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Biologically informed deep neural networks, which connect input layer to hidden layers based on gene-
pathway relationship have gained popularity in recent years. However, most existing methods do not 
incorporate protein-protein interactions (PPI) and protein-DNA interactions (PDI) in their designs. In 
this study, we introduce BioLM-NET, a deep learning-based framework that fuses single cell or bulk 
gene expression data and DNA methylation data with prior biological knowledge including Protein-
Protein Interactions (PPI), Protein-DNA Interactions (PDI). BioLM-NET also aggregates latent 
representation of omics signals at pathway-level through an attention-based pathway layer where a pre-
trained large language model (LLM) was incorporated to generate context-specific gene embeddings. 
We evaluated BioLM-NET on single cell colorectal cancer data from scTrioseq2 platform to predict 
primary and metastatic cancer cells, on TCGA-BRCA, TCGA-GBM, TCGA-COAD to predict cancer 
subtypes and ROSMAP data to predict Alzheimer’s disease patient. Our results showed that BioLM-
NET outperformed baseline and state-of-the-art (SOTA) methods, P-NET and PASNet with statistical 
significance on scTrioseq2 data, TCGA-COAD and ROSMAP data and ties with SVM and Dense neural 
network on TCGA-BRCA data. Our ablation studies demonstrated the importance of incorporating PPI, 
PDI data and attention-based pathway layer. We also interpret our models and found out that our 
important input features are significantly enriched in GO terms and KEGG pathways and can serve as 
potential biomarkers or therapeutic targets for the corresponding disease. 

Keywords: Biologically Informed Neural Network, Large Language Model, scTrioseq2, Alzheimer’s 
disease. 
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1. Introduction 

The integration of multi-omics data—including genomics, transcriptomics, epigenomics, and 
proteomics—holds significant promise for enhancing the accuracy of disease prediction and 
classification. Several machine learning (ML) and deep learning (DL) models have been developed to 
integrate multi-omics datasets. However, most existing approaches lack interpretability reducing their 
practical usability. 

To address this issue, recently biologically informed deep neural networks have been developed. 
For instance, Elmarakeby et al. introduced P-NET, a biologically informed deep neural network initially 
developed to classify prostate cancer patients into treatment-resistant or primary groups1. P-NET 
demonstrated not only superior prediction performance compared to conventional methods but also 
provided critical insights into novel therapeutic targets through its interpretable architecture. Although 
the model is easy to interpret, it relies on existing pathway databases, thereby might miss new or 
unknown interactions not yet captured in those resources. Other biologically informed neural network 
architectures such as DrugCell2  and DCell3 have demonstrated capability in modeling biological 
processes and predicting therapeutic responses. However, because DCell was validated in yeast, its 
direct translation to human diseases may fail to capture the complexity of human biology.  

Fortelny and Bock et al. proposed Knowledge-Primed Neural Networks (KPNNs) by incorporating 
biological network priors into models analyzing single-cell RNA-seq data4. While KPNNs showed 
good interpretability and accuracy, they did not utilize multi-omics data and depended heavily on the 
quality of the input biological networks. Wang et al. developed BioNet for analyzing tumor 
heterogeneity from imaging data, but its accuracy may vary with image quality and clinical settings5. 
Another interpretable model, PASNet incorporated sparse coding and pathway-level representations to 
predict prognosis from high-throughput gene expression data6. While PASNet demonstrated robust 
performance and clear interpretability through pathway hierarchies, it did not utilize multi-omics inputs 
and was tested only on bulk transcriptomic data from glioblastoma.  

Most of the current models use either pathway or Protein-Protein Interaction (PPI) and Protein-
DNA Interaction (PDI) networks but none combine all three. These models may be interpretable but 
are not context-specific, and most of them work on single omics type from bulk tissue rather than single-
cell and multi-omics data.  

To address these gaps, we introduce BioLM-NET,  a novel PPI, PDI, and pathway aware neural 
network framework that fuses single-cell gene expression, DNA methylation, and pretrained Large 
Language Model (LLM) based gene embeddings. We conducted comprehensive benchmarking across 
five datasets, namely scTrio-seq2 data for colorectal cancer7, TCGA-BRCA8 for breast cancer, TCGA-
GBM9 for glioblastoma, TCGA-COAD10 for colon cancer, and ROSMAP11 for Alzheimer’s disease 
(AD) and achieved state-of-the-art (SOTA) performance in most cases. Our results demonstrated 
enhanced biological interpretability showing how pathway-level attention and LLM-derived 
embeddings uncover key molecular features of cancer progression and metastasis, cancer subtyping, 
and enable stratification of AD patients. The source code and datasets for BioLM-NET is available at 
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https://github.com/bozdaglab/BioLM-NET under Creative Commons Attribution-Noncommercial 4.0 
International Public License.  

2. Materials and Methods 

2.1 Dataset 

In this study, we utilized gene expression and DNA methylation data from five datasets: Single Cell 
Trio-seq2 (scTrio-seq2), TCGA-BRCA, TCGA-GBM, TCGA-COAD, and ROSMAP. We downloaded 
scTrio-seq2 data from the Gene Expression Omnibus (GEO) under accession number GSE976937. 
Processed  TCGA-BRCA and ROSMAP datasets were obtained from Wang et al.12, while  processed 
TCGA-GBM and TCGA-COAD datasets were obtained from Yang et al.13. We utilized the top 500 
features from both TCGA-GBM and TCGA-COAD datasets. Biological prior information was obtained 
from three sources: protein-protein interactions (PPI) from STRING14  database, protein-DNA 
interactions (PDI) from the DoRothEA15 database, and pathway information from KEGG database16,17. 
We also utilized LLM embedding for genes from GenePT 18. A summary of the five datasets is provided 
in Table 1. 
 

Table 1: Overview of the five datasets:. GE: Gene expression, DM: DNA methylation, PPI: Protein-protein interaction, 
PDI: Protein-DNA interaction  

Dataset # 
samples 

# features 
(GE)  

# features 
(DM) 

# PDI 
 (GE) 

# PDI 
 (DM) 

# PPI 
(GE) 

# PPI 
(DM) 

# Pathways 
(GE) 

# Pathways 
(DM) 

scTrioseq2 609 1,673 1,712 2,459 2,293 21,968 6,690 161 173 
BRCA 875 999 999 1,922 1,704 6,280 3,088 133 142 
GBM 244 500 500 682 602 2,276 2,358 140 102 

COAD 256 500 500 866 874 2,796 2,182 103 97 
ROSMAP 351 200 200 497 380 432 620 134 134 

2.2 scTrio-seq2 gene expression data preprocessing 

The gene expression data had two units: FPKM (510 samples, 25,373 genes) and TPM (688 samples, 
23,457 genes). We converted all values to TPM to standardize the data. We only kept genes that are 
common in both units. The final dataset contained 1,198 samples across five classes: Primary Tumor 
(PT, n=616), Lymph Node Metastasis (LN, n=224), Liver Metastasis (ML, n=226), Post-Treatment 
Liver Metastasis (MP, n=102), and Normal Colon (NC, n=20). We excluded NC from further analysis 
to mitigate class imbalance due to its small sample size. We performed differential expression (DE) 
with MAST19 (adj. p < 0.05, log2FC > 2) and identified 1,673 unique genes across four comparisons. 
DE  analysis details and figures are provided in Supplemental Note 1 and Supplemental Figures 1-2.  
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2.3 scTrio-seq2 DNA methylation data preprocessing 

Single-base DNA methylation data were aggregated to the gene-level by averaging promoter signals. 
From 1,295 samples and 22,910 genes, we retained 17,123 after filtering and selected the top 10% 
highly variable genes. The details of DNA methylation preprocessing are provided in Supplemental 
Note 1. 

 
Fig. 1. The architecture of BioLM-NET. (Here, model outputs are four classes: PT = Primary Tumor, LN = Lymph Node 
Metastasis, MP= Post-Treatment Liver Metastasis, ML= Liver Metastasis) 

2.4 Protein–DNA interaction (PDI) data 

PDI data were obtained from the DoRothEA15 database. It categorizes TF–target interactions into five 
confidence levels: A (highest) to E (lowest). For this study, we used only levels A, B, and C. The raw 
dataset included 32,443 interactions between 430 unique TFs and 9,290 unique target genes. We filtered 
out target genes that were not DE (gene expression) or not highly variable (DNA methylation).. 

2.5 Protein–protein interaction (PPI) data 

Human PPI data were downloaded from the STRING14 database. Each PPI interaction has a combined 
score derived from multiple evidence sources. We selected interactions with a combined score > 0.7 to 
represent high-confidence associations. This filtering resulted in 504,062 high-confidence PPIs. Next, 
we retained the top 10% of interactions by score to preserve the highest-confidence associations. We 
further filtered interactions so that at least one of the proteins corresponded to a differentially expressed 
gene (gene expression data branch) or highly variable gene (DNA methylation data branch). 
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2.6 Pathway data 

To compute pathways associated with the genes in PDI and PPI, we utilized the R package 
clusterProfiler20 to perform pathway enrichment and kept only the significantly enriched pathways 
(Benjamini–Hochberg adjusted p-value < 0.05). 

2.7 LLM embedding 

GenePT18 is an LLM framework that uses OpenAI’s text embedding APIs to convert gene-centric 
descriptions into embeddings. These embeddings capture gene specific context such as aging, drug 
interactions, and pathway membership. We extracted GenePT embeddings from Hugging Face and kept 
only embeddings for genes with KEGG pathways identified in our analysis. These gene embeddings 
were then used to implement an attention mechanism between genes and pathways that allows the 
model to assign greater importance to genes with higher attention scores so that it enhances model 
performance and interpretability. 

2.8 Framework architecture  

Our framework uses a dual branch design that processed gene expression and DNA methylation data 
in parallel. In each branch, PDI and PPI priors are connected via a custom masked dense layer, and 
gene level activations are aggregated into pathway level embeddings by a custom attention pathway 
layer. The two pathway embeddings are then concatenated and passed through an MLP to generate the 
final prediction. The framework architecture is shown in Figure 1. 

2.8.1. Biological mask matrices  

We constructed two biologically informed mask matrices and then merged them. First, the PDI mask 
matrix, 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈  {0,1}𝑛𝑛𝑛𝑛×𝑚𝑚𝑚𝑚  (Eq. 1) captures transcriptional regulation, where 𝑛𝑛𝑛𝑛 is the number of DE 
genes or highly variable genes and 𝑚𝑚𝑚𝑚 is the number of unique target genes. 

𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] = �1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔 𝑗𝑗𝑗𝑗
0                            𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,                            (1) 

Second, the PPI Mask matrix, 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈  ℝ𝑝𝑝𝑝𝑝1×𝑝𝑝𝑝𝑝2 (Eq. 2) encodes interaction strengths between proteins, 
where 𝑝𝑝𝑝𝑝1 is the number of DE genes or highly variable genes and 𝑝𝑝𝑝𝑝2 is the number of unique proteins. 

 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] = �combined score 𝑏𝑏𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑗𝑗𝑗𝑗
0                            𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,                            (2) 

Finally, we horizontally concatenated those matrices to get a PDI-PPI mask matrix (Eq. 3).  

𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = [𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]                                                   (3) 

2.8.2. Pathway mask matrix 
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The pathway mask matrix, 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ ∈ {0,1}𝑟𝑟𝑟𝑟×𝑠𝑠𝑠𝑠 (Eq. 4) is a binary matrix, similar to the 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Here, 𝑟𝑟𝑟𝑟 is 
size of the union between target genes from PDI and proteins from PPI data and 𝑖𝑖𝑖𝑖 is the number of 
unique KEGG pathways. 

𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ[𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞] = �1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤 𝑞𝑞𝑞𝑞
0                                                    𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,                              (4) 

2.8.3. Masked layer  

A custom masked layer was implemented to pass information from genes to their corresponding genes 
in the hidden layer based on PDI and PPI. This layer operates by performing element-wise 
multiplication of the mask matrix with the weight matrix, 𝑊𝑊𝑊𝑊 ∈ ℝ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖×𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  of the dense layer. (Eq. 5) 

𝑊𝑊𝑊𝑊𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑 = 𝑊𝑊𝑊𝑊 ʘ 𝑀𝑀𝑀𝑀                                                               (5)   
 

2.8.4. Attention-based pathway layer 

From PDI-PPI genes, we extracted KEGG pathways and organized them into a pathway layer. Each 
node 𝑖𝑖𝑖𝑖 in this layer represents one pathway and is associated with a trainable query vector 𝑒𝑒𝑒𝑒𝑞𝑞𝑞𝑞

(𝑖𝑖𝑖𝑖) ∈ ℝ𝑑𝑑𝑑𝑑. 
We stack these 𝑘𝑘𝑘𝑘 vectors into a matrix 𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞 ∈  ℝ𝑚𝑚𝑚𝑚×𝑑𝑑𝑑𝑑. To pass information from genes to pathways, we 
employ an attention mechanism. To calculate attention, we begin with fixed, pretrained GenePT 
embeddings 𝐺𝐺𝐺𝐺 ∈  ℝ𝑟𝑟𝑟𝑟×𝑑𝑑𝑑𝑑  and the previous layer’s output 𝑋𝑋𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈  ℝ𝑏𝑏𝑏𝑏×𝑟𝑟𝑟𝑟 , where 𝑏𝑏𝑏𝑏  is batch size. 
Rather than linking every gene equally to its pathways, we compute raw attention scores using Eq. 6. 
After masking out gene-pathway links (Eq. 7), we compute attention weights using Eq. 8. Finally, we 
aggregate gene signals per pathway using Eq. 9.   

𝑆𝑆𝑆𝑆 = 𝑊𝑊𝑊𝑊𝑞𝑞𝑞𝑞𝐺𝐺𝐺𝐺𝑇𝑇𝑇𝑇 ∈  ℝ𝑚𝑚𝑚𝑚×𝑟𝑟𝑟𝑟                                             (6) 

𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 = 𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇 ʘ 𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ                                                                        (7) 

𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚 =  exp (𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚)
∑ exp (𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖𝑖𝑖′,𝑚𝑚𝑚𝑚)𝑟𝑟𝑟𝑟
𝑖𝑖𝑖𝑖′=1

 ∈ ℝ𝑟𝑟𝑟𝑟×𝑚𝑚𝑚𝑚                                (8) 

 

𝑍𝑍𝑍𝑍𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ = 𝑋𝑋𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝛼𝛼𝛼𝛼 ∈  ℝ𝑏𝑏𝑏𝑏×𝑚𝑚𝑚𝑚                            (9) 

This step gives us pathway-level representations where each pathway combines information from 
related genes based on learned attention scores. Then we pass pathway-level representation to a dense 
layer named projection layer to reduce the high dimensional pathway representations. We apply this for 
both gene expression and DNA methylation branches, obtaining 𝑍𝑍𝑍𝑍𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  and 𝑍𝑍𝑍𝑍𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, respectively. 

Pacific Symposium on Biocomputing 2026

649



 
 

 

2.8.5. Fusion layer 

We fuse the two pathway outputs and pass them through two fully connected layers before the final 
output (Eq. 10-13). 

𝑍𝑍𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [𝑍𝑍𝑍𝑍𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  || 𝑍𝑍𝑍𝑍𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷] ∈  ℝ𝑏𝑏𝑏𝑏×2𝑚𝑚𝑚𝑚                                                  (10) 

𝐻𝐻𝐻𝐻1 =  𝜎𝜎𝜎𝜎�𝑍𝑍𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑊𝑊𝑊𝑊1 + 𝛽𝛽𝛽𝛽1�  ∈  ℝ𝑏𝑏𝑏𝑏×𝑑𝑑𝑑𝑑1                                             (11) 

𝐻𝐻𝐻𝐻2 =  𝜎𝜎𝜎𝜎(𝐻𝐻𝐻𝐻1𝑊𝑊𝑊𝑊2 + 𝛽𝛽𝛽𝛽2)  ∈  ℝ𝑏𝑏𝑏𝑏×𝑑𝑑𝑑𝑑2                                                   (12) 

𝑤𝑤𝑤𝑤�  = 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆𝑆𝑆(𝐻𝐻𝐻𝐻2𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝛽𝛽𝛽𝛽𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)  ∈  ℝ𝑏𝑏𝑏𝑏×𝑐𝑐𝑐𝑐                                    (13) 

In Eq. 10-13, 𝜎𝜎𝜎𝜎  is the activation function, 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2  are hidden layer dimensions, 𝑊𝑊𝑊𝑊1,𝑊𝑊𝑊𝑊2,𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  are 
weights, 𝛽𝛽𝛽𝛽1,𝛽𝛽𝛽𝛽2,𝛽𝛽𝛽𝛽𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 are biases, and 𝑐𝑐𝑐𝑐 is the number of classes. 

2.8.6. Customized loss function  

To mitigate class imbalance, we used a customized sparse categorical cross-entropy loss by assigning 
higher weights to underrepresented classes. The loss for a sample 𝑖𝑖𝑖𝑖 with true label 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 and predicted 
probability 𝑤𝑤𝑤𝑤�𝑖𝑖𝑖𝑖 is defined in Eq. 14 

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = −𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖. log (𝑤𝑤𝑤𝑤�𝑖𝑖𝑖𝑖)                                                                     (14) 

where 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 is the class weight. The total loss over a batch of 𝑁𝑁𝑁𝑁 samples is defined in Eq. 15 

𝐿𝐿𝐿𝐿 = 1
𝐷𝐷𝐷𝐷
∑ 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷
𝑖𝑖𝑖𝑖=1                                                                             (15) 

Class weights are computed as 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐 =  𝑛𝑛𝑛𝑛
𝐶𝐶𝐶𝐶.𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐

, where 𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐 is the number of samples in class 𝑐𝑐𝑐𝑐, 𝐶𝐶𝐶𝐶 is the number 

of classes, and 𝑛𝑛𝑛𝑛 is the total number of samples. 

3. Results 

To evaluate BioLM-NET, we tested it using five datasets: scTrioseq2, TCGA-BRCA, TCGA-GBM, 
TCGA-COAD, and ROSMAP and compared with other tools. The dataset splitting and model 
evaluation procedures are described in Supplemental Note 2. We also interpreted the model outputs and 
performed an ablation study to identify the key components of BioLM-NET. 

3.1. Comparing BioLM-NET with baseline and SOTA models 

We compared BioLM-NET to three traditional machine learning classifiers (i.e., Support Vector 
Machine (SVM), Random Forest (RF), and XGBoost), a fully dense neural network, and two SOTA 
methods (i.e., P-NET and PASNet). Since SVM, RF, and XGBoost cannot directly incorporate prior 
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pathway knowledge or LLM derived embeddings, we concatenated the gene expression and DNA 
methylation data to train these models. For the Dense NN, we preserved BioLM-NET’s overall 
architecture but replaced its sparse connections with dense layers and excluded the attention-pathway 
module. For both P-NET and PASNet, we concatenated gene expression and DNA methylation data 
into a single input. P-NET dynamically selects relevant pathways during training, while PASNet relies 
on user-provided pathways.  

Figure 2a summarizes F1 score performance for seven methods across five datasets. BioLM‑NET 
attained the highest F1 score on scTrioSeq2, COAD and ROSMAP, and was on par with Dense NN 
and SVM on BRCA (0.82). Wilcoxon rank‑sum tests confirmed that these improvements over both 
baseline and state‑of‑the‑art models were statistically significant. Results for precision, recall, and 
accuracy are provided in Supplemental Figures 3–5. BioLM‑NET achieved the highest precision on 
scTrioSeq2 (0.95), and ROSMAP (0.83) datasets and second highest precision on BRCA dataset. For 
recall, BioLM‑NET attained the top values on scTrioSeq2 (0.96), COAD (0.80) and ROSMAP (0.83) 
and second highest recall on BRCA dataset. BioLM‑NET consistently achieved the highest accuracy 
on scTrioSeq2 (0.95), COAD (0.87) and ROSMAP (0.83). BioLM-NET, along with other deep learning 
methods performed comparatively lower on GBM dataset due to significant class imbalance (30.3%, 
25.0%, 18.8%, 17.6%, and 8.3%) and limited sample size (195 training and 49 testing). In these settings, 
traditional machine learning models often outperform deep learning models. 

 
Fig. 2. (a) F1 score comparison of BioLM-NET with baseline and SOTA models. (b) Boxplots of F1 score for BioLM-
NET (blue) and Dense_NN (orange) across 10 independent runs at each percentage of training samples. Wilcoxon rank 

sum test was performed by comparing BioLM-NET with other models (p-value < 0.05 is denoted by *) 

3.2. Predictive performance of BioLM-NET under limited data 

To assess robustness with limited training data, we compared BioLM-NET against a fully dense neural 
network across smaller training sets. We first split our data into training (80%) and test (20%). We kept 
the test set constant while subsampling the training data at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 
80%, and 90% of its original size. We tested each model trained using a subsample training data on the 
same test set. We observed that the performance of models improved with more training data. BioLM-
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NET outperformed the Dense NN at every fraction (Figure 2b), which shows that it remains robust even 
when trained on substantially fewer samples. We performed a similar analysis using ROSMAP data 
(Supplemental Figure 6). In this case, Dense NN outperformed BioLM-NET when using 10–50% of 
the training data; however, BioLM-NET surpassed Dense NN beyond 50%. This result is possibly due 
to the limited sample size of the ROSMAP dataset, where BioLM-NET requires more data to learn 
effectively. 

3.3. Ablation study   

To assess the performance of each data modality with or without sparse connections, we conducted an 
ablation study using scTrioseq2 dataset. We trained a dense neural network using only gene expression 
data, which had a F1 score of 0.89 (Table 2). When we incorporated sparse connections based on PDI, 
the F1 score increased by 3%, whereas adding PPI caused a 1% drop (Table 2). When both PDI and 
PPI were utilized for sparse connections, the F1 score fell by 5%, which could be due to the extra 
sparsity introduced by combining PPI with PDI connections. 

Table 2. Effect of adding Prior biological knowledge and multi omics data in scTrioseq2 data. GE: Gene Expression data, 
DM: DNA Methylation data, PPI: Protein-Protein Interaction data, PDI: Protein-DNA Interaction data. The result values 
are shown as mean ± standard deviation of 10 individual runs. 

Model  Precision  Recall  F1 score  Accuracy  

GE_Dense  0.90 ± 0.0135  0.90 ± 0.0116  0.89 ± 0.0140  0.89 ± 0.0136   
GE_PDI 0.93 ± 0.0113  0.92 ± 0.0104   0.92 ± 0.0105  0.92 ± 0.0096  
GE_PPI  0.89 ± 0.0658  0.89 ± 0.0600   0.88 ± 0.0792   0.88 ± 0.0647   

GE_PDI_PPI  0.86 ± 0.0896  0.86 ± 0.0605   0.84 ± 0.0783   0.84 ± 0.0580  
DM_Dense  0.92 ± 0.0043   0.92 ± 0.002   0.92 ± 0.0035   0.92 ± 0.0040   
DM_PDI  0.93 ± 0.0087   0.92 ± 0.0098   0.92 ± 0.0095   0.93 ± 0.0075   
DM_PPI  0.91 ± 0.0059   0.91 ± 0.0089  0.91 ± 0.0079   0.92 ± 0.0074   

DM_PDI_PPI  0.93 ± 0.0161   0.93 ± 0.0243   0.92 ± 0.0206   0.94 ± 0.0151  
GE_DM_Dense  0.92 ± 0.0428  0.89 ± 0.0997   0.88 ± 0.0997   0.89 ± 0.0761   
GE_DM_PDI  0.91 ± 0.0134  0.91 ± 0.0096  0.90 ± 0.0124   0.90 ± 0.0120   
GE_DM_PPI  0.92 ± 0.0240   0.91 ± 0.0316  0.91 ± 0.0319   0.92 ± 0.0267   

GE_DM_PDI_PPI  0.94 ± 0.0153   0.94 ± 0.0113   0.94 ± 0.0126   0.94 ± 0.0111   
BioLM-NET 0.95 ± 0.0062  0.96 ± 0.0022  0.95 ± 0.0039  0.95 ± 0.0039 

 
We observed that a dense neural network model trained with only DNA methylation data achieved a 
higher performance (0.92) than the model trained using only gene expression data (Table 2) indicating 
that DNA methylation data plays a stronger role for distinguishing primary tumors from metastatic sites. 
Adding sparse connections based on PPI to the DNA methylation-based model reduced the F1 score by 
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1%, whereas we did not observe any change in the performance when PDI data was utilized with or 
without PPI. 

A dense neural network trained using both gene expression and DNA methylation achieved a 
slightly lower performance (0.88) than either single-modality model. However, adding sparse 
connections boosted its performance.  Incorporating PDI and PPI individually increased the F1 score 
by 2% and 3%, respectively. When both PDI and PPI were integrated, the F1 score increased by 6%. 
The best performance was achieved with BioLM-NET, which adds a pathway attention layer to this 
framework. 
      We also evaluated the impact of the attention layer in BioLM-NET. When attention scores were 
removed or replaced with scores from random embeddings, the F1 score dropped by 2% (Table 3) 
indicating the importance of attention scores. These results collectively confirm that genuine pathway 
structure and LLM-derived embeddings both contribute to classifying primary tumors and metastatic 
regions. 

Table 3. Effect of adding Pathway Attention Layer in scTrioseq2 data 

Model Precision Recall F1 score Accuracy 

BioLM-NET (Without LLM Embedding) 0.94  ± 0.0079 0.93  ± 0.0103 0.93  ± 0.0082 0.94  ± 0.0079 

BioLM-NET (Random LLM embedding) 0.93  ± 0.0168 0.94  ± 0.0250 0.93  ± 0.0215 0.93  ± 0.0204 

BioLM-NET 0.95 ± 0.0062 0.96 ± 0.0022 0.95 ± 0.0039 0.95 ± 0.0039 

To assess the biologically informed connections through PDI, PPI, and pathway associations, for each 
model with sparse connection, we trained a model with randomized connections while preserving the 
number of sparse connections (Supplemental Table 1).We observed that GE_PDI, DM_PDI, DM_PPI, 
GE_DM_PPI models outperformed their random counterparts by 5%, 2%, 6%, and 15% in F1 score, 
respectively which shows the impact of authentic PDI and PPI connections. In GE_PPI model, 
performance was unchanged compared to randomized version, suggesting that PPI alone adds no 
additional signal in this context. However, the random version of GE_DM_PDI model outperformed 
the true model by 1% underscoring the need of more curated TF-target interactions.  When all PDI and 
PPI connections were randomized while leaving other component of BioLM-NET unchanged, 
performance dropped by 40% in F1 score relative to BioLM-NET. Randomizing pathway connections 
and LLM embeddings (while preserving shape) further reduced performance by 7%. Altogether, this 
ablation study demonstrates that incorporating authentic PPI, PDI, and pathway priors, and LLM 
embedding is essential for BioLM-NET to achieve superior predictive performance. 
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3.4. Interpretability of BioLM-NET 

To understand how multimodal features, genes, and pathways contribute BioLM-NET’s performance, 
we first applied SHAP analysis to rank the top 50 most important input features from gene expression 
and DNA methylation data. We then performed Gene Ontology (GO) and KEGG pathway enrichment 
to evaluate their biological relevance. 
      In the ROSMAP dataset, we identified 32 significantly enriched GO terms from the top 50 
SHAP‑ranked genes in the gene expression data (Supplemental Table 2). Focusing on the ten most 
significant terms and taking their associated genes from our gene list, we highlight eight candidates: 
KIF1C, NPNT, CCDC69, GPER1, KIF5A, KIF5B, FOXO4, MAP4K4. Genetic fine-mapping implicates 
KIF1C as an AD  risk locus and highlights a role for faulty kinesin mediated vesicular transport in 
disease susceptibility across ancestries21. NPNT is consistently upregulated in AD brain transcriptomes 
across diverse populations22. CCDC69 has emerged as a novel genetic locus associated with AD, 
pointing to unexpected roles for spindle‑assembly proteins in neurodegeneration23.  Elevated GPER1 
expression correlates with increased tau tangle burden, implicating estrogen‑receptor signaling in the 
modulation of tau pathology24. In AD, amyloid‑β damages KIF5A so mitochondria cannot travel down 
axons, causing energy shortages that lead to synapse loss25. KIF5B regulates tau protein dynamics, and 
its dysregulation may drive tau pathology in AD26. As a stress response transcription factor, FOXO4 
governs oxidative‑stress and insulin‑signaling pathways that are disrupted in AD27; and upregulation of 
MAP4K4 in Alzheimer’s microglia drives neuroinflammatory signaling, marking it as a promising 
therapeutic target to modulate inflammation in AD28. 

Table 4. Significant survival related genes from top 50 SHAP features in GBM, BRCA, and COAD 

Dataset Branch of BioLM-NET Significant survival related genes 
GBM Gene Expression CBX732, CENPJ33, DACH134, NUDT22, PM20D2, RALGAPA1P1, TBX3, WDPCP 

DNA Methylation CPS135, C16orf89, CANT1, CDKN2D, ELSPBP1, GON4L, LDLRAP1 
BRCA Gene Expression BCL236, CXCL137, EIF2S238, FGD339, KDM4B40, NXNL241, SOX1142, 

SPARCL143, SUSD344 
DNA Methylation IGFALS, IGFBP4, SCUBE245, SERPINA12 

COAD Gene Expression ASPHD2, COX11, NMNAT146 
DNA Methylation ARRDC1, CAMTA1, CDC14A, DNAJC17, FABP447, FGF22 

 
In the ROSMAP dataset, the top 50 DNA methylation probe-associated genes were enriched in the 
KEGG pathway hsa00010 (Glycolysis/Gluconeogenesis). Recent evidence indicates that dysregulated 
glycolytic metabolism plays a critical role in AD development29. Qiu et al. further demonstrated that 
the glycolysis index is markedly lower in AD patients than in controls across four distinct brain 
regions30. Among our top DNA methylation features were three hsa00010 genes: GAPDHS, LDHC, 
and ALDH3B1. Consistent with these findings, Wang et al. identified GAPDHS via SHAP‑based feature 
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selection and reported its significant differential methylation in an AD prediction model, and also 
highlighted LDHC among eight glycolysis genes with altered methylation profiles in AD versus control 
subjects31. In our DNA methylation dataset, two‑sample t‑tests comparing AD and control groups 
yielded significant differences for GAPDHS (t = –2.995, p = 2.945 × 10⁻³), LDHC (t = 3.889, p = 
1.212 × 10⁻⁴), and ALDH3B1 (t = 3.122, p = 1.948 × 10⁻³). Density plots of these distributions are 
presented in Supplemental Figure 7. 
      From our top 50 SHAP features derived from DNA methylation data in the GBM dataset, we 
identified three significantly enriched GO terms: GO:0009112 (nucleobase metabolic process), 
GO:0006206 (pyrimidine nucleobase metabolic process), and GO:0046112 (nucleobase biosynthetic 
process). Jiang et al. reported that GBM relies on nucleotide metabolism to fuel rapid growth and 
invasion that leads to poor clinical outcomes48. Wang et al. demonstrated that pyrimidine metabolic 
pathways are consistently upregulated in TCGA‑GBM tumors relative to normal brain tissue49. 
Zhou et al. showed that elevated activity of nucleobase biosynthetic enzymes correlates with poor 
prognosis in GBM50. We performed Kaplan–Meier survival analysis in GBM, BRCA, and COAD 
datasets using the top 50 SHAP-ranked genes from both gene expression and DNA methylation 
branches. Several genes showed significant associations with patient survival, and their relevance is 
supported by multiple studies. The gene lists are provided in Table 4, with survival plots shown in 
Supplemental Figures 8–13. These findings highlight BioLM-NET’s ability to uncover biologically 
meaningful features with potential as biomarkers and therapeutic targets in cancer and AD.  

To interpret BioLM-NET using an alternative approach, we applied LIME51, a model agnostic 
explainability framework, to identify the most important features contributing to our predictions and 
asses potential feature biases in comparison with SHAP. We applied LIME on the ROSMAP and GBM 
datasets and selected the top 50 important features from both the gene expression and DNA methylation 
branches. We then examined the overlap between LIME and SHAP derived features using a one-sided 
hypergeometric test. In ROSMAP, we identified 47 common genes (p = 2.384 × 10⁻³⁸) and 43 common 
DNA methylation features (p = 9.565 × 10⁻³⁰). In TCGA-GBM, we found 24 common genes (p = 6.409 
× 10⁻¹⁴) and 21 common DNA methylation features (p = 1.261 × 10⁻¹⁰). GO and KEGG analysis of 
these features further confirmed their disease relevance (Supplemental Note 3).   

To assess the key nodes in BioLM-NET layers, we examined per sample activation scores at every 
layer of BioLM-NET trained on the scTrio-seq2 data for colorectal cancer and selected the ten nodes 
with the highest mean activation score (Supplemental Figure 14). Early in the network, the class specific 
density curves overlap almost completely, indicating minimal separability. As data propagate through 
the fusion layer, the distributions begin to separate, and by the final (output) layer, each class’s 
activation density is distinctly isolated. This illustrates how the model transforms mixed features into 
clear, class-specific patterns.  

Based on the activation scores of the attention-based pathway layer, we selected the top 20 pathways 
and evaluated their relevance to colorectal cancer and their metastasis. In the gene‑expression branch, 
five KEGG pathways were significant (adjusted p-value <0.05): hsa04151 (PI3K–Akt signaling 
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pathway), hsa04140 (Autophagy), hsa04144 (Endocytosis), hsa03050 (Proteasome), and hsa00190 
(Oxidative phosphorylation). In the DNA methylation branch, three pathways reached significance 
(adjusted p-value <0.05): hsa05206 (MicroRNAs in cancer), hsa03050 (Proteasome), and hsa00190 
(Oxidative phosphorylation). Duan et al. showed that PIK3CA mutations activate the PI3K/Akt cascade 
to drive colorectal tumor growth and metastasis52. Manzoor et al. described how autophagy supports 
metastatic colorectal cancer cell survival under stress53. Qin et al. demonstrated that dysregulated 
endocytosis facilitates immune escape and metastatic dissemination in colon cancer54. Li et al. reported 
that proteasome‑mediated degradation of HIF‑1α impairs angiogenesis and migration, thereby 
restraining CRC metastatic progression55. Liu et al. revealed that enhanced oxidative phosphorylation 
in colorectal cancer stem cells increases ATP production to fuel invasion and metastatic colonization56. 
Together, these findings confirm the relevance of these pathways to colorectal cancer metastasis and 
demonstrate that the pathway attention layer can identify potential therapeutic targets. 

4. Conclusion 

In this study, we developed BioLM-NET, a deep learning–based model that integrates prior biological 
knowledge and LLM embeddings with multi-omics data to improve predictive performance and 
interpretability. We evaluated BioLM-NET on five datasets spanning various prediction tasks, 
including cancer subtype classification, AD patient detection, and identification of metastatic regions 
in colorectal cancer. BioLM-NET achieved the highest performance on three datasets outperforming 
state-of-the-art models such as P-NET, PASNet, and traditional machine learning and deep learning 
models and tied on one dataset. Furthermore, model interpretation revealed that the most important 
input features identified by BioLM-NET were significantly enriched in Gene Ontology (GO) terms and 
KEGG pathways, suggesting potential as biomarkers or therapeutic targets for the respective diseases. 
However, BioLM-NET is currently limited to bulk and single-cell omics data and cannot yet handle 
spatial omics or longitudinal data. Its dual-branch design also restricts integration to only two modalities. 
Future work will focus on extending the framework to incorporate additional omics types, spatial 
information, and temporal dynamics to broaden its applicability and biological insight. Supplemental 
materials are available at https://github.com/bozdaglab/BioLM-
NET/blob/main/Supplemental_Material.pdf . 
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