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1. Introduction

As the global population ages, Alzheimer’s disease (AD) and AD-related dementias (ADRD)
are becoming more prevalent.! Yet, more than 50% of persons with AD/ADRD are undi-
agnosed,? delaying crucial interventions that could improve quality of life. The first step in
diagnosing AD/ADRD is detecting any degree of cognitive impairment (CI). Ideally, early
detection should occur in primary care, where most patients first exhibit subtle signs of CI.
Language production is highly sensitive to the neurodegenerative changes characteristic of
AD/ADRD. Deficits in core cognitive domains—including semantic memory, executive func-
tion, and processing speed—manifest directly in a person’s speech patterns.? Several of these
signs manifest in conversations between patients and primary care providers (PCPs) during
clinical visits—for example, when a patient repeats themselves several times during the visit or
takes a long time to respond to the PCP’s questions. However, PCPs often struggle to recognize
these clues in real time due to competing priorities, time constraints, and limited expertise.%

Speech data can be collected easily and non-invasively, making it an ideal medium for de-
veloping accessible tools for early-stage screening of CI. Recent advances in machine learning
and natural language processing (NLP) have enabled the development of automated systems
for detecting possible CI from speech.”® However, many state-of-the-art approaches rely on
“black-box” deep learning models.'%12 While these systems can achieve high predictive accu-
racy, their opaque nature makes it impossible to understand the clinical reasoning behind a
prediction, hindering trust and adoption in medical settings.

To address this gap, we propose the Warning Assessment and Alerting Tool for Cognitive
Health for Spontaneous Speech (WATCH-SS), a modular framework designed to be a trust-
worthy, interpretable, and extensible tool for detecting CI due to suspected AD/ADRD from
a patient’s speech sample. The framework leverages several detectors to identify indicators of
CI within a speech sample and then aggregates the outputs into a clinically interpretable CI
prediction. We demonstrate that our framework achieves strong predictive performance while
providing a transparent diagnostic profile that explains the reasoning behind its predictions.

2. Related Work

Spontaneous speech, reliant on cognitive functions like attention and memory, is increasingly
used as a non-invasive, cost-effective biomarker for detecting cognitive impairments. Clinically,
speech is typically analyzed via structured speech tasks like the Cookie Theft Picture Descrip-
tion task from the Boston Diagnostic Aphasia Examination,'® verbal fluency tasks such as
the Semantic Fluency Task (SFT) and Phonemic Fluency Task (PFT),! and cognitive tests
including the Mini-Mental State Examination (MMSE),'® the Montreal Cognitive Assessment
(MoCA),* and the Saint Louis University Mental Status (SLUMS) examination.'” While
these assessments have been rigorously validated, they typically require in-person adminis-
tration and expert interpretation, making them time-consuming and costly, which can delay
diagnosis and treatment of neurodegenerative conditions like AD/ADRD.

Advances in machine learning offer the potential to overcome these limitations by enabling
low-cost, remote, and early detection of cognitive decline through speech. They have revealed
subtle linguistic and acoustic markers, expanded clinically relevant feature extraction, and
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Fig. 1: The WATCH-SS framework is a three-stage pipeline that (1) detects cognitive impair-
ment (CI) indicators from audio and transcripts, (2) aggregates these detections into summary
features, and (3) applies a predictive model to the features to generate a final prediction.

Aggregate Detections

enabled scalable, automated speech analysis.

To address these limitations, machine learning has been widely applied to automate the
analysis of speech for detecting CI. Early works focused on training traditional models like
Support Vector Machines (SVMs) on hand-crafted acoustic features (e.g., pause duration,
speech rate)!® and lexical features (e.g., topic modeling).!” We refer the reader to Yang et
al. 2 for an extensive survey of deep learning-based techniques. More recently, deep learning
approaches using models like Convolutional Neural Networks (CNNs) and Long Short-Term
Memory networks (LSTMs) have been used to learn patterns directly from audio.?!23 Transfer
learning with large pre-trained models such as BERT, GPT, and wav2vec has also become
a common strategy for extracting powerful text and audio embeddings for training various
ML learning classifiers.?!?426 These methods, often combined in multimodal or ensemble
systems,?”?® have demonstrated high predictive accuracy but low explainability.

While other approaches have also explored training classifiers on interpretable speech fea-
tures,®13:29:30 they often use a mix of clinically interpretable and non-interpretable features. For
example, these systems often incorporate acoustic features like GeMAPS or ComParE which
are not easily parsed by clinicians. In contrast, WATCH-SS is designed to provide greater inter-
pretability by focusing on high-level, clinician-interpretable features. This approach, coupled
with external validation on spontaneous clinical speech, differentiates our work.

3. Methods
3.1. WATCH-SS

We propose WATCH-SS, a three-stage framework for detecting cognitive impairment from a
patient’s speech sample (see Figure . The key advantages of our framework are its inter-
pretability and modularity. Unlike “black-box” models, WATCH-SS provides a transparent
patient diagnostic profile that breaks down the final CI prediction into the contributions of
various indicators of CI, enabling a clinician to understand which specific cognitive deficits
are driving the classification. Moreover, the modular architecture of WATCH-SS allows for
easy extension or replacement of individual detectors.

WATCH-SS receives as input an audio waveform and the corresponding diarized transcript
of a speech sample. First, WATCH-SS runs multiple detectors in parallel to identify five
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key indicators of CI: filler speech, repetitive speech, substitution errors, vague speech, and
speech delays. In the second stage, the system aggregates the detections into a set of clinically
interpretable summary features and feeds them to a model to predict CI in the third stage.

WATCH-SS was implemented in Python (version 3.12.3) using Microsoft Azure Databricks.
The code is available at https://github.com/kbjohnson-penn/WATCH-SS.

The remainder of this section describes the data used to develop WATCH-SS (Section [3.2),
the detectors for indicators of CI (Section , the summary features extracted from these
detections (Section [3.4), and finally, the predictive model for CI (Section [3.5).

3.2. Data

We developed and validated WATCH-SS using two datasets: the ADReSS dataset for detector
and predictive model development, and the OBSERVER dataset for external validation.

3.2.1. DementiaBank ADReSS Challenge Dataset

The ADReSS dataset®!32 consists of audio recordings and diarized transcripts of subjects with
and without an AD diagnosis describing the Cookie Theft picture from the Boston Diagnostic
Aphasia Exam.3? Transcripts were annotated using the CHAT coding system, a standardized
protocol for transcribing conversational interactions and annotating its linguistic features.3*
The training data consists of 108 subjects, while the test data consists of 48 subjects. Each
dataset is balanced in age and gender and half of their subjects have an AD diagnosis.

We further partitioned the training data into training and development (dev) datasets
using a 70/30 percent split balanced for age, gender, and number of AD subjects. Specifically,
we first generated 100 candidate splits stratified by gender and AD label using different random
seeds. Then, we selected the split that minimized the absolute difference in mean age across
the resulting training and development sets. Table [1| summarizes the resulting datasets.
Data Pre-processing. We processed the CHAT transcripts to produce clean inputs to our
detectors by: (1) converting pause annotations to a “[silence]” token, (2) converting event
annotations to “[< event >|” tokens, (3) converting inaudible annotations to “[inaudible]”
tokens, and (4) removing all other CHAT annotations. Then, we derived ground-truth labels
from the original CHAT annotations for all patient utterances. An utterance was labeled
positive for a given indicator if it met the following criteria:

e Filler speech: The utterance contained any word marked with the filler prefix (“&”).

e Repetitive speech: The utterance contained the repetition annotation (“[/]”).

e Substitution errors: The utterance contained the word level error code (“[*|”), in-
cluding all its subtypes (e.g., “[* s]” for semantic paraphasias or “[* n]” for neologisms).

e Vague speech: The utterance contained the annotation for empty speech (“[+ es]”)
or circumlocution (“[+ cir]”).

e Speech delays: The utterance contained a pause annotation (“(.)”, “(..)”, or “(...)").

The prevalence of these labels across the data splits is summarized in Table
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Table 1: Characteristics of the ADReSS train, development (dev), and test datasets.

AD Control

Split  Num. Subjects Pct. Female Age (mean + std) Pct. Female Age (mean =+ std)

train 75 56% 66.5 £ 6.6 55% 66.6 = 6.8
dev 33 52% 67.4 £ 6.7 56% 65.7 £ 6.0
test 48 54% 66.1 + 7.4 54% 66.1 £ 7.1

Table 2: Prevalence of cognitive impairment (CI) indicators in the ADReSS train, development
(dev), and test datasets. Values are the counts and proportions of positively-labeled utterances.

Solit Num. Filler Repetitive  Substitution Vague Speech
p Utterances speech speech errors speech delays
train 991 257 (18.4%) 88 (6.3%) 35 (2.5%) 12 (0.9%) 99 (7.1%)
dev 501 118 (16.6%) 44 (6.2%) 19 (2.7%) 3 (0.4%) 45 (6.3%)
test 590 153 (18.9%) 47 (5.8%) 25 (3.1%) 8 (1.0%) 98 (12.1%)

Table 3: Characteristics of the OBSERVER Repository dataset.

CI CN
Num. Visits Pct. Female Age (mean + std) Num. Visits Pct. Female Age (mean =+ std)

12 50% 75.0 £ 10.1 12 50% 74.1 £ 8.6

3.2.2. Penn OBSERVER Repository Dataset

The OBSERVER Repository was developed by the University of Pennsylvania to capture and
support detailed, multimodal analyses of real outpatient clinical visits.?® For this work, we
used the visit recordings, diarized manual transcripts, and corresponding Electronic Health
Record (EHR) data from the repository. We preprocess the audio from the recordings to
reduce any background noise using Adobe Premiere Pro’s audio enhancement tools. [}

To construct our external validation dataset, we first selected the earliest recorded visit
for all patients aged 50 or older (74 patients in total). Next, to identify patients with CI we
reviewed each patient’s EHR data available up to the time of visit for mention of “cognitive
impairment”, “Alzheimer’s”, or “dementia” in the diagnosis list, problem list, medical history,
or encounter notes. This process identified 14 CI patients, two of which we excluded because
their CI was not due to suspected AD/ADRD. To create a balanced case-control dataset, we
downsampled the cognitively normal (“CN”) pool to 12 patients that best balances age and

gender with the CI group. Table [3| summarizes the dataset.

ahttps://www.adobe.com/products/premiere.html
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3.3. Detectors for Indicators of Cognitive Impairment

We developed detectors for five key indicators of CI. Four are linguistic indicators extracted
from the transcript—filler speech, repetitive speech, substitution errors, and vague speech—
whereas the fifth indicator, speech delays, is an acoustic indicator derived from the audio.

A significant challenge to developing specialized detectors for these CI indicators is the
lack of large, publicly available annotated datasets. To overcome this, we focus on low-cost
approaches that are straightforward to implement and do not require extensive amounts of an-
notated data for task-specific fine-tuning. We implemented a single detector for speech delays,
as their identification relies on silence detection—a well-established audio signal processing task.
For the linguistic indicators, however, we implement and compare two primary approaches:

e Traditional NLP: Computationally efficient methods for capturing well-defined lin-
guistic patterns that serve as strong, high-recall baselines.

e LLM Prompting: To evaluate the “out-of-the-box” capability of modern, pre-trained
LLMs for detecting linguistic indicators of CI we use zero- and few-shot prompting.

To implement the LLM-based detectors, we created a general-purpose prompt template,
shown in Figure [2| that we adapt for each specific CI indicator. The prompt instructs the LLM
to adopt the persona of a neurologist, provides a detailed definition of the target CI indicator
with rules for detection, and enforces a JSON output format. We iteratively refined all prompts
for linguistic indicators to maximize the F1-score on the ADReSS training dataset. For the few-
shot prompts, examples were selected from the ADReSS development dataset based on an error
analysis of the zero-shot version of the prompt. All detectors use OpenAIl’'s GPT-40 LLM E
which has shown promising performance on clinical tasks like speech analysis.?63® To ensure
reproducibility and reduce non-determinism, we fix the LLM’s temperature to 0 and top_p to 1.

These approaches offer different balances between detection accuracy and computational
efficiency, allowing WATCH-SS to be configured with either fast, lightweight detectors for real-
time screening or more computationally intensive, high-accuracy detectors for offline analysis.
The following subsections detail the clinical motivation for each indicator and the specific
implementation of these detector types.

3.3.1. Filler Speech

Fillers are sounds, words, or phrases used to improve speech planning, often as an alternative
to silent pauses. Frequent use of fillers is a well-documented linguistic indicator of word-finding
difficulties and increased cognitive load associated with CI and AD.?

NLP Baseline: Keyword Search Detector. Our baseline for filler speech is a simple, case-
insensitive keyword search that processes each utterance and returns the text and character
span for any matches. We use the spaCy Python library (version 3.8.7),3 with the pre-trained
English model pipeline optimized for CPU “en_core_.web_md”, for tokenization and keyword
matching. To determine the optimal filler keyword set, we evaluated combinations of the

bExperiments involving LLMs were conducted using HIPAA-compliant services available through
the Microsoft Azure Al platform to ensure patient data privacy.
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# INSTRUCTIONS
You are a neurologist analyzing a patient’s speech sample for signs of cognitive impairment.

Your task is to identify all instances of {CI INDICATOR NAME} in a patient’s speech provided in the input below.

### Definition
{CI INDICATOR DEFINITION AND RULES}

### Output Format
Your output must be a single JSON object with a single key “detections” whose value is an array of JSON objects. Each
object in the array represents one detected {CI INDICATOR NAME} and must have the following key-value pairs:

“type”: “{CI INDICATOR NAME}”.

“text”: The verbatim text of the detected {CI INDICATOR NAME}.
“span”: The character span of “text” in the provided input.
{OPTIONAL ADDITIONAL KEYS}

### Examples
{OPTIONAL FEW-SHOT EXAMPLES}

# INPUT
{INPUT}

Fig. 2: LLM-based detector prompt template.

keyword categories defined in Table on the ADReSS training data. The best-performing
set was a combination of the “Sounds” and “Uncommon Letters” sets, which achieved the
highest Fl-score against filler speech labels (see Appendix [A|for the full results).
LLM-Based Detector. We use a zero-shot prompting strategy to implement the LLM-based
detector for fillers. The detector processes the transcript utterance-by-utterance, as the con-
text needed to identify a filler is typically contained within a single utterance. The prompt,
provided in Appendix [B; gives the LLM a simple description of fillers and sets explicit rules
to avoid detecting event tags and repetitions. Due to the high performance achieved with the
zero-shot approach, few shot examples were not added to the prompt.

3.3.2. Repetitive Speech

Word repetition is a common speech pattern for individuals with CI and dementia.*® This
pattern can be a manifestation of several underlying cognitive issues, including stuttering,
word-finding difficulty, perseveration (the inability to switch from a completed thought), or
an individual may not remember what they previously said in a conversation.’

NLP Baseline: Unigram Analysis. Our baseline detector for word repetition is based on
a unigram analysis. The detector processes each utterance from a transcript by tokenizing it
and then iterates through the tokens, checking for matches against the previous K seen tokens
(unigrams). For each match, a JSON object with four key-value pairs: the“type” of detection
(i.e., “repetition”), the “text” that is repeated, and the character span of each occurrence of
the repeated text within the utterance, “span” and “span2”. As before, we use the spaCy
library for tokenization. The detector has two key hyperparameters: the window size (K),
which controls the distance for a match, and the comparator function, which determines the
type of repetition being detected (e.g., verbatim repetitions or deeper semantic repetitions).
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We optimized these hyperparameters to maximize the Fl-score against the repetition labels
on the ADReSS training dataset, and found a window size of two tokens with an exact match
comparator function to be the best performing (see Appendix |C| for the full results).

LLM-Based Detector. We started with the zero-shot prompting strategy for the word rep-
etitions LLM-based detector with utterance-by-utterance processing. The prompt (provided
in Appendix @ described repetition as involuntary, verbatim repeats of whole words, and
includes an additional key for the JSON output format, “span2”, to capture the span of the
second occurrence of the word. To improve the low precision of this high-recall zero-shot
prompt, we added few-shot examples from the ADReSS development data that specifically
target common failure cases, such as flagging distant repetitions and revisions of word forms.

3.3.3. Substitution Errors

Substitution errors are a phenomenon where an individual replaces an intended word with an
unintended word. While occasional errors can occur in cognitively normal individuals, frequent
and consistent errors can indicate CI, and in more severe cases, aphasia—a language disorder re-
sulting from damage to the brain.>#'"#4 These errors manifest in several ways, including phone-
mic, semantic, and neologistic paraphasias, morphological errors, and intra-word dysfluencies.
NLP Baseline: MLM-Based Detector. We leverage the BERT Masked Language Model
(MLM)# to identify substitution errors based on the contextual predictability of each word
spoken by the patient. Since these errors are contextually inappropriate words, we hypothesize
that a MLM will assign them a very low probability, making them detectable as outliers.
Based on this hypothesis, the detector systematically quantifies the unpredictability of
each word spoken by the patient in the transcript. For each word in the transcript, we mask it
and then use the MLM to predict the masked word, which generates a probability distribution
over its entire vocabulary. From this distribution, we compute two complementary metrics to
assess the actual masked word’s contextual fit: normalized entropy, which measures the overall
uncertainty of the model’s prediction (normalized by vocabulary size); and the concentration
ratio, which measures how confident the model is in its top guesses. These scores are then
combined into a single fusion score, and the word is flagged as a substitution error if this score
exceeds a predetermined percentile threshold. We optimized this threshold on the ADReSS
training dataset, finding that the 90th percentile maximized the F'1-score against ground-truth
substitution error labels (see Appendix |[E| for the full results).
LLM-Based Detector Our prompt for the substitution error LLM-based detector leverages
the zero-shot prompting strategy. Similar to the baseline, this detector processes the entire
transcript at once in order to leverage sufficient context for identifying substitution errors.
The prompt (provided in Appendix |F)) includes detailed definitions and examples for the each
of the aforementioned types of substitution errors. To improve the model’s reasoning, we also
employ a Chain-of-Thought approach by adding a “justification” key to the JSON output,
instructing the LLM to provide a brief explanation for each word it flags. We also tried adding
few-shot examples from the ADReSS development based on an error analysis of the zero-shot
prompt to improve performance, but this yielded minor gains in precision that were offset by
a larger drop in recall.
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3.3.4. Vague Speech

Decreased speech content—that is, speech that is correct but conveys little to no meaning—is a
powerful indicator of cognitive decline driven by overuse of vague language. As a person’s cog-
nitive status declines, their knowledge base for concepts and word meanings deteriorates, and
they struggle to retrieve specific words from memory. Consequently, they may overuse unspe-
cific referents for more specific words or talk around words or concepts (i.e., circumlocution).’
NLP Baseline: Keyword Search Detector. We implement a keyword search to detect
specific vague terms and phrases, using the same implementation as the filler keyword de-
tector from Section [3.3.1. To determine the optimal keyword set, we experimented with the
keyword categories defined in Table[G1 using the ADReSS training dataset. The “Non-Specific
Referents” keyword set achieved the maximum F1-score (see Appendix |G/ for the full results).
LLM-Based Detector. Our LLM-based detector for vague speech uses a few-shot prompt.
Error analysis of the baseline’s high recall but low precision performance suggested that the
context in which terms are used is crucial for determining vagueness. Hence, this detector
processes the entire transcript at once. The prompt (see Appendix [H)) provides the LLM with
a detailed definition of vague speech and, crucially, includes few-shot examples that teach the
model to ignore general terms when their meaning is clarified by the surrounding context or
when they represent normal conversational patterns rather than word-finding difficulty.

3.3.5. Speech Delays

Speech delays are unfilled pauses in speech that cannot be attributed to normal respiratory
breaks. These delays are strongly associated with several cognitive deficits characteristic of
AD, including memory deficits, slowed cognitive processing and impaired executive function.?
Silence Detector. To identify speech delays, silences in the audio were detected using the
detect_silence function from the Pydub Python library (version 0.25.1),%6 which identifies
excerpts of audio quieter than the specified threshold. This function relies on two primary hy-
perparameters: the silence threshold, which sets the maximum decibel level relative to full scale
(dBFS) for silence in audio, and the minimum silence length, which determines the minimum
duration in milliseconds for an audio segment to be considered silence. The detect_silence
function returns a list of tuples, each containing the start and end times (in milliseconds) of de-
tected silent segments. We tuned the silence threshold on the ADReSS training data—selecting
-55 dBFS for its high recall-while fixing the minimum silence length to 10ms to capture all
potential pauses for subsequent feature extraction (see Appendix [[ for full details).

3.4. Summary Features

The detections for each of our five CI indicators are aggregated into a set of clinically inter-
pretable summary features, which are defined in Table[d] To assess the individual utility of each
feature, we performed a univariate analysis on the ADReSS training data (see Appendix @

3.5. Predictive Model for Cognitive Impairment

To predict CI due to suspected AD/ADRD, we first computed the summary feature set for the
ADReSS data using the outputs from our traditional NLP baseline detectors. These detectors
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Table 4: Summary of features for our five indicators of cognitive impairment (CI).

CI Indicator Feature Description

Filler speech Filler Rate Total count of detected fillers divided by the total number
of words spoken by the patient.

Inter-Filler Distance (IFD) Mean and standard deviation of the number of words
spoken between consecutive fillers within each utterance.

Repetitive speech Repetition Rate Total count of detected repetitions divided by the total
number of words spoken by the patient.

POS Repetition Rates Total number of noun, verb, adjective, adverb, and pro-
noun word repetitions divided by the total number of
words spoken by the patient.

Substitution errors  Substitution Error Rate Total number of substitution errors divided by the total
number of words spoken by the patient.
Inter-Substitution Error Distance Mean and standard deviation of the number of words spo-

(ISED) ken between consecutive substitution errors within each
utterance.
Vague speech Vague Terms Rate Total count of vague term detections divided by the total
number of words spoken by the patient.
Vague Utterance Ratio The proportion of utterances in the transcript that are

flagged as containing vague terms.

Speech delays Silence Duration Total duration of silence normalized by the patient’s total
speaking time.

Silence Count Total count of detected silences normalized by the pa-
tient’s total speaking time.

Long-to-Short Silence Ratio Ratio of long silence duration (silences > 0.3s) to short
silence duration (silences < 0.3s).

were chosen for their practical advantages in a real clinical setting. On this feature set, we
then experimented with a diverse set of machine learning models: logistic regression, random
forest, and Histogram-based Gradient Boosting Classifier (HGBC), Light GBM, XGBoost, K-
Nearest Neighbors (KNN), and support vector machine (SVM). Prior to training, we first
dropped the determiner repetition rate feature because it had zero variance in the ADReSS
data. Then, all remaining features were scaled to a [0, 1] range using a MinMaxScaler fitted
only on the training data. While we also explored dimensionality reduction using t-distributed
Stochastic Neighbor Embedding (t-SNE) and Principal Component Analysis (PCA), it did
not consistently improve performance, so the full feature set was used for all models.

We used two cross-validation (CV) strategies: leave-one-out (LOO) and repeated stratified
k-fold (RSKF') with 10 folds and 10 repeats. Cross-validation folds were created at the subject
level to prevent data leakage between training and validation data. For each strategy, predic-
tions on the validation sets across all training folds were ensembled using a hard voting ap-
proach to determine the final prediction. The hyperparameters for each model were tuned man-
ually to optimize the average Fl-score across CV strategies on the ADReSS training dataset.
We implemented all model training using the scikit-learn Python library (version 1.4.2).47

After identifying the best configuration for each model type, we selected the overall best-
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performing model, Light GBM, based on its superior training CV performance. The model
is configured with a binary objective, 10,000 estimators with early stopping patience of 50
rounds, maximum tree depth of 1, 12 data samples minimum per one leaf, .1 regularization,
and restricting the model to use 20% of the features before training each tree. We focus on this
Light GBM model in our main results and present the performance of all models in Appendix[K.

4. Results
4.1. Performance of the Detectors for Cognitive Impairment Indicators
4.1.1. Linguistic Indicators

Table |p|reports the performance of the NLP baseline and LLM-based detectors for the linguis-
tic CI indicators on the ADReSS test data. The results show a clear distinction based on the
complexity of the task. For indicators defined by specific lexical items like Filler Speech and
Repetitive Speech, the NLP baselines achieved a better balance in precision and recall, while
the LLM-based detectors consistently achieve high recall at the cost of lower precision. For ex-
ample, the filler keyword search detector had a balanced and high precision and recall (94.1%
and 93.5%), respectively), while the LLM’s tendency to over-predict resulted in a lower F1.

Conversely, for the more semantically complex tasks of substitution errors and vague
speech, the LLM-based detectors demonstrated superior performance. For substitution errors,
the LLM achieved a significantly higher Fl-score (18.4%) than the MLM baseline (9.3%),
driven by a notable improvement in precision. However, it is important to note that the
low prevalence of positively-labeled utterances makes evaluation challenging and all of these
detectors demonstrated very low precision.

Table 5: Performance comparison of natural language processing and LLM -based detectors
for the linguistic indicators of cognitive impairment (CI) on the ADReSS test data. The best
scores for each indicator are highlighted in boldface.

CI Indicator Detector Precision = Recall F1 Accuracy Balanced Accuracy
Filler Speech Keywords 0.941 0.935 0.938 0.968 0.957

LLM 0.623 0.941 0.750 0.837 0.871
Repetitive Speech Unigrams 0.557 0.957 0.704 0.937 0.946

LLM 0.407 0.957 0.571 0.888 0.919
Substitution Errors MLM 0.049 0.720 0.093 0.402 0.554

LLM 0.107 0.640 0.184 0.759 0.702
Vague Speech Keywords 0.032 0.875 0.061 0.637 0.755

LLM 0.061 0.875 0.115 0.817 0.846

4.1.2. Speech Delays

The performance of the silence detector for identifying speech delays in the ADReSS test
data is presented in Figure |3l The figure shows the trend in precision, recall, F1-score, and
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accuracy across a range of choices for the minimum silence length hyperparameter while, using
the optimal -55 dBFS silence threshold that was determined on the ADReSS training data.

As the minimum silence length increases, the detector becomes more conservative, only
flagging long pauses, causing precision to steadily increase while the recall falls. The highest
Fl-score (35%) was achieved with a minimum silence length of 1,950ms.

[— Accuracy ~ —— Precision Recall — Fl]

T —

e

0 500 1000 1500 2000 2500 3000
Minimum silence length (ms)

Metric Score
Oo0o00000000OK
OFNWRARUIONOOWOO

Fig. 3: Performance of silence detector for identifying speech delays in the ADReSS test data.

4.2. Performance of the Cognitive Impairment Prediction Model

Figure |4/ shows the performance characteristics of the best performing CI prediction model on
the ADReSS training and test datasets. The ROC curves and AUC estimates demonstrate the
model’s strong ability to discriminate between the cognitively impaired and normal groups.
The model achieves a near-perfect AUC of 95% (CIL: [0.905, 0.976]) on the training data,
and generalized fairly well on the test data (AUC = 80%, CI: [0.682, 0.904]). The model also
demonstrates strong F1-scores on both datasets, 87% (CI: [0.792, 0.935]) and 77% (CT: [0.647,
0.867]), on the training and test data, respectively. We anticipated a drop in performance due
to a small degree of overfitting to the small training sample size. Nonetheless, the strong train
and test performance demonstrates that a model is able to learn meaningful patterns for iden-
tifying CI, even from features derived from detectors that often favor high recall over precision.

1.0 A 1.0 A 7
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Fig. 4: Performance characteristics of the CI prediction model on the ADReSS datasets.

4.3. External Validation of WATCH-SS

We performed an external validation of WATCH-SS on the OBSERVER dataset to assess its
viability as an ambient CI screening tool for real-world primary care settings. The CI predic-
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tion model’s performance on this dataset was lower than on the ADReSS data, achieving an
AUC of 63.2% (CI: [0.427, 0.829]) and F1-score of 31.6% (CI: [0.111, 0.526]).

5. Discussion

In this paper, we described and evaluated WATCH-SS, a modular framework designed for
trustworthy and interpretable detection of cognitive impairment (CI) from a patient’s speech
sample. Our results show that WATCH-SS can effectively discriminate between cognitively im-
paired and cognitively normal speech, achieving strong predictive performance on the ADReSS
test set (AUC = 80%). A key finding is that this performance was achieved using features de-
rived from the outputs of simple, computationally efficient NLP-based detectors. The success
of the model, even with features from detectors that often favor high recall over high precision,
highlights the viability of our framework as an ambient CI screening tool for primary care.

It is crucial, however, to interpret the performance of WATCH-SS in the context of several
study and dataset limitations. A primary limitation is the small sample sizes, particularly for
the external validation dataset. While the model performs well on the ADReSS dataset, its
reduced performance on the OBSERVER dataset highlights the need for further validation on
larger and more diverse clinical populations. Furthermore, the ground-truth CHAT annota-
tions in the ADReSS dataset can be subjective and inconsistent. For instance, the CHAT man-
ual lacks a strict, duration-based definition for speech delays, and the prevalence of annotated
vague speech and substitution errors is extremely low. These limitations likely lead to an under-
estimation of our detectors’ true performance and highlight a broader challenge in the field. In
principle, our detectors could be reused to address this by generating a large, weakly-annotated
dataset of transcripts. Despite the limitations, the primary contribution of WATCH-SS lies in
its modular and explainable framework, which aligns with clinician-interpretable indicators.

Our work highlights several avenues for future research. The modularity of WATCH-SS
allows for the straightforward enhancements to our current detectors. For example, we plan
to explore a generator-critic approach to improve the precision of our high-recall detectors.
This involves using our current detectors as generators to produce candidate detections, which
would then be filtered by an LLM “critic” to identify the most clinically relevant instances.
However, the most critical next step is to further assess the framework’s real-world viability.
This requires an evaluation of the framework using real-time Automatic Speech Recogni-
tion.*® %0 Furthermore, our external validation on the OBSERVER dataset revealed that the
shorter, more fragmented patient utterances in clinical visit dialogues are insufficient speech
samples. We plan to test simple, open-ended prompts (e.g., “Describe your typical day”) that
can easily be added to a clinical workflow to elicit better speech samples. These future steps
are critical for making WATCH-SS a robust and trustworthy tool for clinical practice.

Supplementary Material

All appendices can be found at
https://github.com/kbjohnson-penn/WATCH-SS /blob /main /supplementary_material.md.
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