Pacific Symposium on Biocomputing 2026

DRIVE-KG: Enhancing variant-phenotype association discovery in understudied
complex diseases using heterogeneous knowledge graphs

Ananya Rajagopalan!, Tram Anh Nguyen'!, Lindsay A. Guare', Andre Luis Garao Rico?,
Rasika Venkatesh!, Lannawill Caruth®, Regeneron Genetics Center®, Penn Medicine BioBank?,
Anurag Verma®, Marylyn D. Ritchie®7, Molly A. Hall?,

Joseph D. Romano’ *, Shefali Setia-Verma?®

LGenomics and Computational Biology Graduate Program, 2 Department of Genetics,
3Department of Pathology and Laboratory Medicine, *Penn Medicine Biobank, ®Department of
Medicine, S Department of Genetics, Division of Informatics, " Department of Biostatistics,

Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
8777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
E-mails: Tjoseph.romano@pennmedicine.upenn.edu, ishefali.setiaverma@pennmedicine.upenn.edu

*co-corresponding authors

Multi-omics data are instrumental in obtaining a comprehensive picture of complex biolog-
ical systems. This is particularly useful for women’s health conditions such as endometrio-
sis, which has been historically understudied despite having a high prevalence (around
10% of women of reproductive age). Subsequently, endometriosis has limited genetic char-
acterization: current genome-wide association studies explain only 11% of its 47% total
estimated heritability, underscoring the need for integrative approaches. Graph represen-
tations provide an intuitive and meaningful way to harmonize biological data, using nodes
to represent biological concepts (e.g., genes, single nucleotide polymorphisms, proteins, and
phenotypes) and edges to represent their relationships. We present DRIVE-KG (Disease
Risk Inference and Variant Exploration Knowledge Graph), which uses a heterogeneous
graph representation to integrate data from diverse multi-omics datasets. We trained two
distinct models using DRIVE-KG: a link prediction model to suggest associations between
SNPs and two pilot phenotypes (endometriosis and obesity), and a graph convolutional
network (GCN) for patient-level classification of endometriosis/adenomyosis as a combined
phenotype. We conducted patient-level classification using data from 1,441 Penn Medicine
BioBank participants with gold standard chart-reviewed endometriosis/adenomyosis status.
The link prediction model uncovered 66 high-confidence (model score > 0.95) candidate
SNP-endometriosis associations, representing largely distinct genetic signals (R? < 0.1).
These variants were enriched for obesity/body mass index traits (24.2%), lipid metabolism
(6%), and depressive disorders (4.5%), showing agreement with emerging hypotheses about
endometriosis etiology. In contrast, of the high-confidence, candidate SNP—-obesity associ-
ations that could be evaluated using LDlink, 38.22% were in high linkage disequilibrium
(R? > 0.8) with known obesity or comorbidity associations. The GCN to classify patient
endometriosis/adenomyosis status had an F1 score of 0.752 compared to 0.698 for a genetic
risk score. Despite this moderate improvement, we found that the GCN learned meaningful
stratification of underlying adenomyosis signal and severe endometriosis grades. Together,
these results demonstrate that heterogeneous integration of multi-omics data is valuable
for diverse downstream tasks—including discovery and clinical prediction—particularly for
understudied diseases where traditional genomic approaches are insufficient.
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1. Introduction

Multi-omics data integration involves combining diverse biological data types (including ge-
nomic, proteomic, epigenomic, and metabolomic data) to provide comprehensive insights into
the mechanisms of diseases.! This approach is particularly useful for uncovering complex
molecular interactions and biological pathways that remain hidden when analyzing individual
data types in isolation, and leads to a more complete understanding of disease etiology and pro-
gression.? Despite this potential, significant computational challenges exist with multi-omics
data integration. The high-dimensional, heterogeneous, and sparse nature of multi-omics data
creates substantial barriers in developing analysis methods that are both biologically inter-
pretable and computationally efficient.? These integration challenges highlight the need for
analytical frameworks that can effectively represent the inherently complex relationships in
multi-omics data.

Knowledge graphs have emerged as a promising solution to address these multi-omics in-
tegration challenges. By representing biological entities as nodes and the known relationships
that exist between them as edges, knowledge graphs provide a framework that can capture
the complex, interconnected nature of biological systems across data modalities.? Graph-based
approaches are particularly well-suited for large-scale, multi-omics data because they can nat-
urally accommodate heterogeneous data types while preserving their semantic relationships
and biological context. For multi-omics integration, a heterogeneous knowledge graph rep-
resentation offers particular advantages.* Unlike homogeneous graphs where all nodes and
edges represent the same type of entity or relationship, heterogeneous knowledge graphs can
simultaneously represent multiple entity types (e.g., genes, proteins, metabolites) and diverse
relationship types (e.g., regulatory interactions, protein-protein interactions, metabolic path-
ways) within a single structure.®> Another advantage of knowledge graph-based approaches
for multi-omics integration is that they do not require data from the same individuals across
different -omics layers. Instead, these methods can leverage population-level patterns and bi-
ological knowledge to create comprehensive representations that integrate information from
disparate studies and cohorts. Existing biological knowledge encoded in the graph structure
can then be leveraged via network analyses for a variety of purposes: making use of exist-
ing relationships in the graph to predict new connections, or for downstream tasks such as
patient-level classification.

For many well-characterized complex diseases like obesity, extensive genetic studies have
successfully explained a substantial proportion of disease heritability. Furthermore, polygenic
risk scores (PRS) demonstrate strong predictive performance; for obesity, typical AUC values
for PRS are around 0.8.° These genetic studies are enabled by large-scale biobanks (e.g.,
UK Biobank,® Penn Medicine BioBank,” and All of Us®) which are collections of de-identified
genetic, lifestyle, clinical and biological data. In contrast, endometriosis—one of many complex
gynecological conditions—affects approximately 10% of reproductive age women yet remains
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severely understudied and underfunded.® Endometriosis is characterized by the presence of
endometrial-like tissue outside the uterus and can cause chronic pain symptoms along with
comorbidities including infertility.'® Due to its underdiagnosis, traditional genomic approaches
fall short as there is a much lower prevalence observed in biobanks. Despite a broad sense
heritability estimation from a twin study of 47%,!! variants identified through GWAS studies
of endometriosis to-date (N = 928,413; negses = 44,125)'2 have only been able to explain
roughly 11% of this heritability, and the predictive accuracy of genetic risk scores have been
inconsistent as a result.'® The ability of knowledge graph methods to integrate information
across disparate studies and populations, without requiring matched individual-level data,
makes them especially suited to address these gaps. While previous studies have applied graph
representations to integrate multi-omics data for disease discovery!# and prediction,'®
not aware of effective applications of these methods to complex and understudied conditions
such as those in women’s health. By leveraging existing multi-omics data from independent
studies and incorporating established biological relationships contributing to disease, these
approaches can potentially uncover disease mechanisms and improve predictive models for
conditions where traditional large-scale genomic studies have been insufficient.

This study presents an innovative framework for integrating multi-omics data about dis-
ease associations through a heterogeneous knowledge graph representation. We hypothesize
that by systematically incorporating knowledge from diverse -omics data sources within a
unified graph structure, we can identify previously hidden candidate relationships that are
both biologically meaningful and mechanistically relevant to disease pathogenesis. Combining
large-scale biological data in this way will improve our ability to discover meaningful and in-
terpretable insights about disease pathogenesis. This is particularly impactful for historically
understudied women’s health conditions where traditional genomic methods have not fully
captured the complexity of disease etiology.

we are

2. Methods
2.1. Knowledge Graph Data Sources

To construct a heterogeneous knowledge graph (KG), we integrated multiple biological data
sources (node and edge types summarized in Table 1). The graph is comprised of four primary
node types: single nucleotide polymorphisms (SNPs), genes, proteins, and phenotypes.

2.1.1. Node Data Sources

We derived SNP nodes from the Single Nucleotide Polymorphism Database (dbSNP).'6 To
avoid node type imbalance caused by including tens of millions of variants, we included only
SNPs with minor allele frequency (MAF) > 0.01 in the Penn Medicine BioBank (PMBB). We
obtained phenotype nodes from the Human Phenotype Ontology (HPO),!” which contains
standardized disease and trait terminology. We sourced gene information from the National
Center for Biotechnology Information (NCBI) gene database,'® and derived protein nodes
from the Universal Protein Resource (UniProt).!?
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2.1.2. Edge Data Sources

We incorporated five distinct edge types connecting the four biological entities (SNP, gene,
phenotype, and protein) into the KG. We established SNP-to-gene associations using expres-
sion quantitative trait loci (eQTL) data from version 8 of the Genotype-Tissue Expression
(GTEx) project.?® We derived SNP-to-phenotype relationships from Open Targets,?! which
aggregates evidence from genome-wide association studies (GWAS) and other sources. We
obtained gene-to-phenotype associations from PheWAS (phenome-wide association study)
summary statistics, published from OmicsPred.?? We established SNP-to-protein connections

through OmicsPred, and sourced gene-to-protein relationships from UniProt annotations.

19

Table 1. Knowledge Graph Data Sources

Graph Concept Data Source Features

Node: SNP dbSNP16 Bulk RefSNP JSON files

Node: Phenotype Human Phenotype Ontology!” HP Ontology

Node: Gene NCBI Gene'® Homo Sapiens, filtered to 9606 Taxa ID
Node: Protein UniProtKB!? Swiss-Prot Entries (XML)

Edge: SNP to Gene GTEx* version 8, eQTL

Edge: SNP to Phenotype Open Targets?! GWAS Summary Statistics
Edge: Gene to Phenotype OmicsPred?? PheWAS Summary Statistics
Edge: SNP to Protein OmicsPred?? Olink, Somalogic (Proteomics)
Edge: Gene to Protein UniProtKB!? Swiss-Prot Entries (XML)

2.2. Disease Risk Inference and Variant Exploration Knowledge Graph

(DRIVE-KG) Construction

hasEatl
snp_id: str
ne_id: str
tissue,expression: arr [float]
pva\,nominal‘. arr [float]
pval_beta: arr [float]

Phenotype

Figure 1. Knowledge Graph Schema.
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When designing the DRIVE-KG schema
(Figure 1), we prioritized having dense
node properties and fewer edge types to
avoid sparsity issues when performing ma-
chine learning analyses on the graph. We
maintained cross references of node type
identifiers across databases (‘dbXrefs’) as
properties of the gene and phenotype node
for possible future querying by other re-
searchers. The ‘tissue_expression’ property
of the ‘hasEqtl’ edge is an array of length
53 (number of tissues) that contains all
tissue-specific beta values for eGenes in
this dataset. Since eGenes (a gene whose
expression is influenced by eQTLs) are



Pacific Symposium on Biocomputing 2026

tissue-specific in the Omics Pred dataset, we aggregated all tissue-specific effects for a partic-
ular SNP—Gene pair into this list. If a particular SNP—Gene pair did not have a tissue-specific
association, we set the beta value for that entry to 0.

Omics Pred pQTI1 data pertain to the same 53 tissue types as published by the GTEx
consortium, with the exception of Bladder, Fallopian tube, and Cervix (Endocervix & Ecto-
cervix), resulting in a total of 49 tissue types. We mapped the tissue expression array in the
same alphabetical order as used by the GTEx consortium,?° so the index of a given beta value
in this array can be used to infer from which tissue it came from.

The DRIVE-KG construction process involved several key steps: first, we standardized
identifiers across all data sources (e.g., harmonized to the same Entrez identifier for all gene-
related data and ensured that hg38 was used to represent all SNP-related information). Finally,
we ingested these files into Memgraph for subsequent visualization and analysis.

For the purposes of model training, we removed all unconnected nodes (node with degree =
0) in the graph (removing 94.2% of the original 13,806,079 nodes), yielding a total of 801,112
nodes and 1,390,440 edges in the graph. The removed nodes consisted mainly of highly specific
genetic variants and phenotypes without documented associations in our data sources. This
pre-processing step preserved the core connectivity structure necessary for effective graph-
based learning and link prediction analyses.

2.3. Link Prediction

To identify previously unreported, biologically relevant relationships within DRIVE-KG, we
employed link prediction methods that leverage its multi-modal data structure. The core
premise of our link prediction framework is that missing edges can be inferred from graph
connectivity patterns, because biologically meaningful associations often exhibit characteristic
topologies. For instance, if a SNP is associated with multiple genes that are collectively linked
to a specific phenotype, this suggests a potential direct SNP-phenotype relationship that may
not be explicitly captured in current databases. Similarly, proteins sharing common genetic
variants and phenotypic associations may indicate previously uncharacterized protein-protein
interactions or shared functional pathways.

Given that DRIVE-KG is created with disease-agnostic biological data, it can be queried
for links to any phenotype (using its HPO identifier). We were interested in predicting whether
there should be a link between a given SNP node and two pilot phenotypes: endometriosis
and obesity, both complex traits with contrasting levels of genetic characterization (67 versus
112 existing genome-wide significant variants, respectively).

We generated 64-dimension node embeddings using Memgraph’s node2vec?® module and
then used these embeddings as input for a pairwise multilayer perceptron (MLP) model devel-
oped using the PyTorch Lightning?* module. The three-layer feed-forward MLP used rectified
linear unit (ReLU) activations and dropout, projecting 64-dim embeddings to 128, then se-
quentially reducing to 64 and finally 1 dimension. The output scalar represents the probability
of a particular SNP-phenotype edge.

We trained the link prediction module on all snpAssociated WithDisease (SNP-Phenotype)
edges with Memgraph’s native link prediction module, applying a 70-30 training-validation
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split. To evaluate specific phenotypes, we queried the trained model with their HPO identifiers
(HP_0030127 for endometriosis and HP_0001513 for obesity). The model outputs a score in
the range [0,1] (from the final sigmoid activation), representing its confidence in a potential
association. To assess the sensibility of these predictions, we focused on high-confidence edges
(model score > 0.95) and cross-referenced them with published GWAS results.!? We also
explored the neighborhood of these candidate associations within DRIVE-KG.

2.4. Endometriosis Patient Classification

In order to assess the utility of DRIVE-KG for disease risk stratification, we trained a graph
convolutional network (separate from the link prediction procedure). In particular, we explored
the potential of this graph to accurately stratify disease risk at the patient level when applied
to endometriosis/adenomyosis. We obtained chart reviews for a cohort of 1,441 patients from
the PMBB7 with their status of endometriosis or adenomyosis (case or control) labeled, as
these conditions are often grouped together during phenotyping despite likely differences in
their underlying pathogenesis.?® For endometriosis cases, the chart review also documented
surgical disease stage according to established clinical classification systems, enabling both
binary case-control analyses and stage-specific investigations. To calculate genetically inferred
ancestry (GIA) for each participant, principal components were calculated from PMBB geno-
type data and then projected onto the reference HapMap3 dataset.?6 GIA for each participant
was assigned by comparing their projected principal component scores to the HapMap3 ref-
erence populations and classifying them using a kernel density estimation approach.?” Table
2 contains additional cohort demographics and GIA; a supplemental version with relevant
co-morbidities is available in the project’s Github repository.

Table 2. Demographics of PMBB Chart-Reviewed Cohort

Characteristic Category Overall (n=1441) Control (n=732) Case (n=709)

Sequenced gender Female 1441 (100.0%) 732 (100.0%) 709 (100.0%)

GIA group AFR 613 (42.5%) 256 (35.0%) 357 (50.4%)
AMR 30 (2.1%) 20 (2.7%) 10 (1.4%)
EAS 20 (1.4%) 13 (1.8%) 7 (1.0%)
EUR 746 (51.8%) 422 (57.7%) 324 (45.7%)
SAS 30 (2.1%) 19 (2.6%) 11 (1.6%)
UNKNOWN 2 (0.1%) 2 (0.3%) —

To curate the graph classification dataset, we generated per-patient copies of DRIVE-KG
from the chart-reviewed cohort. We did this by first exporting the base KG (with existing
network edges) and graph connectivity information from Memgraph into Python (PyTorch
Geometric library?®). Then, we assigned the value of each SNP node, for each patient’s graph,
as the imputed genotype dosage (where the value indicates the dosage of the alternate allele at
a given locus) from imputed genotyping data in the 2024 PMBB data release 3.0, which was
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processed using PLINK2.0.2° Here, the prediction task is whether the entire graph represents
endometriosis/adenomyosis (case) or not (control). For all non-SNP node types, we represented
them with 8-dimension embeddings learned using the node2vec module. We also added per-
patient covariates (age and the first 5 of overall ancestry principal components (PCs)) to the
classifier.

We leveraged PyTorch Lightning to load the patient graph objects and train the graph
classifier. The graph classifier architecture contains two convolutional layers for all edge types,
with SAGEConv layers wrapping each of the edges. We chose SAGEConv due to its inductive
capabilities, and ability to efficiently scale to large graphs. We used 64-dimension projections
of the 8-dimension embeddings learned on all nodes as model input. We used RelLU activation
functions for the two convolutional layers, and the ‘sum’ aggregation function (which generates
64-dimension tensors for each node type). We then generated pooled GNN embeddings over the
SNP node type, which creates 64-dimension tensors for the entire graph. We pooled over the
SNP node type alone since only the SNP node values differ across patient graphs; therefore, it
is likely to contain biological signal that can be used to distinguish patients. We concatenated
the pooled, 64-dimension tensors with the per-patient covariates data (6-dimension: age and
5 PCs) to get 70-dimension tensors. We fed these tensors into the first linear layer, which
transformed them into 64-dimension tensors with the ReLLU activation function. The second
linear layer contained a sigmoid activation function that generated a binary classification
value (single probability per graph/patient) from the 64-dimension tensors. For each epoch,
we specified a batch size of 16, a learning rate of 0.001, and used the Adam optimization
function.

We compared the performance of disease risk prediction using DRIVE-KG to a genetic risk
score (GRS)!2 developed and evaluated on the same patient cohort (with the same training-
validation split of patients between DRIVE-KG and the GRS). We calculate the GRS by
linearly combining the patient’s genetic information, age and 5 PCs (as covariates) to ensure
a fair comparison.

3. Results
3.1. Link Prediction

We investigated link predictions for two phenotypes of interest: endometriosis (HP_0030127)
and obesity (HP_0001513). For each phenotype, we obtained recommendations from the
model of SNP-phenotype links, ranked by their binary classification score and annotated
with whether they were existing or candidate associations.

3.1.1. Endometriosis

Our link prediction analysis identified 66 high confidence, candidate SNP-endometriosis asso-
ciations. Notably, many of these predicted associations involved SNPs with well-established
links to other complex traits and conditions yet had not been previously associated with en-
dometriosis in the literature (except for rs10828249 located on MLLT10°). Specifically, 24.2%
of the top-ranked predicted SNP-endometriosis links involved variants previously associated
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with body mass index (BMI)/obesity-related traits, 6% with lipid metabolism (triglycerides
and HDL), and 4.5% with depressive disorders. Additionally, these top-ranked predicted SNPs
are enriched in previous endometriosis GWAS for p-values with an average magnitude of 0.473.
The majority of these associations (60/66) are also not in LD with each other (R? < 0.1), with
the exception of 3 variant pairs with R? values ranging from 0.4-0.65. We also estimated nar-
row sense heritability within the PMBB cohort, using previous GWAS associations versus
these associations in addition to the 66 SNP-endometriosis candidates. The variant set from
previous GWAS (136 SNPs)!? explained an average variance of 16.73% (pseudo—R? 90% CI:
13.03-20.39%). Adding the 66 DRIVE-KG variants increased this to 24.64% (pseudo—R? 90%
CI: 20.30-28.82%), an improvement of 7.91%. We observed a higher confidence for candidate
associations compared to existing association scores. This could be because the model is un-
dertrained on endometriosis associations compared to more well-studied diseases (i.e., those
with a greater number of genome-wide significant associations) and biased towards positive
predictions as a result. Candidate SNP-endometriosis associations had a mean confidence
of 0.757 £ 0.179, whereas the 67 known SNP-endometriosis edges had a mean confidence of
0.634 + 0.163. Figure 2 compares known versus candidate SNP—endometriosis associations in
DRIVE-KG with —logy link prediction score on the y—axis. We also visualize the neighbor-
hood of candidate signals, which are not explicitly connected to endometriosis as a phenotype,
but rather relevant pathways and associated conditions.
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Figure 2. Endometriosis Link Prediction Results. (a) Subgraph view of rs1420092, with 100% of
edges from pQTLs in the IL—1 and IL—§& family, which are key mediators of immune and inflamma-
tory pathways. (b) Subgraph view of rs1105588 linked to breast cancer (GWAS), which is associated
with endometriosis.
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3.1.2. Obesity

In contrast to the endometriosis results, link prediction for obesity yielded markedly different
patterns, reflecting extensive existing knowledge for these well-characterized phenotypes. The
link prediction model ranked the 112 existing SNP-obesity associations with a mean confi-
dence of 0.937 £+ 0.111 (much higher than that of endometriosis), whereas the candidate SNP-
obesity associations were ranked substantially lower with a mean confidence of 0.255 + 0.178.
Of the 1,575 high-confidence, candidate SNP—obesity associations, 348 could be evaluated
using LDlink, as many variants lacked corresponding entries in the GWAS Catalog and thus
could not be assessed. Among these, 38.22% were in high LD (R? > 0.8) with previously es-
tablished loci (NEGR13' and DNAJC27-AS132) for obesity or related comorbidities, rather
than unreported associations. This suggests that the predicted associations largely recapit-
ulated existing knowledge of metabolic pathways and obesity-related biological mechanisms
already well-documented in the literature. The network visualizations for the high-confidence,
candidate SNP-obesity associations in Figure 3 (rs74432706 and rs329642) demonstrate that
these predictions are primarily driven by neighboring connections to obesity phenotypes, as
opposed to distinct biological signals.

Obesity Link Prediction
(signals =0.9945, +500kb)

° . SNP category
8 |* o . o ®b e new signal (not proximal)
m R ® e new signal (proximal)
5 3 " i new signal (non-significant)
$|6 l l' i‘ ' " ! L H I = existing
R . H . H | t . . " - ™
o g e b L] xR LY =, 0 el
a .’1. oo o R - " o " of (] [ ]
E‘ 4 - .! e, . . n - 4 .
£ »* A1 v {1
T s . . ' L L
(=) LR 2 X
S ° F i 4 .
) l !] I I [
) I I l
0 -
— ~ m < N O N ©® O O H N MY INONOOON
H o oH oH oH A A A A AN

Chromosome

(a) O (b)
@ © o

Obedlty

A
Abdéminal obesit
geneAssociatédWithDisease v
Childhood-onset truncal obesity geneAssociatedWithDisease
e

geneAssociatedWithDiseas:
.\asprmemoscloym
Protein turtle homolog B v
haseQTL

IGSF9B
geneAssociatédWithDisease

A
rs329642

e 9 T
Figure 3. Obesity Link Prediction Results. (a) Subgraph view of rs74432706, with an eQTL edge
(driven by the Brain Putamen basal ganglia tissue type) to PLC1, which modulates intracellular
signaling pathways and has 4 PheWAS associations with obesity phenotypes. (b) Subgraph view of
r$329642 with an eQTL edge (driven by Whole Blood and Sigmoid Colon tissue types) to IGSF9B,
a cell adhesion molecule with 4 PheWAS associations with obesity phenotypes.
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3.2. Endometriosis Patient Classification

Our cohort consisted of 1,411 PMBB participants assigned female at birth with imputed
genotyping data and a chart reviewed label (0 or 1) for having endometriosis/adenomyosis or
not. With a 70-30 training-validation split, the graph classifier had an F1 score of 0.752. We
compared this to a GRS developed and evaluated on the same patient cohort, which had an
F1 score of 0.698 (additional metrics displayed in Table 3). Since this is a binary classification
task, the model provides a score (value between 0 and 1, inclusive) for its predicted likelihood
of a given patient having either an endometriosis or adenomyosis diagnosis. Figure 4 provides
model score distributions stratified both by disease subtypes from chart reviews (Figure 4a)
and by surgically confirmed endometriosis stages (1-4) (Figure 4b).

Table 3. Patient Classification Evaluation (Mean + Standard Deviation)

Model Type  AUC-ROC AUPRC Fy Accuracy
DRIVE-KG 0.571 £ 0.032 0.739 £ 0.033 0.752 £ 0.0193 0.642 + 0.0225
GRS 0.564 4+ 0.032 0.738 £ 0.030 0.698 + 0.022 0.598 £ 0.024
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Figure 4. (a) Model score distribution for chart-reviewed disease subtypes. Density distribution
indicates that high model scores for patient classification are primarily driven by adenomyosis signal.
(b) Model score distribution by chart-reviewed, surgically confirmed endometriosis stages. Boxplots
indicate that the model demonstrates particular strength in identifying the most severe endometriosis

stage (stage 4).
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4. Discussion

This study demonstrates the potential of heterogeneous KG approaches to advance our un-
derstanding of understudied diseases where traditional genomic methods have plateaued. Our
findings provide several key insights into the utility of integrating multi-omics data through
graph-based representations for both discovery and clinical prediction applications. Link pre-
diction revealed a striking contrast between well-studied and understudied phenotypes, vali-
dating our central hypothesis. For endometriosis, we identified high-confidence candidate SNPs
largely independent of one another (R? < 0.1) and enriched for variants linked to BMI, lipid
metabolism, and depressive disorders—traits frequently co-morbid with endometriosis.?3 3
Network visualization further connected these variants to underlying inflammatory and cell
proliferation pathways, providing additional insight into shared biological mechanisms. This
pattern suggests shared biological pathways between endometriosis and these co-morbid con-
ditions, which is consistent with emerging mechanistic hypotheses!?3%36 and our PMBB chart
reviewed cohort, which shows elevated risks of hyperlipidemia (RR 1.85), obesity (2.53), CVD
(2.03), hypertension (1.79), and depression (1.95). These findings help address the “miss-
ing heritability” gap between traditional polygenic risk scores (explaining 11%) and the broad
sense heritability estimate from a twin study (47%).!? Conversely, link predictions for obesity—
a trait with extensive genomic characterization—yielded lower confidence scores and predom-
inantly identified variants in LD with known associations. This validates that DRIVE-KG
appropriately finds fewer novel discoveries for well-mapped biological landscapes while suc-
cessfully uncovering genuine candidates for understudied conditions.

Our patient classification for endometriosis demonstrates modest but meaningful improve-
ments over traditional genetic approaches. The DRIVE-KG-based model achieved an F'1 score
of 0.752 compared to 0.698 for the GRS. These moderate effect sizes show potential clinical
relevance for a condition where existing genomic tools perform poorly: the model showed
enhanced prediction for adenomyosis and demonstrated particular strength in identifying
patients with severe endometriosis (stage 4). The improved performance likely stems from
DRIVE-KG’s ability to capture complex multi-omics relationships that single-modality ap-
proaches miss, even when the only patient-specific input is genetic data. Rather than relying
solely on individual genetic variants, our framework leverages broader biological knowledge
encoded in protein associations, gene expression patterns, and phenotypic associations. This
integrated approach may be particularly valuable for conditions like endometriosis where the
genetic architecture is complex and poorly understood.

These findings have broader implications for addressing healthcare disparities in women’s
health research. Endometriosis exemplifies the challenges facing many gynecological condi-
tions: high prevalence (affecting around 10% of women of reproductive-age?), significant clin-
ical impact, yet persistent research neglect leading to limited therapeutic options. Our results
suggest that graph-based approaches can help bridge these knowledge gaps by extracting ad-
ditional insights from existing multi-omics data without requiring massive new cohort studies
that may be infeasible for understudied populations. The identification of shared pathways
with well-studied traits (obesity,®® depression®®) also suggests opportunities for re-purposing
existing therapeutic targets and biomarkers. If endometriosis shares mechanistic pathways
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with metabolic or psychiatric conditions, this could accelerate drug development and improve
patient care through a better understanding of comorbidity patterns.

Our study has several limitations. First, the construction of DRIVE-KG relied on existing
databases that may contain biases toward well-studied biological pathways, potentially limit-
ing discovery of entirely new mechanisms. Second, while we harmonized variants across alleles
when creating DRIVE-KG, we do not fully account for differences in the effect allele when
processing the PMBB genotype data to make patient-specific graphs and simply drop vari-
ants that are in PMBB data but not in DRIVE-KG. Changing the SNP node representation
to be per alternate allele would enable us to more completely utilize genotype data during
patient classification. Third, we filtered the SNP nodes at a MAF > 0.01 to accommodate
memory constraints from Memgraph, but this restricted our analysis to common variants. Our
future work will incorporate rare variants to explore associations with higher effect sizes. For
patient classification, our modest AUC improvements will require further validation in inde-
pendent cohorts, and generalizability across diverse, multi-institution populations remains to
be established. Lastly, we cannot yet automatically incorporate data from source databases of
DRIVE-KG. Ensuring the continual refreshment of its underlying data is critical for scalable
biological discovery, and we plan to address this in subsequent development.

Our future work will focus on incorporating additional data modalities (e.g., transcrip-
tomics, metabolomics, protein-protein interaction and existing genetic pathways) to further
enhance the comprehensiveness of DRIVE-KG. Additionally, experimental validation of our
predicted SNP-endometriosis associations will be crucial for translating these computational
findings into biological insights.

In conclusion, our study demonstrates that DRIVE-KG offers a promising approach to ad-
vance precision medicine in understudied diseases. By integrating multi-omics data in a unified
framework, we identified previously unreported biological candidates for endometriosis (that
underscore emerging hypotheses about disease mechanisms) and improved patient classifica-
tion beyond traditional genomic approaches. These findings highlight the value of graph-based
methods for conditions where conventional genomic tools have reached their current limits,
offering a path forward to address knowledge gaps in understudied populations.
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