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Biologically informed deep neural networks, which connect input layer to hidden layers based on gene-
pathway relationship have gained popularity in recent years. However, most existing methods do not
incorporate protein-protein interactions (PPI) and protein-DNA interactions (PDI) in their designs. In
this study, we introduce BioLM-NET, a deep learning-based framework that fuses single cell or bulk
gene expression data and DNA methylation data with prior biological knowledge including Protein-
Protein Interactions (PPI), Protein-DNA Interactions (PDI). BioLM-NET also aggregates latent
representation of omics signals at pathway-level through an attention-based pathway layer where a pre-
trained large language model (LLM) was incorporated to generate context-specific gene embeddings.
We evaluated BioLM-NET on single cell colorectal cancer data from scTrioseq2 platform to predict
primary and metastatic cancer cells, on TCGA-BRCA, TCGA-GBM, TCGA-COAD to predict cancer
subtypes and ROSMAP data to predict Alzheimer’s disease patient. Our results showed that BioLM-
NET outperformed baseline and state-of-the-art (SOTA) methods, P-NET and PASNet with statistical
significance on scTrioseq2 data, TCGA-COAD and ROSMAP data and ties with SVM and Dense neural
network on TCGA-BRCA data. Our ablation studies demonstrated the importance of incorporating PPI,
PDI data and attention-based pathway layer. We also interpret our models and found out that our
important input features are significantly enriched in GO terms and KEGG pathways and can serve as
potential biomarkers or therapeutic targets for the corresponding disease.

Keywords: Biologically Informed Neural Network, Large Language Model, scTrioseq2, Alzheimer’s
disease.
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1. Introduction

The integration of multi-omics data—including genomics, transcriptomics, epigenomics, and
proteomics—holds significant promise for enhancing the accuracy of disease prediction and
classification. Several machine learning (ML) and deep learning (DL) models have been developed to
integrate multi-omics datasets. However, most existing approaches lack interpretability reducing their
practical usability.

To address this issue, recently biologically informed deep neural networks have been developed.
For instance, Elmarakeby et al. introduced P-NET, a biologically informed deep neural network initially
developed to classify prostate cancer patients into treatment-resistant or primary groups'. P-NET
demonstrated not only superior prediction performance compared to conventional methods but also
provided critical insights into novel therapeutic targets through its interpretable architecture. Although
the model is easy to interpret, it relies on existing pathway databases, thereby might miss new or
unknown interactions not yet captured in those resources. Other biologically informed neural network
architectures such as DrugCell> and DCell® have demonstrated capability in modeling biological
processes and predicting therapeutic responses. However, because DCell was validated in yeast, its
direct translation to human diseases may fail to capture the complexity of human biology.

Fortelny and Bock et al. proposed Knowledge-Primed Neural Networks (KPNNs) by incorporating
biological network priors into models analyzing single-cell RNA-seq data®. While KPNNs showed
good interpretability and accuracy, they did not utilize multi-omics data and depended heavily on the
quality of the input biological networks. Wang et al. developed BioNet for analyzing tumor
heterogeneity from imaging data, but its accuracy may vary with image quality and clinical settings®.
Another interpretable model, PASNet incorporated sparse coding and pathway-level representations to
predict prognosis from high-throughput gene expression data®. While PASNet demonstrated robust
performance and clear interpretability through pathway hierarchies, it did not utilize multi-omics inputs
and was tested only on bulk transcriptomic data from glioblastoma.

Most of the current models use either pathway or Protein-Protein Interaction (PPI) and Protein-
DNA Interaction (PDI) networks but none combine all three. These models may be interpretable but
are not context-specific, and most of them work on single omics type from bulk tissue rather than single-
cell and multi-omics data.

To address these gaps, we introduce BioLM-NET, a novel PPI, PDI, and pathway aware neural
network framework that fuses single-cell gene expression, DNA methylation, and pretrained Large
Language Model (LLM) based gene embeddings. We conducted comprehensive benchmarking across
five datasets, namely scTrio-seq2 data for colorectal cancer’, TCGA-BRCAS for breast cancer, TCGA-
GBM’ for glioblastoma, TCGA-COAD'? for colon cancer, and ROSMAP!! for Alzheimer’s disease
(AD) and achieved state-of-the-art (SOTA) performance in most cases. Our results demonstrated
enhanced biological interpretability showing how pathway-level attention and LLM-derived
embeddings uncover key molecular features of cancer progression and metastasis, cancer subtyping,
and enable stratification of AD patients. The source code and datasets for BloLM-NET is available at
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https://github.com/bozdaglab/BioLM-NET under Creative Commons Attribution-Noncommercial 4.0
International Public License.

2. Materials and Methods

2.1 Dataset

In this study, we utilized gene expression and DNA methylation data from five datasets: Single Cell
Trio-seq2 (scTrio-seq2), TCGA-BRCA, TCGA-GBM, TCGA-COAD, and ROSMAP. We downloaded
scTrio-seq2 data from the Gene Expression Omnibus (GEO) under accession number GSE97693’.
Processed TCGA-BRCA and ROSMAP datasets were obtained from Wang et al.'?, while processed
TCGA-GBM and TCGA-COAD datasets were obtained from Yang et al.'*. We utilized the top 500
features from both TCGA-GBM and TCGA-COAD datasets. Biological prior information was obtained
from three sources: protein-protein interactions (PPI) from STRING' database, protein-DNA
interactions (PDI) from the DoRothEA! database, and pathway information from KEGG database!®!”.
We also utilized LLM embedding for genes from GenePT '¥. A summary of the five datasets is provided
in Table 1.

Table 1: Overview of the five datasets:. GE: Gene expression, DM: DNA methylation, PPI: Protein-protein interaction,
PDI: Protein-DNA interaction

Dataset # # features # features #PDI #PDI #PPI #PPI #Pathways # Pathways
samples (GE) (DM) (GE) (bM) (GE) (DM) (GE) (DM)
scTrioseq2 609 1,673 1,712 2,459 2,293 21,968 6,690 161 173
BRCA 875 999 999 1,922 1,704 6,280 3,088 133 142
GBM 244 500 500 682 602 2,276 2,358 140 102
COAD 256 500 500 866 874 2,796 2,182 103 97
ROSMAP 351 200 200 497 380 432 620 134 134

2.2 scTrio-seq2 gene expression data preprocessing

The gene expression data had two units: FPKM (510 samples, 25,373 genes) and TPM (688 samples,
23,457 genes). We converted all values to TPM to standardize the data. We only kept genes that are
common in both units. The final dataset contained 1,198 samples across five classes: Primary Tumor
(PT, n=616), Lymph Node Metastasis (LN, n=224), Liver Metastasis (ML, n=226), Post-Treatment
Liver Metastasis (MP, n=102), and Normal Colon (NC, n=20). We excluded NC from further analysis
to mitigate class imbalance due to its small sample size. We performed differential expression (DE)
with MAST" (adj. p < 0.05, log2FC > 2) and identified 1,673 unique genes across four comparisons.
DE analysis details and figures are provided in Supplemental Note 1 and Supplemental Figures 1-2.
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2.3 scTrio-seq2 DNA methylation data preprocessing

Single-base DNA methylation data were aggregated to the gene-level by averaging promoter signals.
From 1,295 samples and 22,910 genes, we retained 17,123 after filtering and selected the top 10%
highly variable genes. The details of DNA methylation preprocessing are provided in Supplemental
Note 1.
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Fig. 1. The architecture of BioLM-NET. (Here, model outputs are four classes: PT = Primary Tumor, LN = Lymph Node
Metastasis, MP= Post-Treatment Liver Metastasis, ML= Liver Metastasis)

2.4 Protein—DNA interaction (PDI) data

PDI data were obtained from the DoRothEA'® database. It categorizes TF—target interactions into five
confidence levels: A (highest) to E (lowest). For this study, we used only levels A, B, and C. The raw
dataset included 32,443 interactions between 430 unique TFs and 9,290 unique target genes. We filtered
out target genes that were not DE (gene expression) or not highly variable (DNA methylation)..

2.5 Protein—protein interaction (PPI) data

Human PPI data were downloaded from the STRING'* database. Each PPI interaction has a combined
score derived from multiple evidence sources. We selected interactions with a combined score > 0.7 to
represent high-confidence associations. This filtering resulted in 504,062 high-confidence PPIs. Next,
we retained the top 10% of interactions by score to preserve the highest-confidence associations. We
further filtered interactions so that at least one of the proteins corresponded to a differentially expressed
gene (gene expression data branch) or highly variable gene (DNA methylation data branch).
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2.6 Pathway data

To compute pathways associated with the genes in PDI and PPI, we utilized the R package
clusterProfiler®® to perform pathway enrichment and kept only the significantly enriched pathways
(Benjamini—Hochberg adjusted p-value < 0.05).

2.7 LLM embedding

GenePT!® is an LLM framework that uses OpenAl’s text embedding APIs to convert gene-centric
descriptions into embeddings. These embeddings capture gene specific context such as aging, drug
interactions, and pathway membership. We extracted GenePT embeddings from Hugging Face and kept
only embeddings for genes with KEGG pathways identified in our analysis. These gene embeddings
were then used to implement an attention mechanism between genes and pathways that allows the
model to assign greater importance to genes with higher attention scores so that it enhances model
performance and interpretability.

2.8 Framework architecture

Our framework uses a dual branch design that processed gene expression and DNA methylation data
in parallel. In each branch, PDI and PPI priors are connected via a custom masked dense layer, and
gene level activations are aggregated into pathway level embeddings by a custom attention pathway
layer. The two pathway embeddings are then concatenated and passed through an MLP to generate the
final prediction. The framework architecture is shown in Figure 1.

2.8.1. Biological mask matrices

We constructed two biologically informed mask matrices and then merged them. First, the PDI mask
matrix, Mpp; € {0,1}™™ (Eq. 1) captures transcriptional regulation, where n is the number of DE
genes or highly variable genes and m is the number of unique target genes.

1 if geneiis a TF regulating gene j

Mpp,[i, j1 = { 0 otherwise, M

Second, the PPI Mask matrix, Mpp; € RP1*P2 (Eq. 2) encodes interaction strengths between proteins,
where p; is the number of DE genes or highly variable genes and p, is the number of unique proteins.

. ., _ (combined score between protein i and j
Mppi 111 = { 0 otherwise, )
Finally, we horizontally concatenated those matrices to get a PDI-PPI mask matrix (Eq. 3).
Mppi—ppr = [Mpp;| Mpp,] 3)

2.8.2. Pathway mask matrix
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The pathway mask matrix, Mpg:, € {0,137 (Eq. 4) is a binary matrix, similar to the Mpp,. Here, 7 is
size of the union between target genes from PDI and proteins from PPI data and s is the number of
unique KEGG pathways.

1 if gene i is annotated to pathway q

Mpaenli, ql = {O otherwise, @

2.8.3. Masked layer

A custom masked layer was implemented to pass information from genes to their corresponding genes
in the hidden layer based on PDI and PPI. This layer operates by performing element-wise
multiplication of the mask matrix with the weight matrix, W € R%n*4out of the dense layer. (Eq. 5)

Winaskea =W O M (5)

2.8.4. Attention-based pathway layer

From PDI-PPI genes, we extracted KEGG pathways and organized them into a pathway layer. Each
node i in this layer represents one pathway and is associated with a trainable query vector chi) € R4,
We stack these k vectors into a matrix W, € R**4, To pass information from genes to pathways, we
employ an attention mechanism. To calculate attention, we begin with fixed, pretrained GenePT
embeddings G € R™% and the previous layer’s output XPP'=PPI € RP*" where b is batch size.
Rather than linking every gene equally to its pathways, we compute raw attention scores using Eq. 6.
After masking out gene-pathway links (Eq. 7), we compute attention weights using Eq. 8. Finally, we
aggregate gene signals per pathway using Eq. 9.

S = VVqGT e REXT (6)
Smask = STO Mpath 7
i exp (Smask,i,k) e RT*k (8)

Zz’=1 exp (Smask.i’ k)

Zpath — XPDI—PPIa € ]bek (9)

This step gives us pathway-level representations where each pathway combines information from
related genes based on learned attention scores. Then we pass pathway-level representation to a dense
layer named projection layer to reduce the high dimensional pathway representations. We apply this for
both gene expression and DNA methylation branches, obtaining Z;r and Zpy 4, respectively.
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2.8.5. Fusion layer

We fuse the two pathway outputs and pass them through two fully connected layers before the final
output (Eq. 10-13).

Zrusea = [Zge || Zpnal € Rb>2k (10)
H' = 0(ZpyseaW? + B1) € RP*% (11)
H? = o(H'W? + 2) € Rb*d (12)
9 = Softmax(H?W°4t + powt) € RPxc (13)

In Eq. 10-13, ¢ is the activation function, d;,d, are hidden layer dimensions, W1, W2, W4t are
weights, 1, B2, B°U are biases, and c is the number of classes.

2.8.6. Customized loss function

To mitigate class imbalance, we used a customized sparse categorical cross-entropy loss by assigning
higher weights to underrepresented classes. The loss for a sample i with true label y; and predicted
probability y; is defined in Eq. 14

L = —w;.log () (14)

where w; is the class weight. The total loss over a batch of N samples is defined in Eq. 15

1y

L=23,1L, (15)

Class weights are computed as w, = —Cr; , where 1. is the number of samples in class ¢, C is the number
MNc

of classes, and n is the total number of samples.
3. Results

To evaluate BioLM-NET, we tested it using five datasets: scTrioseq2, TCGA-BRCA, TCGA-GBM,
TCGA-COAD, and ROSMAP and compared with other tools. The dataset splitting and model
evaluation procedures are described in Supplemental Note 2. We also interpreted the model outputs and
performed an ablation study to identify the key components of BioLM-NET.

3.1. Comparing BioLM-NET with baseline and SOTA models

We compared BioLM-NET to three traditional machine learning classifiers (i.e., Support Vector
Machine (SVM), Random Forest (RF), and XGBoost), a fully dense neural network, and two SOTA
methods (i.e., P-NET and PASNet). Since SVM, RF, and XGBoost cannot directly incorporate prior
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pathway knowledge or LLM derived embeddings, we concatenated the gene expression and DNA
methylation data to train these models. For the Dense NN, we preserved BioLM-NET’s overall
architecture but replaced its sparse connections with dense layers and excluded the attention-pathway
module. For both P-NET and PASNet, we concatenated gene expression and DNA methylation data
into a single input. P-NET dynamically selects relevant pathways during training, while PASNet relies
on user-provided pathways.

Figure 2a summarizes F1 score performance for seven methods across five datasets. BloLM-NET
attained the highest F1 score on scTrioSeq2, COAD and ROSMAP, and was on par with Dense NN
and SVM on BRCA (0.82). Wilcoxon rank-sum tests confirmed that these improvements over both
baseline and state-of-the-art models were statistically significant. Results for precision, recall, and
accuracy are provided in Supplemental Figures 3—5. BioLM-NET achieved the highest precision on
scTrioSeq2 (0.95), and ROSMAP (0.83) datasets and second highest precision on BRCA dataset. For
recall, BioLM-NET attained the top values on scTrioSeq2 (0.96), COAD (0.80) and ROSMAP (0.83)
and second highest recall on BRCA dataset. BioLM-NET consistently achieved the highest accuracy
on scTrioSeq?2 (0.95), COAD (0.87) and ROSMAP (0.83). BioLM-NET, along with other deep learning
methods performed comparatively lower on GBM dataset due to significant class imbalance (30.3%,
25.0%, 18.8%, 17.6%, and 8.3%) and limited sample size (195 training and 49 testing). In these settings,
traditional machine learning models often outperform deep learning models.

(a) (b)

*
BioLM-NET *
- svM 1o == Biol — =
* —_—
- —~ .
% == Dense NN 0.9 * * ? - %IT, i —
L = pNET . % = = = = -
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I * " == BioLM-NET o8y
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Fig. 2. (a) F1 score comparison of BioLM-NET with baseline and SOTA models. (b) Boxplots of F1 score for BioLM-
NET (blue) and Dense NN (orange) across 10 independent runs at each percentage of training samples. Wilcoxon rank
sum test was performed by comparing BioLM-NET with other models (p-value < 0.05 is denoted by *)

3.2. Predictive performance of BioLM-NET under limited data

To assess robustness with limited training data, we compared BioLM-NET against a fully dense neural
network across smaller training sets. We first split our data into training (80%) and test (20%). We kept
the test set constant while subsampling the training data at 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%, and 90% of its original size. We tested each model trained using a subsample training data on the
same test set. We observed that the performance of models improved with more training data. BioLM-
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NET outperformed the Dense NN at every fraction (Figure 2b), which shows that it remains robust even
when trained on substantially fewer samples. We performed a similar analysis using ROSMAP data
(Supplemental Figure 6). In this case, Dense NN outperformed BioLM-NET when using 10-50% of
the training data; however, BioLM-NET surpassed Dense NN beyond 50%. This result is possibly due
to the limited sample size of the ROSMAP dataset, where BioLM-NET requires more data to learn
effectively.

3.3. Ablation study

To assess the performance of each data modality with or without sparse connections, we conducted an
ablation study using scTrioseq2 dataset. We trained a dense neural network using only gene expression
data, which had a F1 score of 0.89 (Table 2). When we incorporated sparse connections based on PDI,
the F1 score increased by 3%, whereas adding PPI caused a 1% drop (Table 2). When both PDI and
PPI were utilized for sparse connections, the F1 score fell by 5%, which could be due to the extra
sparsity introduced by combining PPI with PDI connections.

Table 2. Effect of adding Prior biological knowledge and multi omics data in scTrioseq2 data. GE: Gene Expression data,
DM: DNA Methylation data, PPI: Protein-Protein Interaction data, PDI: Protein-DNA Interaction data. The result values
are shown as mean =+ standard deviation of 10 individual runs.

Model Precision Recall F1 score Accuracy
GE Dense 0.90+0.0135 0.90+0.0116 0.89 +£0.0140 0.89 £0.0136
GE_PDI 0.93+£0.0113 0.92+0.0104 0.92+£0.0105 0.92 £ 0.0096
GE_PPI 0.89 £ 0.0658 0.89 + 0.0600 0.88 £0.0792 0.88 £ 0.0647
GE_PDI_PPI 0.86 £ 0.0896 0.86 + 0.0605 0.84 £ 0.0783 0.84 £ 0.0580
DM _Dense 0.92 +£0.0043 0.92 £ 0.002 0.92 £ 0.0035 0.92 +0.0040
DM _PDI 0.93 £0.0087 0.92 +£ 0.0098 0.92 + 0.0095 0.93 £0.0075
DM_PPI 0.91 £0.0059 0.91 +£0.0089 0.91 +£0.0079 0.92 +£0.0074
DM_PDI_PPI 0.93+0.0161 0.93 £0.0243 0.92 £ 0.0206 0.94 £0.0151
GE DM _Dense 0.92 £ 0.0428 0.89 +£0.0997 0.88 £ 0.0997 0.89 £0.0761
GE DM _PDI 0.91+0.0134 0.91 +£ 0.0096 0.90+£0.0124 0.90 £0.0120
GE DM _PPI 0.92 £ 0.0240 0.91+0.0316 0.91+0.0319 0.92 £0.0267
GE _DM_PDI PPI 0.94 £0.0153 0.94+£0.0113 0.94+£0.0126 0.94+£0.0111
BioLM-NET 0.95 £+ 0.0062 0.96 + 0.0022 0.95 + 0.0039 0.95 + 0.0039

We observed that a dense neural network model trained with only DNA methylation data achieved a
higher performance (0.92) than the model trained using only gene expression data (Table 2) indicating
that DNA methylation data plays a stronger role for distinguishing primary tumors from metastatic sites.
Adding sparse connections based on PPI to the DNA methylation-based model reduced the F1 score by
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1%, whereas we did not observe any change in the performance when PDI data was utilized with or
without PPI.

A dense neural network trained using both gene expression and DNA methylation achieved a
slightly lower performance (0.88) than either single-modality model. However, adding sparse
connections boosted its performance. Incorporating PDI and PPI individually increased the F1 score
by 2% and 3%, respectively. When both PDI and PPI were integrated, the F1 score increased by 6%.
The best performance was achieved with BioLM-NET, which adds a pathway attention layer to this
framework.

We also evaluated the impact of the attention layer in BioLM-NET. When attention scores were
removed or replaced with scores from random embeddings, the F1 score dropped by 2% (Table 3)
indicating the importance of attention scores. These results collectively confirm that genuine pathway
structure and LLM-derived embeddings both contribute to classifying primary tumors and metastatic
regions.

Table 3. Effect of adding Pathway Attention Layer in scTrioseq2 data

Model Precision Recall F1 score Accuracy

BioLM-NET (Without LLM Embedding) 0.94 £0.0079 093 £0.0103 0.93 £0.0082  0.94 +0.0079
BioLM-NET (Random LLM embedding) 0.93 £0.0168 0.94 £0.0250 0.93 £0.0215 0.93 +0.0204

BioLM-NET 0.95 + 0.0062 0.96 + 0.0022 0.95 + 0.0039 0.95 £ 0.0039

To assess the biologically informed connections through PDI, PPI, and pathway associations, for each
model with sparse connection, we trained a model with randomized connections while preserving the
number of sparse connections (Supplemental Table 1).We observed that GE_PDI, DM _PDI, DM_PPI,
GE DM PPI models outperformed their random counterparts by 5%, 2%, 6%, and 15% in F1 score,
respectively which shows the impact of authentic PDI and PPI connections. In GE PPI model,
performance was unchanged compared to randomized version, suggesting that PPI alone adds no
additional signal in this context. However, the random version of GE_ DM _PDI model outperformed
the true model by 1% underscoring the need of more curated TF-target interactions. When all PDI and
PPI connections were randomized while leaving other component of BioLM-NET unchanged,
performance dropped by 40% in F1 score relative to BioLM-NET. Randomizing pathway connections
and LLM embeddings (while preserving shape) further reduced performance by 7%. Altogether, this
ablation study demonstrates that incorporating authentic PPI, PDI, and pathway priors, and LLM
embedding is essential for BlioLM-NET to achieve superior predictive performance.
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3.4. Interpretability of BioLM-NET

To understand how multimodal features, genes, and pathways contribute BioLM-NET’s performance,
we first applied SHAP analysis to rank the top 50 most important input features from gene expression
and DNA methylation data. We then performed Gene Ontology (GO) and KEGG pathway enrichment
to evaluate their biological relevance.

In the ROSMAP dataset, we identified 32 significantly enriched GO terms from the top 50
SHAP-ranked genes in the gene expression data (Supplemental Table 2). Focusing on the ten most
significant terms and taking their associated genes from our gene list, we highlight eight candidates:
KIF1C, NPNT, CCDC69, GPERI, KIF5A4, KIF5B, FOX0O4, MAP4K4. Genetic fine-mapping implicates
KIFIC as an AD risk locus and highlights a role for faulty kinesin mediated vesicular transport in
disease susceptibility across ancestries?!. NPNT is consistently upregulated in AD brain transcriptomes
across diverse populations?’. CCDC69 has emerged as a novel genetic locus associated with AD,
pointing to unexpected roles for spindle-assembly proteins in neurodegeneration?®. Elevated GPERI
expression correlates with increased tau tangle burden, implicating estrogen-receptor signaling in the
modulation of tau pathology®*. In AD, amyloid-p damages KIF54 so mitochondria cannot travel down
axons, causing energy shortages that lead to synapse loss*. KIF5B regulates tau protein dynamics, and
its dysregulation may drive tau pathology in AD?®. As a stress response transcription factor, FOXO4
governs oxidative-stress and insulin-signaling pathways that are disrupted in AD?’; and upregulation of
MAP4K4 in Alzheimer’s microglia drives neuroinflammatory signaling, marking it as a promising
therapeutic target to modulate inflammation in AD?®,

Table 4. Significant survival related genes from top 50 SHAP features in GBM, BRCA, and COAD

Dataset Branch of BioLM-NET Significant survival related genes
GBM Gene Expression CBX7%, CENPJ?, DACHI**, NUDT22, PM20D2, RALGAPAIPI, TBX3, WDPCP
DNA Methylation CPS1%, C160rf89, CANTI, CDKN2D, ELSPBPI1, GON4L, LDLRAPI
BRCA Gene Expression BCL2%, CXCLI*, EIF252%, FGD3%°, KDM4B*, NXNL2*', SOX11%,
SPARCLI*, SUSD3%
DNA Methylation IGFALS, IGFBP4, SCUBE2%, SERPINAI2
COAD Gene Expression ASPHD2, COX11, NMNATI%

DNA Methylation ARRDCI1, CAMTAI, CDCI144, DNAJCI7, FABP4Y, FGF22

In the ROSMAP dataset, the top 50 DNA methylation probe-associated genes were enriched in the
KEGG pathway hsa00010 (Glycolysis/Gluconeogenesis). Recent evidence indicates that dysregulated
glycolytic metabolism plays a critical role in AD development®’. Qiu et al. further demonstrated that
the glycolysis index is markedly lower in AD patients than in controls across four distinct brain
regions®’. Among our top DNA methylation features were three hsa00010 genes: GAPDHS, LDHC,
and ALDH3B]1. Consistent with these findings, Wang et al. identified GAPDHS via SHAP-based feature
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selection and reported its significant differential methylation in an AD prediction model, and also
highlighted LDHC among eight glycolysis genes with altered methylation profiles in AD versus control
subjects®!. In our DNA methylation dataset, two-sample t-tests comparing AD and control groups
yielded significant differences for GAPDHS (t = —2.995, p = 2.945x107?), LDHC (t = 3.889, p =
1.212 x107*), and ALDH3BI (t = 3.122, p = 1.948 x 1072). Density plots of these distributions are
presented in Supplemental Figure 7.

From our top 50 SHAP features derived from DNA methylation data in the GBM dataset, we
identified three significantly enriched GO terms: GO:0009112 (nucleobase metabolic process),
G0:0006206 (pyrimidine nucleobase metabolic process), and GO:0046112 (nucleobase biosynthetic
process). Jiang et al. reported that GBM relies on nucleotide metabolism to fuel rapid growth and
invasion that leads to poor clinical outcomes*s. Wang et al. demonstrated that pyrimidine metabolic
pathways are consistently upregulated in TCGA-GBM tumors relative to normal brain tissue®.
Zhou et al. showed that elevated activity of nucleobase biosynthetic enzymes correlates with poor
prognosis in GBM*’. We performed Kaplan-Meier survival analysis in GBM, BRCA, and COAD
datasets using the top 50 SHAP-ranked genes from both gene expression and DNA methylation
branches. Several genes showed significant associations with patient survival, and their relevance is
supported by multiple studies. The gene lists are provided in Table 4, with survival plots shown in
Supplemental Figures 8—13. These findings highlight BioLM-NET’s ability to uncover biologically
meaningful features with potential as biomarkers and therapeutic targets in cancer and AD.

To interpret BioLM-NET using an alternative approach, we applied LIME®!, a model agnostic
explainability framework, to identify the most important features contributing to our predictions and
asses potential feature biases in comparison with SHAP. We applied LIME on the ROSMAP and GBM
datasets and selected the top 50 important features from both the gene expression and DNA methylation
branches. We then examined the overlap between LIME and SHAP derived features using a one-sided
hypergeometric test. In ROSMAP, we identified 47 common genes (p = 2.384 x 1073®) and 43 common
DNA methylation features (p = 9.565 x 107%°). In TCGA-GBM, we found 24 common genes (p = 6.409
x 107) and 21 common DNA methylation features (p = 1.261 x 107'°). GO and KEGG analysis of
these features further confirmed their disease relevance (Supplemental Note 3).

To assess the key nodes in BioLM-NET layers, we examined per sample activation scores at every
layer of BioLM-NET trained on the scTrio-seq2 data for colorectal cancer and selected the ten nodes
with the highest mean activation score (Supplemental Figure 14). Early in the network, the class specific
density curves overlap almost completely, indicating minimal separability. As data propagate through
the fusion layer, the distributions begin to separate, and by the final (output) layer, each class’s
activation density is distinctly isolated. This illustrates how the model transforms mixed features into
clear, class-specific patterns.

Based on the activation scores of the attention-based pathway layer, we selected the top 20 pathways
and evaluated their relevance to colorectal cancer and their metastasis. In the gene-expression branch,
five KEGG pathways were significant (adjusted p-value <0.05): hsa04151 (PI3K—Akt signaling

655



Pacific Symposium on Biocomputing 2026

pathway), hsa04140 (Autophagy), hsa04144 (Endocytosis), hsa03050 (Proteasome), and hsa00190
(Oxidative phosphorylation). In the DNA methylation branch, three pathways reached significance
(adjusted p-value <0.05): hsa05206 (MicroRNAs in cancer), hsa03050 (Proteasome), and hsa00190
(Oxidative phosphorylation). Duan et al. showed that PIK3CA mutations activate the PI3K/Akt cascade
to drive colorectal tumor growth and metastasis®?. Manzoor et al. described how autophagy supports
metastatic colorectal cancer cell survival under stress™. Qin et al. demonstrated that dysregulated
endocytosis facilitates immune escape and metastatic dissemination in colon cancer*. Li et al. reported
that proteasome-mediated degradation of HIF-la impairs angiogenesis and migration, thereby
restraining CRC metastatic progression®®. Liu et al. revealed that enhanced oxidative phosphorylation
in colorectal cancer stem cells increases ATP production to fuel invasion and metastatic colonization®.
Together, these findings confirm the relevance of these pathways to colorectal cancer metastasis and
demonstrate that the pathway attention layer can identify potential therapeutic targets.

4. Conclusion

In this study, we developed BioLM-NET, a deep learning—based model that integrates prior biological
knowledge and LLM embeddings with multi-omics data to improve predictive performance and
interpretability. We evaluated BioLM-NET on five datasets spanning various prediction tasks,
including cancer subtype classification, AD patient detection, and identification of metastatic regions
in colorectal cancer. BioLM-NET achieved the highest performance on three datasets outperforming
state-of-the-art models such as P-NET, PASNet, and traditional machine learning and deep learning
models and tied on one dataset. Furthermore, model interpretation revealed that the most important
input features identified by BioLM-NET were significantly enriched in Gene Ontology (GO) terms and
KEGG pathways, suggesting potential as biomarkers or therapeutic targets for the respective diseases.
However, BioLM-NET is currently limited to bulk and single-cell omics data and cannot yet handle
spatial omics or longitudinal data. Its dual-branch design also restricts integration to only two modalities.
Future work will focus on extending the framework to incorporate additional omics types, spatial
information, and temporal dynamics to broaden its applicability and biological insight. Supplemental
materials are available at https://github.com/bozdaglab/BioLM-
NET/blob/main/Supplemental Material.pdf .
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