,3.0] 60.5 [50.9,63.9]
S3 97 54 [1, 217] 2.2 [1.1, 14.2] 0.1 [0.1, 0.4] 60.1 [50.8, 64.9]
S4 96 52 [1, 217] 2.2 [1.1, 14.3] 0.0 [-3.0, 3.0] 59.9 [50.5, 63.8]
Walk method: edge2vec - Pathway feature set analysis
S1 40 22 [1, 21] 1.6 [1.1, 14.2] 0.6 [0.5, 0.7]  59.6 [50. 9 62.6]
S2 16 10 [2, 26] 1.4[1.1,5.2] 2.0[-3.0,3.0] 58.9[51.2, 62.4]
S3 23 21 [1, 21] 1.4 [1.1, 13.2] 0.7 [0.6, 0.7] 57.9 [50. 7 62.0]
S4 20 12 [1, 10] 1.7 [1.1, 10.5] 1.6 [-2.7, 3.0] 60.5 [51.2, 62.3]

Walk method: node2vec - Pathway feature set analysis

S1 28 14 [1, 14] 1.7 [1.1,8.4] 0.2[0.1,0.4] 59.6 [50.9, 62.4]]
S2 35 15 [1, 21] 1.6 [1.1, 13.3] -0.9 [-1.6, 2.0] 61.4 [50.7, 62.6]
S3 36 26 [1, 31] 1.9 [1.1, 13.2] 0.1 [0.1,0.4] 60.0 [50.6, 62.0]
S4 43 25 [1, 28] 1.6 [1.1, 13.4] 0.0 [-1.3, 3.0] 59.2 [50.6, 61.8]

3.2.1. Drug-gene and pathway feature sets optimal solutions

For each experimental setup, no solutions satisfied all three criteria. Hence, we selected so-
lutions that exceeded the median thresholds for both performance and network scores. The
results of permutation feature importance (PFI) analysis on the selected solutions are pre-
sented in Fig.5. For the drug-gene feature sets results (Fig.5(a)), specifically for edge2vec,
the optimal solution converged on the same drug—gene set for 3 of the 4 experimental se-
tups: DB06637 (Dalfampridine). Dalfampridine is a potassium channel blocker consisting of
40 genes predominantly voltage-gated potassium channel genes (KCN) and one solute carrier
transporter (SLC22A2) (Fig.5(a)). All three models reported an AUC of 61% but displayed
variability in the PFI rankings as well as a small mean decrease in accuracy. This implies
that, while no gene had a strong main effect, there could exist some interactions among the
genes. For the S3 experiment, the optimal solution was the DB00128 (Aspartic acid) feature
set. This drug is a non-essential amino acid commonly used in amino acid supplementation
therapies. The feature set included 8 genes with diverse functional affiliations. The DB00128
model had an AUC of 61%, but its PFI analysis did not reveal any strong contributions from
individual genes.
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Fig. 4. TPOT2 Pareto front solutions for drug-gene and pathway feature sets experiments

For node2vec, all four experimental setups identified an optimal solution. The best mod-
els were DB00832 (Phensuximide), DB00368 (Norepinephrine), DB00578 (Carbenicillin), and
DB00964 (Apraclonidine) for S1, S2, S3, and S4, respectively. Their predictive performances
were comparable. The drug-gene feature set sizes ranged from 6 to 22, with diverse func-
tionality. The drugs also varied in their known functions. Phensuximide is an anticonvulsant
medication used to treat absence seizures. Norepinephrine is a blood pressure medication,
while Carbenicillin is an antibiotic drug. Apraclonidine is an adrenergic agonist used to treat
raised intraocular pressure.

For edge2vec-based pathway feature sets (Fig. 5(b)), both S1 and S2 (top row) identi-
fied models with the Creatine Metabolism pathway as the optimal solution (AUC of 62%).
This pathway consisted of three druggable genes: CKM (Creatine Kinase, Muscle), GATM
(Glycine Amidinotransferase), and SLC6A12 (Solute Carrier Family 6 Member). Notably,
CKM exhibited a strong main effect in both models, with PFI coefficients of 0.09 and 0.12
mean decrease in AUC, respectively. In experiment S3, the Glycosaminoglycan Biosynthe-
sis pathway was identified as the optimal solution (AUC=59%). This pathway has only one
druggable gene, XYLT2. Best solution for S4 was Creatine-Phosphate Biosynthesis pathway
(AUC=62%) and only included CKM gene (which was also key for S1 and S2 models).
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(b) Pathway feature set

Fig. 5. PFI for drug-gene and pathway feature sets optimal solution. Individual gene network scores
are shown below each gene name.

For node2vec-based pathway set results, four distinct pathways were obtained per setup.
Similar to edge2vec results, the Creatine Metabolism pathway was also identified as the opti-
mal solution for S2 (AUC=62%). This model also indicates a strong individual contribution
from CKM gene. For S1, the best solution was TGF-beta Receptor 1 (TGFBR1) Loss-of-
Function pathway (AUC=60%). It includes 4 genes, primarily TGF-beta receptors. S3 best
solution was the Metastatic Brain Tumor Process with a five-gene set: F2F3, MYC, CDC/2,
CDKG6, and TP53, and AUC=60%. S4 yielded an optimal solution of Prednisolone Metabolism
Pathway (AUC=60%) containing two genes, HSP90AA1 and NR3C1.

3.3. Functional analysis of drug-gene and pathway feature set models

The gene set enrichment analysis results on the optimal set of solutions for the drug-gene fea-
ture sets are presented in Table 2. Multiple drug—gene sets were significantly enriched in genes
associated with specific body parts and biological pathways. For edge2vec, the Dalfampridine
gene set was enriched for brain-associated genes as well as pathways related to the neuronal
system, voltage-gated and potassium channels (Table 2). The NADH-associated gene sets
from S3 and S4 were enriched for blood- and heart-associated genes, along with key metabolic
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Table 2. Enrichment analysis for drug-gene feature sets

Setup Drug name Size AUC Comp. Body parts Pathways
Enrichment analysis for edge2vec

S1 Dalfampridine 40 60.8 1.63 Brain (27)* Neuronal System (40), Voltage gated Potassium
channels (39), Potassium Channels (39)*

S1 Amifampridine 42 61.5 4.24 Neuronal System (40), Voltage gated Potassium
channels (39), Potassium Channels (39)*

52 Guanidine 49 60.8 1.72 Neuronal System (43), Voltage gated Potassium
channels (39), Potassium Channels (39)*

S2 Dalfampridine 40 61.0  1.46 Brain (27)* Neuronal System (40), Voltage gated Potassium
channels (39), Potassium Channels (39)*

S3 Pyridoxal phosphate 18 60.6 1.21 Metabolic pathways (17)*

S3 Aspartic acid 8 60.5 1.04 Alanine, aspartate and glutamate metabolism (4)*

S3 NADH 87 60.6  1.95 Blood (67), Heart Metabolic pathways (81)*

(63)"

S3 Guanidine 49 60.7 1.70 Neuronal System (43), Voltage gated Potassium
channels (39), Potassium Channels (39)*

S3 Dalfampridine 40 60.7 1.43 Brain (27)* Neuronal System (40), Voltage gated Potassium
channels (39), Potassium Channels (39) *

S4 Pyridoxal phosphate 18 60.5 1.32 Metabolic pathways (17)*

S4 NADH 87 60.6  1.95 Blood (67), Heart Metabolic pathways (81)*

(63)"
S4 Dalfampridine 40 60.5  1.26 Brain (27)* Neuronal System (40), Voltage gated Potassium

channels (39), Potassium Channels (39)*

Enrichment analysis for node2vec

S1 Vindesine 22 59.9 1.11 p53 signaling pathway (5)*

S1 Carbinoxamine 12 60.2 5.75 GnRH signaling pathway (4)*

S1 Phensuximide 6 60.0  0.95 Axon guidance (4)*

S1 Thioproperazine 7 60.4 1.00

S1 Flubendazole 15 60.0  1.00 Endometrium (11)*  Imipramine Action Pathway (6)*

S2 Clotrimazole 67 61.2  4.67 Signal Transduction (35)*

S2 Clozapine 62 61.8 592 Brain (38)*

S2 Norepinephrine 22 60.7 098 Monoamine GPCRs (12)*

S2 Haloprogin 33 61.1 577 Signal Transduction (16)*

S2 Dopamine 32 61.0 5.77 Signal Transduction (15)*

S3 Flunisolide 32 60.3  0.85 Adrenal cortex (19)* Nuclear Receptors Meta-Pathway (8)*

S3 Vindesine 22 60.2 1.40 p53 signaling pathway (5)*

S3 Nitrofural 10 60.4  5.50 Neuroactive ligand-receptor interaction (38)*
S3 Carbenicillin 4 60.3 0.70 Signaling by GPCR (3)*

S3 Cefixime 18 60.9 575 Proton/oligonucleotide cotransporters (2)*
S3 Clobetasol propionate 35 60.5 1.19 Adrenal cortex (19)* Nuclear Receptors Meta-Pathway (8)*

S3 Moclobemide 18 61.1 5.50 Integrated Pancreatic Cancer Pathway (4)*
S3 Thioproperazine 7 60.4 1.00

S3 Flubendazole 15 60.2  0.78 Endometrium (11)*  Imipramine Action Pathway (6)*

S3 Brigatinib 14 60.2 1.20 Pathways in cancer (6)*

S4 Pseudoephedrine 11 59.9 1.04 Signal Transduction (7)*

S4 Apraclonidine 6 59.9 0.85 GPCR downstream signaling (6)*

S4 Lisdexamfetamine 5 59.9 0.90 SLC-mediated transmembrane transport (4)*
S4 Dextroamphetamine 10 60.1 1.11 Imipramine Action Pathway (5)*

* FDR correction < 0.05 for body parts and pathways.

pathways. Similarly, the Guanidine models (S2 and S3) and the Amifampridine model (S1)
showed enrichment for neuronal system components and ion channel activity. For the node2vec
results, the Clozapine model from S2 showed significant enrichment for brain-related genes.
Several models, across all network score types, were enriched for signaling pathways. This
included Vindesine (S1, S3), Carbinoxamine (S1), Clotrimazole, Haloprogin, and Dopamine
(S2), Carbenicillin (S3), and both Pseudoephedrine and Apraclonidine (S4).

Pathway gene sets for both edge2ve and node2vec were not enriched for any body part-
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associated genes. Most of the pathways feature sets were enriched with genes associated with
the same pathway or a similar process (see supplementary file ). Creatinine metabolism and
related pathways, which included the CKM gene, were presented across multiple setups in
both edge2vec and node2vec results.

4. Discussion and Conclusion

This study presents a random-walk-based learning framework that identifies potential novel
gene candidates for Alzheimer’s disease therapeutics. Beginning with the heterogeneous knowl-
edge graph Hetionet, we learned embeddings for druggable gene nodes and the AD node using
two random walk methods, edge2vec and node2vec. The embeddings learned from edge2vec
and node2vec captured different structural aspects of the network. Gene—AD similarities were
quantified using the cosine similarity metric. The cosine similarity between the gene and AD
embeddings provided a relative ranking of genes and served as the basis for computing the
network scores to prioritize genes relevant to AD. We introduced four variants of the network
score calculations that reflected varying levels of constraints (AD gene proximity penalty
and/or exclusion of AD genes from sets). This resulted in four experimental setups (S1, S2,
S3, and S4), with S1 being the least constrained one.

To validate the utility of these learned network scores in identifying novel drug targets,
we constructed AD predictive models using ADSP genetic data. We employed TPOT2 with
three objectives (predictive performance, complexity, and network scores) and FSS to explore
the optimal solutions for both drug-gene interaction and pathway-gene feature sets.

TPOT2 identified multiple non-dominated (Pareto front) models for each experimental
setup (Tablel, Fig.4). Overall, experiments on drug-gene feature sets yielded more Pareto-
optimal solutions and tended to produce more complex models, reflecting the use of larger
gene sets. These experiments also included the higher-performing models (based on the AUC
metric) across all setups. In contrast, experiments on pathway feature sets produced simpler
models, likely as a result of smaller gene sets, yet achieved comparable predictive performance.

The optimal solutions across experiments demonstrated the diversity of feature sets en-
abled by network score gene differentiation (Fig.5). Optimal solution convergence was observed
predominantly in drug-gene feature set edge2vec analyses for Dalfampridine, a potassium chan-
nel blocker. This feature set was primarily composed of voltage-gated potassium channel genes,
which play critical roles in regulating diverse physiological and pathophysiological processes.
These channels have been previously proposed as therapeutic targets for several conditions,
including atrial fibrillation, epilepsy, neuropathic pain, and potentially neuropsychiatric disor-
ders.?® For node2vec-based drug-gene feature set analyses, the optimal solutions varied across
setups. Notably, the S1 experiment identified the Phensuximide drug-gene feature set, con-
sisting of six genes, including voltage-gated calcium channels. These channels play a critical
role in nervous system function at both cellular and network levels and have been proposed as
therapeutic targets for conditions such as Parkinson’s disease, drug addiction, pain, anxiety,
and epilepsy.?® Pathway feature set analyses all found CKM (Creatine Kinase M-type) as the

“Supplementary information: https://github.com/EpistasisLab/ADSP_Network_Score/
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most informative contributor to the optimal model for the creatine metabolism pathway. No-
tably, this gene alone was sufficient to predict AD with a 62% AUC, as reported in the Pareto
front for the S4 edge2vec pathway feature set analyses. CKM isoenzymes are central to energy
transduction in tissues with high and fluctuating energy demands, including skeletal muscle,
heart, and brain. Although CKM has not been previously reported as a direct therapeutic
target, it has been suggested as a biomarker of therapeutic effects in similar neurodegenerative
Parkinson’s disease.?”

Gene set enrichment analysis revealed that several near-optimal solutions were signifi-
cantly enriched for genes related to neurological functions. In the edge2vec drug-gene feature
set analysis, the Dalfampridine gene set, selected across all experimental setups, was enriched
for brain-associated genes and pathways related to the neuronal system and potassium chan-
nel activity (Table 2). Other edge2vec drug-gene feature sets (Amifampridine, Guanidine)
and node2vec drug-gene feature sets (Clozapine and Lisdexamfetamine) were also linked to
neuronal processes.

Both random-walk methods had comparable performance in terms of AUC (see Table 1),
although node2vec!* was computationally more efficient. However, edge2vec'® retains edge
types (relationships) between biomedical entities, such as drugs that upregulate versus down-
regulate gene expression levels, which provides an additional advantage in potentially captur-
ing biologically meaningful results. This is reflected in the larger spectrum of results identified
by node2vec compared to edge2vec which was fewer but more consistent (see Table 2). A
limitation of this study is that we did not explore graph-based methods beyond node2vec and
edge2vec due to computational and scalability constraints. Future work could examine other
approaches capable of learning meaningful embeddings for nodes in a biomedical knowledge
graph, such as GNNs?2 and representation learning models (e.g., RotateE 3" TransE3!). In
addition, we did not examine alternative features commonly used in drug target discovery,
such as molecular structure embeddings for drugs, which are more suitable for GNNs or rep-
resentation learning methods.

Overall, the results demonstrate that the proposed random-walk-based learning method,
integrated with an informed machine learning approach powered by TPOT, successfully iden-
tified functionally diverse gene sets. The achieved predictive performance is comparable to
that of established AD risk factors,'® underscoring its potential for the discovery of novel ge-
netic candidates. This approach is generalizable to other diseases where structured knowledge
graphs are available to guide drug repurposing efforts. Ultimately, we aim to develop a system
that automatically learns meaningful semantic representations from heterogeneous knowledge
graphs to profile AD patients and prioritize druggable gene candidates. Future work will ex-
plore alternative embedding methods and integrate additional biologically relevant features.
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