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We present ReXVQA, the largest and most comprehensive benchmark for visual ques-
tion answering (VQA) in chest radiology, comprising 694,841 questions paired with 160,000
chest X-rays studies across training, validation, and test sets. Unlike prior efforts that rely
heavily on template based queries, ReXVQA introduces a diverse and clinically authen-
tic task suite reflecting five core radiological reasoning skills: presence assessment, loca-
tion analysis, negation detection, differential diagnosis, and geometric reasoning. We eval-
uate eight state-of-the-art multimodal large language models, including MedGemma-4B-
it, Qwen2.5-VL, Janus-Pro-7B, and Eagle2-9B. The best-performing model (MedGemma)
achieves 83.24% overall accuracy. To bridge the gap between AI performance and clinical
expertise, we conducted a comprehensive human reader study involving 3 senior radiology
residents on 200 randomly sampled cases. Our evaluation demonstrates that MedGemma,
achieved superior performance (83.84% accuracy) compared to human readers (best radi-
ology resident: 77.27%), representing a significant milestone where AI performance exceeds
human evaluation on chest X-ray interpretation. The reader study reveals distinct perfor-
mance patterns between Al models and radiology residents, with strong inter-reader agree-
ment among the human readers while showing more variable agreement patterns between
human readers and Al models. ReXVQA establishes a new standard for evaluating gen-
eralist radiological Al systems, offering public leaderboards, fine-grained evaluation splits,
structured explanations, and category-level breakdowns. This benchmark lays the founda-
tion for next-generation Al systems capable of mimicking expert-level clinical reasoning
beyond narrow pathology classification.

1. Introduction

Chest X-ray (CXR) interpretation requires a radiologist to perform diverse cognitive tasks -
from localizing findings where is the reticular opacity? to comparative analysis has the hilar
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enlargement progressed? to offering differential diagnoses what are the likely causes of these
peripheral findings? A truly generalist CXR Al system would need similar capabilities: flexibly
answering questions about location, relationships, measurements, and diagnostic reasoning
rather than just detecting predefined pathologies.

Current CXR Al approaches, while impressive at disease classification, operate within nar-
row constraints. Systems have progressed from detecting a handful of conditions to impressive
performance on multi-label classification of up to 130 pathologies, achieving near-radiologist
performance on specific tasks.!416:18 However, they remain fundamentally limited to a fixed
set of predetermined labels and cannot engage in the broader analytical reasoning that char-
acterizes expert radiological assessment.

The emergence of multimodal Large Language Models (LLMs) offers a promising path
toward such generalist medical Al systems.'? These models can process both images and
natural language, potentially enabling them to engage in the kind of flexible visual reasoning
and natural dialogue that characterizes clinical practice. Early results show these models can
understand basic medical concepts and engage in simple diagnostic reasoning when prompted
with medical images.!®® However, systematically evaluating these models’ capabilities across
clinically meaningful tasks remains challenging. While recent datasets have scaled in size and
scope, most rely on templated question generation and lack the diversity and complexity of
real clinical reasoning, limiting their effectiveness as generalist benchmarks.

What specific finding is observed in the left lung
based on this chest X-ray?

(A) Consolidation (B) Mild scarring

(C) Pleural effusion (D) Pneumothorax

Gemini Qwen-2.5 Phi-3.5

ﬁ*% Mild scarring ° < Pleural effusion° {a Pleural ef'fusion° =. Consolidation °

FEAEA SN

Fig. 1. Sample from the ReXVQA dataset, where human readers correctly identified mild scarring in
the left lung base (correct answer B), while three state-of-the-art LVMs (Gemini, Qwen-2.5, and Phi-
3.5) provided incorrect assessments, misidentifying the condition as pleural effusion or consolidation.

To address these limitations, we introduce ReXVQA, a benchmark of approximately
694,841 multiple-choice questions (MCQs) questions paired with 160,000 chest X-rays sourced
from four U.S. health systems. Unlike previous datasets, ReXVQA evaluates five distinct cog-
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Fig. 2. Performance comparison of Al models and human readers across 200 random sampled cases.
The bar chart shows overall accuracy (%) for eight AI models (Eagle2, Gemini, Janus, LLaVA, Phi35,
Qwen2VL, Qwen25VL, and MedGemma) and three senior radiology residents.

nitive abilities that mirror clinical workflows, with questions distributed as follows: negation
assessment (36.5% of questions), presence assessment (36.1%), differential diagnosis (20.9%),
location and distribution assessment (6.1%), and geometric information analysis (0.4%). Ques-
tions are generated through a rigorous three-layer pipeline with expert-refined prompts de-
veloped over multiple rounds of radiologist feedback, ensuring they reflect authentic clinical
reasoning patterns rather than artificial templates. Figure [1] shows one random sample from
the dataset.

Our evaluation of eight state-of-the-art multimodal LLMs reveals significant advances in
medical Al capabilities, with MedGemma demonstrating exceptional performance across all ra-
diological reasoning tasks. MedGemma achieves superior performance in negation assessment
(85.03%), presence assessment (85.21%), and location and distribution assessment (83.47%).
The model shows remarkable capabilities across anatomical structures, achieving 91.84% on
rib detection, 97.03% on heart findings, and 92.68% on spine assessment. Our reader study
demonstrates a significant milestone: MedGemma surpasses senior radiology residents’ per-
formance on randomly sampled cases (83.84% vs. best reader: 77.27%), representing the first
instance where Al consistently exceeds expert human evaluation in chest X-ray interpreta-
tion (Figure . These results demonstrate substantial progress toward generalist medical Al
systems capable of expert-level clinical reasoning across diverse diagnostic tasks.

Our comprehensive evaluation of multimodal LLMs for chest X-ray interpretation provides
several key insights for medical ML applications:

e Task-specific cognitive capabilities: Our finding that the best model (MedGemma)
achieves 85.03% accuracy on negation tasks but only 76.71% in differential diagnosis
demonstrates that medical Al requires explicit design for different cognitive skills rather
than treating all diagnostic reasoning as a uniform task.

e Expert-guided dataset creation methodology: Our three-layer pipeline with ra-
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diologist validation offers a replicable approach for developing clinically representative
datasets in other medical domains where direct annotation is costly or impractical.

e Category-specific performance patterns: Our detailed analysis across anatomical
structures demonstrates that architectural decisions significantly impact performance
on specific medical findings (e.g., while Janus-Pro-7B shows competitive performance
on some skeletal structures, MedGemma demonstrates superior performance across
nearly all anatomical categories including 94.04% on bone assessment and 97.03% on
heart findings), suggesting specialized architectures may be more effective than general-
purpose approaches for clinical applications.

2. Related Work

Early efforts in medical visual question answering (VQA) laid important groundwork but
were limited in scope and complexity. VQA-RAD!? introduced just 3,515 questions over 315
images, focusing primarily on basic anatomical queries. Similarly, ImageCLEF VQA-Med!
offered binary questions like “Is there something wrong in the image?” suitable for feasibility
studies but inadequate for training generalist systems. More recent datasets have expanded the
scale and sophistication of medical VQA. PMC-VQA ' introduced 227K question-answer pairs
with free-text answer based on 149K diverse medical images from PubMed papers. MIMIC-
CXR-VQA?® provided 377K questions derived from radiology reports, but relied heavily on
templated generation. Medical-Diff-VQAT took a novel approach by focusing on temporal
reasoning over paired images, generating 700K questions for comparative assessment. MIMIC-
Ext-MIMIC-CXR-VQA? improved the linguistic variety with paraphrased templates, while
GEMeX!" offered 1.6M multimodal questions with explanations. Despite these advances, most
current datasets depend on rigid templates and fail to capture the flexible, multistep reasoning
processes typical in radiology. Our work builds on this foundation but takes a distinct approach
constructing questions via expert-refined prompts validated by radiologists to better reflect
real clinical reasoning patterns and assess diverse cognitive capabilities.

3. The ReXVQA Dataset

In this section, we present the properties of ReXVQA dataset, a comprehensive multimodal
benchmark for evaluating LLMs in radiology. We selected the MCQ format for its significant
advantages over long-form assessment methodologies, as detailed in Table A.1 supplementary
material. We discuss the data collection methodology, the preparation process, and the re-
sulting dataset characteristics. A detailed visualization of the multi-stage MCQ generation
pipeline used to create the ReXVQA dataset is provided in the supplementary material

3.1. Task Definition

The ReXVQA task can be formalized as X; = (I;, Q;, O;), where I; represents the i-th X-
ray image input, Q; represents the i-th question text, and O; represents the set of can-
didate options. For each question-image pair, multiple candidate answers are provided as
0; = {0i1,0,2,0;3,0;4}. The task requires models to analyze both the visual input I; and
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the textual question Q; to select the correct answer(s) from the option set. The ground truth
label for each data point is defined as y € R! where y* = {0,1,2,3}. The objective is to learn
a prediction function f: (I,Q) — y that can effectively combine visual and textual informa-
tion to make accurate diagnostic and clinical judgments. In addition, models are required to
provide explanations E for their choices, making the complete prediction tuple (y,E). This
explanation component allows for evaluation of the model’s reasoning process and clinical
understanding beyond mere answer selection.

MCQ Format Justification. We adopted the four-option MCQ format for several reasons.
It mirrors established practices in medical education and board exams (e.g., USMLE, radiology
boards), providing familiarity and clinical relevance. MCQs also enable systematic assessment
of cognitive skills with objective, reproducible scoring, while the four-option design balances
complexity and cognitive load.

Table A.1 in the supplementary material details the advantages of MCQs over long-form
assessments, including scalability, consistent scoring, and precise analysis of reasoning pat-
terns. While long-form responses capture nuanced clinical reasoning, they face challenges in
standardized evaluation and cross-model comparison. Our approach focuses on systematically
evaluating core radiological reasoning, with expert-validated questions ensuring clinical au-
thenticity.

Generation Layer

Generation of medical MCQs using domain expertise

Input Data
X-ray images and corresponding medical
reports
Report to Bullets

Convert radiology reports into bullet points using LLMs

Prompt Versioning & Optimization

Optimize MCQ generation prompts based on radiologist
feedback & review

Bullets to MCQs

Transform bullets into Multiple Choice Questions

Quality Check Layer

Quality assurance pipeline for MCQ standardization

Structural Validation

Ensure proper JSON formait for questions,
options, and explanations

Difficulty Classification

Filter questions based on difficulty metrics to remove
low quality and too easy questions

Diversity Check

Apply cosine similarity to eliminate redundant questions
and maintain variety

Quality Assurance Output

Final validated questions in standardized format

Validation Layer

Expert-driven validation and compliance verification

Initial Validation Input
Generated MCQs paired with corresponding
X-ray images for validation
Automated Compliance Check
ClinicalBERT classifier for PHI under HIPAA compliance
categories
Expert Review Phase

Manual review and detailed feedback from qualified
radiology experts

Benchmark Questions

Validated MCQs with verified X-ray images

Fig. 3. Expert-Guided Medical MCQ Generation Pipeline: We propose a three-layer ap-
proach combining computational processes and expert oversight for creating high-quality radiology

MCQs.
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3.2. Source Dataset

The source dataset, ReXGradient-160K,'” comprises 170,000 chest X-ray studies with paired
radiological reports from 109,722 unique patients across 4 U.S. health systems. This dataset
represents the largest publicly available chest X-ray dataset to date in terms of patient count.
The dataset is divided into public training (140,000 studies), public validation (10,000 studies),
and public test (10,000 studies) sets, with an additional private test set, (10,000 studies).

Equipment Diversity The dataset encompasses chest X-rays acquired using equipment from
multiple manufacturers including STIEMENS, FUJI, SAMSUNG, VIDAR, TOSHIBA, and GE.
These manufacturers are distributed across all four hospital systems rather than being system-
specific, reflecting real-world clinical diversity and enhancing model generalizability across
different imaging technologies and acquisition protocols.

Expert Review Phase. Our expert review process incorporates a quality assurance protocol
involving a board-certified radiologist. In total, 520 multiple-choice questions (MCQs) were
reviewed. 300 were qualitatively assessed during initial development process to examine the
LLM’s question-answering quality, and 220 were evaluated quantitatively with error classifica-
tion after refining prompts and models. These 220 questions spanned varying difficulty levels
and included a dedicated image alignment assessment. The evaluation emphasized four criti-
cal dimensions: clinical quality, explanation clarity, factual correctness, and image alignment.
The image alignment analysis revealed only one case (0.5%) of content-radiograph misalign-
ment due to a source data discrepancy, suggesting minimal inconsistency resulting from our
report-based approach. Figure A.1 in the supplementary material illustrates the radiology
image tagging platform used for expert annotation.

Expert Review Outcomes. The quantitative expert review of 220 sample questions re-
vealed several issues requiring correction. Specifically, 10.8% of questions had multiple valid
answers, 6.7% contained unnecessary comparison-related content, 5% required improvements
to ensure clinical validity, and 3.3% included hallucinated information about findings not
described in the radiology reports. The most common issue occurred with negation-type ques-
tions, where multiple valid answers arose for findings that were absent in the original re-
ports. To address these concerns, we implemented multiple validation steps, including careful
cross-checking of the original reports and generated questions to remove comparison-related
content and eliminate questions with multiple valid answers. This feedback directly informed
our prompt engineering iterations, leading to refined question generation strategies, simplified
medical language, standardized anatomical terminology, and ultimately proving highly effec-
tive, Only two errors were identified in a subsequent reader study involving 300 questions.

Benchmark Question Finalization. After rigorous multi-stage validation and quality con-
trol, questions meeting all quality criteria are incorporated into the final ReXVQA benchmark,
facilitating detailed analysis of model performance across different dimensions of radiological
expertise.
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Fig. 4. Hierarchical Taxonomy of Chest X-Ray Categories. This expert-validated classifi-
cation system, developed in collaboration with radiologists, organizes chest X-ray findings into five
major domains: Clinical Assessment, Respiratory System, Cardiovascular, Medical Devices, and Mus-
culoskeletal findings. The taxonomy serves as a structured foundation for Expert-Guided Medical
MCQ generation, ensuring comprehensive coverage and clinical relevance.

3.3. Cognitive Framework Development

The five cognitive abilities evaluated in ReXVQA were informed by established question types
in medical VQA literature and clinical practice patterns. Presence and negation assessment
reflect the most common question types in VQA-RAD? and MIMIC-Ext-MIMIC-CXR-VQA *
with negation detection being clinically critical.® Location assessment aligns with anatomy-
focused questions in prior datasets,*® while differential diagnosis corresponds to abnormality
detection tasks in VQA-Med.? Geometric analysis addresses quantitative measurements rele-
vant to clinical assessment.*

Through radiologist consultation during prompt development, we validated these abilities
as reflecting core radiological reasoning patterns, with task distribution prioritizing fundamen-
tal skills (~73% for presence/negation) while ensuring representation of specialized assessment
capabilities.

3.4. Dataset Statistics

For ReXVQA, we follow the same split as the source dataset. The private test set is reserved
for independent evaluation through our leaderboard system, ensuring unbiased assessment
of model performance. The dataset consists of 572,419 VQA pairs for training, 40,878 for
validation, 40,826 for public testing, and 41,007 for private testing. The ReXVQA dataset
encompasses a diverse range of radiological aspects, carefully structured to evaluate different
dimensions of multimodal LLM capabilities in medical imaging interpretation.
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3.4.1. Task Distribution Analysis

Our dataset incorporates five distinct task types across training, validation, test, and private
test sets, with remarkably consistent distributions. As shown in Table[I| Negation Assessment
and Presence Assessment together comprise approximately 72% of all tasks, highlighting their
fundamental importance in radiological interpretation. Differential Diagnosis represents about
21% of tasks, while Location and Distribution Assessment (approximately 6%) and Geometric
Information Assessment (less than 0.5%) target more specialized interpretative skills. This
distribution reflects the hierarchical nature of radiological reasoning, from basic detection to
complex spatial and differential analysis.

Table 1. Distribution of task categories across datasets. Private test set (41,007 cases)
is reserved for leaderboard evaluation and not included in the publicly available dataset.

Train Valid Test Private
Count (%) Count (%) Count (%) Count (%)

Category

Task Categories

Negation Assessment 209,053 (36.5) 15,007 (36.7) 15,369 (37.9) 15,408 (37.6)
Presence Assessment 206,880 (36.1) 14,698 (36.0) 14,078 (34.7) 14,452 (35.2)
Differential Diagnosis 119,111 (20.9) 8,578 (21.0) 8,563 (21.1) 8,585 (20.9)
Location & Distribution 34,829 (6.1) 2,404 (5.9) 2,365 (5.8) 2,383 (5.8)
Geometric Information 2,546 (0.4) 171 (0.4) 182 (0.5) 179 (0.4)
Total 572,419 40,858 40,557 41,007

3.4.2. Anatomical Category Distribution

Analysis across the dataset reveals a diverse but clinically realistic distribution of anatom-
ical categories. Lung and Pleural Opacity dominates (30.2-30.4%), reflecting the prevalence
of this finding in chest radiography, followed by Heart assessments (14.6-15.0%) and Nega-
tion (13.2-13.5%). The distribution encompasses supportive devices such as Tubes and Lines
(5.0-5.2%), along with Other Pulmonary Diagnosis (4.2-4.5%). The dataset maintains bal-
anced representation across critical diagnostic areas, including Infectious Disease (2.3-2.5%),
Pulmonary Vascularity (1.8%), and Cardiac Disease (0.35%), while also covering essential
supporting structures such as Spine, Ribs, and Mediastinum. Importantly, the distribution
captures both common conditions and rare but clinically significant findings like Pulmonary
Neoplasm (0.32-0.35%) and Lymphoproliferative Disease (0.02-0.03%), along with technical
quality assessments (3.4-3.6%). This distribution mirrors real-world clinical prevalence while
ensuring sufficient representation for comprehensive model evaluation. Table A.2 in the sup-
plementary material presents the taxonomy of medical conditions in our dataset, categorizing
them into nine main classes with their respective subcategories.
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4. Experiments
4.1. Baseline Models

The primary objective of our baseline experiments is to evaluate the performance of cur-
rent state-of-the-art multimodal LLMs on ReXVQA, specifically focusing on their ability to
handle complex radiological MCQs designed for medical professionals. We selected models
with varying architectures, training approaches, and accessibility to provide a comprehensive
benchmark. Our evaluation includes both commercial and open-source models, representing
the current landscape of multimodal AT capabilities in medical imaging. Notably, MedGemma
represents a medical-domain-specific model, allowing us to compare general-purpose multi-
modal models against specialized medical Al systems.

For brevity, we refer to the evaluated models using the following short names throughout
the paper: Phi35 (Phi-3.5-vision-instruct), Qwen2VL (Qwen2-VL), Qwen25VL (Qwen2.5-VL),
Gemini (Gemini 1.5 Pro), Eagle2, Janus, LLaVA, and MedGemma. A detailed description of
each model, including architecture and training background, is provided in the supplementary
material. Importantly, none of the evaluated models overlap with the LLM used for dataset
generation (GPT-40), ensuring unbiased evaluation without data leakage or model-specific
advantages.

4.2. FEvaluation Framework

Our evaluation framework implements a standardized protocol for assessing model perfor-
mance. For each query, models receive an X-ray image, accompanied by a question in natural
language and four multiple-choice options. Models must provide their selected option and
a detailed explanation justifying their choice for their prediction. We employ the standard
accuracy as the evaluation metric.

Image Input Specifications. Models receive chest X-ray images in PNG format (converted
from original DICOM files). For the public dataset, images are provided at 1/4 of origi-
nal resolution to balance computational efficiency with diagnostic detail preservation. This
preprocessing maintains clinically relevant features while enabling scalable evaluation across
multiple models. For studies containing multiple radiographic views (as occurs in real-world
radiology practice), models are provided with all available images paired with each question,
enabling comprehensive assessment across different anatomical projections.

5. Results and Analysis

The comprehensive evaluation of eight state-of-the-art multimodal models revealed signif-
icant variations in their ability to interpret chest X-rays across different clinical domains.
MedGemma demonstrated exceptional performance, achieving 83.24% overall accuracy and
establishing a new benchmark for multimodal medical image interpretation. This represents a
substantial improvement over previous leading models, with Janus-Pro-7B following at 66.56%,
followed closely by Qwen25VL (65.55%) and Eagle2 (64.43%) as shown in Table 2 Gemini
achieves a respectable 63.31%, while LLaVA struggles notably with only 26.61% accuracy,
highlighting the considerable challenges in multimodal medical image interpretation.
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Evaluation of models on various diagnostic and assessment metrics. Failed Extractions

shows the percentage of test cases where models failed to provide valid responses in the required
format (out of 41,007 private test cases). T indicates higher is better, | indicates lower is better.

Model Overall Differential Geometric Location and Negation Presence Failed
Accuracy T Diagnosis T Information T Distribution T Assessment T Assessment T Extractions |
LLaVA 26.61 21.61 23.46 27.61 24.02 36.33 2.37
Phi35 47.49 62.24 22.15 37.11 79.50 36.44 0.05
Qwen2VL 54.70 52.65 44.94 54.05 62.69 59.15 0.01
Gemini 63.31 62.21 46.89 59.60 85.68 62.17 0.0
Eagle2 64.43 68.17 56.98 56.95 86.32 53.75 0.0
Qwen25VL 65.55 63.61 66.48 63.24 83.27 51.14 0.0
Janus-Pro-7B 66.56 56.34 75.42 64.62 75.73 60.70 0.0
MedGemma 83.24 76.71 80.45 83.47 85.03 85.21 0.0

5.1. Task-Specific Performance Analysis

The models demonstrate distinct strengths across different radiological reasoning tasks, with
MedGemma leading in four out of five major categories as shown in Table 2l Based on our
analysis of model architectures and performance patterns:

Differential Diagnosis: MedGemma achieves the highest performance at 76.71%,
substantially outperforming second model Eagle2 with accuracy 68.17%. This superior
performance suggests MedGemma’s specialized medical training enables more sophis-
ticated clinical reasoning for distinguishing between similar conditions.

Geometric Information Assessment: MedGemma excels with 80.45% accuracy,
surpassing Janus-Pro-7B’s 75.42%. This improvement indicates enhanced capabilities
for spatial representation and precise measurement interpretation in radiological con-
texts.

Location and Distribution Assessment: MedGemma leads significantly at 83.47%,
well above Janus-Pro-7B’s 64.62% and Qwen25VL’s 63.24%. This performance suggests
superior positional representation mechanisms for localizing findings within complex
radiological images.

Negation Assessment: Eagle2 achieves the best performance at 86.32%, closely fol-
lowed by Gemini (85.68%) and MedGemma (85.03%). The top three models demon-
strate consistently high standards for identifying absence of findings a critical skill in
avoiding false positives.

Presence Assessment: MedGemma demonstrates exceptional capability at 85.21%,
substantially exceeding Gemini’s previous best of 62.17%. This dramatic improvement
suggests superior feature extraction capabilities for detecting radiological abnormalities
within complex backgrounds.

5.2. Category-wise Performance Analysis

Table [3| & Table A.3 in the supplementary material presents a detailed breakdown of model
performance across key radiological categories, with MedGemma consistently outperforming
other models across most categories, achieving an average performance of 83.24%.
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Table 3. Comprehensive performance comparison of models across key radiological categories
(values shown in %). Bold numbers indicate best performance per category. Abbreviations:
P.O. = Pleural Opacity, P.L. = Pleural Lucency and Q2 & Q25 = Qwen2 & Qwen25

Category Gemini Eagle2 Janus LLaVA Q2VL Q25VL Phi35 MedGemma
Clinical Assessment
Quality of Exams 70.30 62.50 51.64 10.30 40.50 60.92 35.10 71.23
Respiratory System
Lung & P.O 72.24 7219 68.70 32.98 60.73 64.77 58.14 80.44
Lung & P.L 80.00 64.65 58.59 19.34 61.62 78.64 58.82 87.88
Lung Volume 65.44 5822 51.64 39.72 52.11 60.92 28.25 78.64
Cardiovascular
Heart 80.29 81.71 72.01 26.01 60.31 84.83 62.73 97.03
Aorta 76.65 41.04 60.14 6.84 72.17 3479 33.05 87.86

Other Great Vessel 73.33 60.00 60.00 13.33 60.00 60.00 45.45 73.33

Medical Devices
Tubes and Lines 59.45 58.26 58.87 22.81 48.78 65.04 32.10 83.86
Implanted Devices 54.46  52.64 60.79 29.50 5240 53.48 43.16 73.14

Pathologies
Infectious Disease 71.55  63.24 66.77 56.63 51.02 67.74 42.13 77.61
Pulmonary Neoplasm 78.46 66.92 81.95 39.29 63.91 73.68 69.44 88.72
Negation 61.05 71.73 58.19 15.00 56.37 61.49 78.96 74.76
Musculoskeletal
Rib 88.90 83.93 &89.80 36.92 86.35 79.21 78.56 91.84
Spine 78.84 62.30 86.43 64.84 73.73 50.10 57.94 92.68
Clavicle 75.93 57.14 75.00 23.21 7143 33.93 51.02 92.73
Joint 51.96 42.31 70.19 47.06 66.35 36.54 42.22 88.46
Average 74.00 67.00 67.00 38.00 64.00 66.00 50.00 83.24

Clinical Assessment. In exam quality interpretation, MedGemma demonstrates supe-
rior capabilities (71.23%), followed by Gemini (70.30%), Eagle2 (62.50%) and Qwen25VL
(60.92%). LLaVA’s performance (10.30%) suggests significant limitations in understanding
technical image characteristics. This disparity indicates that advanced multimodal architec-
tures are essential for capturing the nuanced details required for technical quality assessment.

Respiratory System. Respiratory findings analysis reveals consistent performance patterns
across subcategories. MedGemma leads in all three respiratory metrics, achieving 80.44%
for lung and pleural opacities, 87.88% for pleural lucencies, and 78.64% for lung volume
assessment. The substantial performance gap between top models and LLaVA (19.34-39.72%)
underscores the complexity of pulmonary pattern recognition.

Cardiovascular Imaging. Cardiovascular interpretation presents interesting variations
across subcategories. MedGemma leads in heart finding analysis (97.03%), substantially
exceeding Qwen25VL’s 84.83%. and 87.86% for aortic assessment (compared to Gemini’s
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76.65%). This consistent excellence across different vascular structures suggests robust ar-
chitectural capabilities for cardiovascular imaging, addressing the previous inconsistencies ob-
served among other models.

Medical Devices Detection. MedGemma significantly advances medical device recogni-
tion with 83.86% for tubes and lines detection and 73.14% for implanted devices. These im-
provements suggest that specialized medical training helps models better understand artificial
structures despite their variable appearance and positioning.

Pathologies. MedGemma demonstrates superior pathology identification capabilities:
88.72% for pulmonary neoplasms, 77.61% for infectious diseases, and 74.76% for negation
assessment (Phi35 maintains a slight edge at 78.96%). These results confirm that medical
domain specialization enhances pattern recognition for diverse pathological conditions.

Musculoskeletal Findings. MedGemma achieves exceptional performance in skeletal struc-
ture assessment, leading all categories: 91.84% for rib interpretation, 92.68% for spine as-
sessment, 92.73% for clavicle detection, and 88.46% for joint interpretation. These results
demonstrate that even for high-contrast bony structures that were already well-recognized by
previous models, specialized medical training can yield substantial improvements.

6. Reader Studies
6.1. Overall Performance Analysis

Our reader study evaluated the diagnostic performance of Al models compared to three radi-
ology residents in their 3rd or 4th year of training, using 200 randomly sampled chest X-ray
cases. The results reveal that current AI models can achieve competitive performance with
human readers in standard diagnostic tasks, although there are significant variations between
different models. Among the AI models tested, MedGemma demonstrated the highest over-
all accuracy at 83.84%, substantially outperforming all other models and human readers.
Qwen25VL achieved 77.78% accuracy, closely matching the performance of the top human
reader (Reader 3 at 77.27%). Reader 2 achieved 69.70% accuracy, while Reader 1 performed
at 65.66%, comparable to several Al models, including Janus (66.16%) and Eagle2 (64.14%).
The performance distribution shows a clear hierarchy, with some models like LLaVA (24.75%)
and Phi35 (37.88%) demonstrating significantly lower accuracy, indicating substantial vari-
ability in current Al model capabilities for medical image interpretation.

This variability is further reflected in the interrater agreement patterns across models and
human readers (see Section A.4 and Figure A.3 in the supplementary material)
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