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Current Vision-Language Models (VLMs) struggle to ground anatomical regions in 3D
medical images and reason about them in a step-by-step manner—a key requirement of real-
world diagnostic assessment. This ability is essential for aligning model outputs with the
diagnostic workflows clinicians use in practice, enabling trustworthy clinician-AI collabora-
tion. Existing 3D datasets provide localization labels, but none support this “grounded rea-
soning” ability. To address this gap, we introduce 3DReasonKnee, the first 3D grounded
reasoning dataset for medical images, which provides 494k high-quality quintuples derived
from 7,970 3D knee MRI volumes. Each quintuple includes: (1) the 3D MRI volume, (2)
a diagnostic question targeting a specific anatomical region (3) a 3D bounding box local-
izing the relevant anatomical structures, (4) clinician-generated diagnostic reasoning steps
that explicitly detail the 3D reasoning process, and (5) structured severity assessments for
the relevant anatomical region. The meticulous creation and validation of 3DReasonKnee,
involving over 450 hours of expert clinician time for manually segmenting MRIs and gen-
erating reasoning chains, ensures its superior quality and clinical relevance. We establish
ReasonKnee-Bench to evaluate localization and diagnostic accuracy, providing novel in-
sight into VLM ability to perform grounding and severity assessment across diverse anatom-
ical regions and diagnostic inquiries. We benchmark five state-of-the-art VLMs, providing
baseline performance for ReasonKnee-Bench. By providing this unique resource of expert-
annotated 3D reasoning pathways, 3DReasonKnee serves as a repository of orthopedic
surgeons’ diagnostic expertise and offers a vital testbed for advancing multimodal medi-
cal AI systems towards 3D, clinically aligned, localized decision-making capabilities. The
dataset can be found in HuggingFace: rajpurkarlab/3DReasonKnee.

1. Introduction

Medical VLMs Lack Fine-Grained 3D Grounded Reasoning. Recent progress in Med-
ical Vision-Language models (VLMs) has demonstrated remarkable capabilities in versatile
tasks requiring integrated reasoning across modalities, with models achieving state-of-the-art
performance on visual question answering, report generation, and other global understanding
tasks.14,37 However, these models still fall short of clinician-level performance when confronted
with problems demanding fine-grained diagnostic reasoning and assessment. Clinicians typi-
cally employ a region-first workflow (Figure 1), pinpointing relevant anatomical subregions,
assessing them for abnormalities such as lesions or structural changes, and finally assign-
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Fig. 1. Region-First ReasoningWorkflow in Clinician Knee MRI Assessment. This schema illustrates
the step-wise diagnostic process employed by clinicians, involving (Step 1) identification of lesion
category and localization to specific anatomical subregions, (Step 2) assessment of severity and
lesion type within the localized region, and (Step 3) characterization of specific features.

ing structured severity grades based on established clinical criteria. For instance, the MRI
Osteoarthritis Knee Score (MOAKS) framework, as well as other semi-quantitative grading
systems, necessitates this level of fine-grained analysis to evaluate specific knee structures
and assign severity grades to features like bone marrow lesions and cartilage damage.8,20 This
”grounded” understanding of pathology within localized regions is crucial for accurate diagno-
sis, prognosis, and treatment planning in clinical settings. Bridging this gap between clinician
reasoning and model intelligence is critical for enabling trustworthy clinical decision support
and seamless integration of AI into diagnostic workflows.
3D Grounded Reasoning is Not Well-Supported by Existing Datasets. Advances in
Chain-of-thought (CoT) prompting have proven effective in enabling models to break down
complex problems into interpretable, step-by-step solution processes.27,36 In 3D medical im-
age analysis, diagnostic reasoning represents a structured cognitive process that extends far
beyond simple pattern recognition. It requires precise spatial understanding across multiple
planes to properly evaluate volumetric structures. However, instilling such reasoning capabil-
ities in Medical VLMs for 3D medical data is hampered by a lack of suitable training data.
While a growing number of datasets are facilitating the development of medical VLMs, such as
MultiMedEval21 for diverse evaluation and MedTrinity-25M30 for large-scale pretraining, these
resources often focus on 2D images with reasoning traces or 3D corpora emphasizing localiza-
tion without detailed diagnostic rationale (Table 1). A significant gap remains in datasets that
facilitate grounded reasoning on 3D medical images, particularly those combining volumetric
data, integrated voxel-level localization, and expert-annotated reasoning chains.
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Table 1. Representative datasets and benchmarks for medical VLMs. Dim. denotes dimensional-
ity (2D vs. 3D). Grounding indicates the presence of spatial annotations (bounding boxes, masks,
or voxel labels); refers to expert-authored diagnostic reasoning steps or structured interpreta-
tion pathways that mirror how clinicians synthesize visual findings into diagnostic conclusions

Dataset Dim. Modality Size Grounding Reasoning

Path-VQA 2D pathology images 32 k samples × ×
Chest ImaGenome 2D chest X-ray 242 k samples ✓ ×
PadChest-GR 2D chest X-ray 4,555 studies ✓ ×
PubMedVision 2D biomedical figures 1.3 M samples × ×
RadRBench-CXR 2D chest X-ray 59K samples × ✓
GMAI-Reasoning10K 2D mixed modalities 10K samples × ✓
MedTrinity-25M 2D mixed modalities 25M samples ✓ ✓

M3D-RefSeg 3D CT 210 vols ✓ ×
MedMD RP3D 3D CT/MR 51 k vols × ×
RadGenome-Chest CT 3D CT 1.3 M samples ✓ ×
3D ReasonKnee 3D knee MRI 494 k samples ✓ ✓

Introducing 3DReasonKnee to Advance 3D Grounded Reasoning. Our work intro-
duces 3DReasonKnee, the first 3D grounded reasoning dataset for medical images, comprising
494k high-quality quintuples spanning 7,970 unique MRIs. Each quintuple includes: (1) a 3D
knee MRI volume, (2) a diagnostic question targeting a specific anatomical region, (3) a 3D
bounding box localizing the relevant anatomical structures, (4) clinician-generated diagnostic
reasoning steps detailing the 3D reasoning process, and (5) structured severity assessments
for the relevant anatomical region. We frame 62 distinct clinical instruction tuning questions
and provide volumetric bounding boxes for 22 distinct anatomical regions, drawing from the
MOAKS framework. The creation of 3DReasonKnee involved over 450 clinician hours dedi-
cated to manually labeling MRI data and generating detailed reasoning traces. In doing so,
3DReasonKnee provides a clinically aligned resource that supports interpretable model devel-
opment and enables rigorous evaluation of model performance on narrowly defined diagnostic
tasks. To leverage this rich data, we establish ReasonKnee-Bench to rigorously evaluate both
localization and diagnostic accuracy in VLMs. Our evaluation metrics include diagnostic ac-
curacy assessment and 3D IoU for the model-generated localization bounding boxes, providing
new insights into VLM ability to perform grounding and severity assessment across diverse
anatomical regions and diagnostic inquiries. We emphasize the significant potential of 3DRea-
sonKnee, with its expert-annotated reasoning chains and validated localization labels serving
as a valuable clinical gold standard, to drive advancements in VLM grounded reasoning capa-
bilities. This work lays the foundation for VLMs that better reflect how clinicians localize and
reason about findings in practice, an important step toward their reliable and interpretable
use in diagnostic care.

2. Related Work

Existing Datasets and Benchmarks for Medical VLMs. A growing number of datasets
and benchmarks are facilitating the development of medical vision-language models. Mul-
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tiMedEval21 offers a consolidated evaluation framework across various tasks and domains,
with its VQA component utilizing 2D datasets such as PMC-VQA,35 Path-VQA,17 SLAKE,15

and VQA-Rad.12 MedTrinity-25M30 introduces a large-scale multimodal dataset of 25 mil-
lion image-text pairs for medical vision-language pretraining. GMAI-Reasoning10K24 pro-
vides 10,000 medical reasoning examples with detailed CoT explanations for each VQA pair.
RadRBench-CXR5 offers 59K visual question answering samples with 301K clinically validated
reasoning steps. OpenBiomedVid25 introduces a biomedical video instruction tuning dataset
from public educational videos. MedMD28 includes 3D images and corresponding captions in
its RP3D subset. Similarly, M3D-Data1 introduces image-text pairs and instruction-response
pairs tailored for 3D medical tasks, including voxel-level grounding in its M3D-RefSeg subset.
RadGenome-ChestCT34 presents 665K multi-granularity grounded reports and 1.3M VQA
pairs of 25,692 3D chest CT volumes from CT-RATE.7 Despite these advances, there remains
a significant gap in datasets that facilitate grounded reasoning on 3D medical images, par-
ticularly those that combine volumetric data with expert-annotated reasoning chains. Our
proposed 3D ReasonKnee addresses this gap by providing the largest 3D MRI dataset with
integrated voxel-level localization, expert CoT rationales, and structured severity grades.

Medical VLMs: Capabilities and Gaps. The application of VLMs in the medical domain
has led to models like MedVersa,38 which explores versatile instruction following tasks for
both 2D and 3D medical images. LLaVA-Med13 adapts the LLaVA framework for biomedical
images, but predominantly on 2D data and without explicit reasoning steps. MAIRA-23 fo-
cuses on grounded report generation, mainly for chest X-rays, underscoring the need for more
spatially annotated datasets supporting grounding in medical imaging. While models like
Med3DVLM31 and M3D-LaMed1 have been developed for 3D medical image analysis, leverag-
ing datasets like M3D, they remain limited in diagnosis with vision-language reasoning. Other
notable medical VLMs such as RadFM,28 PMC-VQA,35 MedPalm M,26 and BiomedGPT 33

have advanced medical image understanding and report generation, but generally lack robust
support for fine-grained 3D grounded reasoning with associated expert rationales. Therefore,
the existing landscape of medical VLM datasets and models reveals a significant gap in re-
sources that facilitate grounded reasoning on 3D medical images. 3DReasonKnee aims to
bridge this gap by introducing the first large-scale 3D MRI dataset for knee imaging that
simultaneously offers voxel-level localization and expert-annotated CoT rationales, intended
to imbue VLMs with robust grounded reasoning abilities for this anatomical region.

General Vision Language Models with Chain-of-Thought Reasoning. The integra-
tion of CoT reasoning into vision-language models has emerged as a critical advancement for
complex visual understanding tasks. LLaVA-CoT32 pioneered a framework for teaching VLMs
explicit multi-step reasoning, demonstrating significant performance improvements on multi-
modal reasoning benchmarks. GCoT29 introduces grounded chain-of-thought reasoning, explic-
itly connecting visual regions to reasoning steps, enhancing both accuracy and interpretability
in complex visual tasks. Other notable advances include Visual CoT,23 which proposes a multi-
turn processing pipeline that dynamically focuses on visual inputs and provides interpretable
thought, and MM-CoT,37 which incorporates language and vision modalities into a two-stage
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framework that separates rationale generation and answer inference. SpatialRGPT4 and Re-
gionGPT6 further enhance reasoning capabilities by grounding language outputs to specific
visual regions. These advancements collectively demonstrate that explicit reasoning pathways
significantly improve VLMs’ performance on tasks requiring fine-grained visual analysis and
multistep logical deduction. OpenAI’s o3 and o4-mini models19 have showcased remarkable
multimodal reasoning capabilities, integrating images directly into their chain of thought.
However, vision-language reasoning in the medical domain remains to be explored.

3. Dataset and Benchmark

3.1. Problem Formulation: 3D Grounded Clinical Reasoning

We formulate the problem as follows: Given a 3D knee MRI volume and a diagnostic question,
the model must (1) localize the relevant anatomical region, (2) reason about abnormalities in
that region, and (3) output a structured diagnosis that mirrors the MRI Osteoarthritis Knee
Score (MOAKS) workflow. An example of quintuples can be found in Figure 2.

Each quintuple is represented as {I,Q,B,C,D}, where I is the 3D MRI volume, Q is the
diagnostic question, B is the 3D bounding box, C is the CoT reasoning, and D is the set of
diagnostic severity grades. This 3D knee MRI analysis framework processes the volume I and
diagnostic question Q about a specific anatomical region and a single lesion category, then
produces three outputs: a 3D bounding box B that precisely localizes the relevant region, a
concise Chain of Thought reasoning chain C that transparently explains the analysis process,
and a set of diagnostic severity grades D that directly answers the original question for that
lesion category. For a given anatomical region and a target lesion category l, this category is
associated with a specific set of attributes: {a1, . . . , am}. Each of these attributes has its own
unique space of possible grades: {Ga1

l , . . . ,Gam

l }. The structured diagnosis D is then represented
as a set of severity grades, one for each attribute within that lesion category:D = {ga1

l , . . . , gam

l }.
Here, each grade g

aj

l is selected from the corresponding unique grade space Gaj

l of the attribute
aj for the lesion category l.

The model M predicts these three elements simultaneously, (B̂, Ĉ, D̂) = M(I,Q), providing
a structured diagnosis that mirrors the MOAKS workflow by first identifying the region of
interest, then reasoning about the specific lesion category within that region, and finally out-
putting the predicted severity grade for each attribute associated with that category, drawing
from its unique grade space.

3.2. 3DReasonKnee Construction Pipeline

Our quintuplet dataset construction follows a systematic pipeline to create a comprehensive
resource for 3D grounded clinical reasoning (see Figure 3).
Data Source. 3DReasonKnee builds upon the Osteoarthritis Initiative (OAI),18 a NIH-
sponsored longitudinal study with 4,796 subjects (58% female; age range: 45–79 years; mean
age: 61.4 years) and over 45,000 MRI scans (https://nda.nih.gov/oai). We utilize 7,970 Double
Echo Steady State (DESS) MRI sequences collected from baseline through 48-month follow-up,
providing high-resolution volumetric data (160 slices per scan). These scans include ground
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Fig. 2. Example of 3DReasonKnee with Chain-of-Thought.

truth scores included in the OAI using the MOAKS framework,9 a comprehensive multi-
label, multi-region scoring system for standardized knee osteoarthritis assessment. MOAKS
evaluates: bone marrow lesions (15 subregions), cartilage lesions (14 subregions), osteophytes
(16 subregions), meniscal damage (6 subregions), ligaments/tendons (3 structures), hoffa-
synovitis, effusion-synovitis, and periarticular features.

Pacific Symposium on Biocomputing 2026

104



Fig. 3. Overview of the 3DReasonKnee Dataset Construction Pipeline. MRIs (n=100) underwent
manual segmentation to train an nn-Unet model,10 enabling automatic generation of 3D bounding
boxes for all scans (n=7,970). Clinicians developed subregion-specific queries and structured CoT
based on the MOAKS system.

3D Bounding Box Generation. Two board-certified radiologists and one orthopedic sur-
geon performed manual annotation of anatomical subregions using a specialized 3D annotation
tool. Each scan required approximately 4.5 expert hours for comprehensive annotation, re-
sulting in a substantial time investment of over 450 hours for the complete high-fidelity
subset of 100 scans. We split the manual annotation data and used the standard nnU-Net
pipeline10 to build a segmentation model for all anatomical structures, subregions, and le-
sions. We then applied the trained nnU-Net to generate pseudo labels for all MRI scans with
expert-adjudicated MOAKS assessments. As most of the current vision-language models pri-
marily support bounding boxes rather than segmentation masks,2,3 we extracted the largest
connected component for each subregion from the model’s output and generated axis-aligned
3D bounding boxes. This process created a comprehensive dataset where each scan is linked
with its corresponding MOAKS and relevant anatomical subregions.
Expert Question Development & Chain-of-Thought Generation. A board-certified
orthopedic surgeon with over seven years of experience in knee surgery developed a compre-
hensive set of 62 subregion-specific diagnostic queries, each aligned with distinct MOAKS
components. For each targeted lesion and anatomical subregion combination, the clinician
carefully formulated structured questions designed to prompt precise diagnostic evaluations.
Subsequently, detailed step-by-step CoT were crafted to emulate the clinical reasoning path-
way by clinicians. Specifically, the clinician first outlined the key pathological characteristics
of each lesion type as observed on DESS MRI, emphasizing distinctive imaging features and
points for distinguishing pathology from normal anatomy. In alignment with MOAKS criteria,
the clinician then systematically translated these into reasoning steps, clearly articulating the
conditions and rationale behind each grade.
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Dataset Integration. We linked the 3D bounding box annotations with corresponding ex-
pert queries, reasoning chains, and MOAKS ground truth labels to create a comprehensive
multimodal dataset enabling both localization and reasoning tasks.

3.3. ReasonKnee-Bench: Evaluating 3D Multimodal Grounded Clinical
Reasoning

Our benchmark, ReasonKnee-Bench, comprehensively evaluates a vision-language model’s
ability to perform 3D multimodal grounded clinical reasoning for knee osteoarthritis MRI
assessment, assessing both diagnostic accuracy and anatomical localization as detailed in the
following:

(1) Final Diagnostic Accuracy: We assess the accuracy of predicted MOAKS sever-
ity grades, grouped into 7 major categories: Bone marrow lesions (BML), Cartilages,
Osteophytes, Menisci, Ligaments & Tendons, Synovitis & Effusion, and Periarticular
Features. We report classification accuracy for each.

(2) Anatomical Subregion Localization: We evaluate the accuracy of predicted 3D
bounding boxes using the 3D Intersection over Union (IoU):

IoU3D =
V olume(Bp ∩Bgt)

V olume(Bp ∪Bgt)
,

where Bp is the predicted and Bgt is the ground truth bounding box.

By evaluating both localization and diagnostic accuracy, ReasonKnee-Bench provides a
holistic assessment of a VLM’s grounded reasoning ability – identifying the relevant 3D region
and interpreting its visual information to reach a clinical diagnosis. The results in Table 2 and
Table 3 offer an initial evaluation of existing models on this benchmark.

3.4. Dataset Analysis

Data Split. Our data set comprises 7,970 high-resolution DESS MRI scans split into training
(5,977 scans, 75%), validation (797 scans, 10%), and test sets (1,196 scans, 15%) with no
patient overlap.
Distribution of MOAKS Grades. The dataset exhibits natural clinical variation in the
severity of the pathology in different anatomical regions (Figure 4a).

• BML Size, Number, %: The distribution indicates specific anatomical regions prone
to developing BMLs, highlighting their relationship with OA progression. These regions
include the medial aspect of the femur, the patella, and the area spanning from the
tibia subspinous to the tibia medial central subregion.

• Cartilage Lesion Size and Depth: Cartilage damage is most pronounced in the
patella and the femur medial central subregion, reflecting anatomical regions most
susceptible to OA-related cartilage loss, with disproportionate involvement of specific
articular surfaces.

• Osteophyte Grade: Osteophytes are more frequently observed in the medial com-
partment of the knee—specifically the femur medial, tibia medial, and patella medial
subregions—reflecting the higher prevalence of medial knee OA in the population.
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a. Distribution of main MOAKS Grades

b. Dice Score of Subregions 

Fig. 4. Dataset distribution statistics. (a) Distribution of main MOAKS grades across different
anatomical regions. The stacked bars indicate the frequency of different severity grades (1-3) for
each anatomical location, with the remaining proportion representing grade 0. (b) Dice score of the
nnU-Net model of all subregions.

3D Bounding Box Annotations. The 3D bounding box annotations provide precise spa-
tial localization of relevant anatomical structures with comprehensive coverage across femoral,
tibial, patellar, ligaments, and meniscal regions. The quality of these annotations is validated
through Dice coefficient measurements against expert manual segmentations (Figure 4b). The
mean Dice score of 0.717 across all regions indicates high precision in localization. The bound-
ing boxes for subregions showed particularly strong performance in the lateral patella (0.830),
the hoffa synovitis (0.827), and the medial patella (0.814) subregions. Even the worst perform-
ing subregion, such as the tibial subspinous (0.545) exceed acceptable thresholds for clinical
relevance. Details can be found here (rajpurkarlab/3DReasonKnee).
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4. Experiments and Baselines

Experimental Setup. We benchmarked various baseline models using 3DReasonKnee. Our
selection spans specialized 3D Medical VLMs (Med3DVLM31), general-purpose VLMs with
video input capabilities (Qwen2.5-VL-3B-Instruct, Qwen2.5-VL-7B-Instruct2), and state-of-
the-art API-based models (o1, using the “2024-12-01-preview” version via Azure). Implemen-
tation details are available at rajpurkarlab/3DReasonKnee.
Experimental Settings. We evaluated the models under three different settings: zero-shot,
zero-shot with instruction schema, and supervised fine-tuning, which allows us to quantify the
inherent difficulty of the proposed tasks for them.

• Zero-shot Inference. For our zero-shot evaluation, we provide each model with the 3D
MRI scan and a question prompt without any examples of the expected reasoning chain.
For example, “In this DESS MRI, identify and grade the osteophyte at the patella lateral
subregion. Provide your reasoning, and the MOAKS grade.” The models rely solely
on their pre-trained knowledge to analyze the 3D medical images, identify relevant
anatomical structures, and generate appropriate clinical reasoning and MOAKS scores.

• Zero-shot Inference with Instruction Schema. In this enhanced zero-shot set-
ting, we augment the base prompt with a structured instruction schema that out-
lines the expected reasoning process. For example, “In this DESS MRI, identify and
grade the osteophyte at the patella lateral subregion. Osteophytes are bony outgrowths
at joint margins. Osteophytes are scored using MOAKS grading: Grade 0: None, Grade
1: Small, Grade 2: Medium, Grade 3: Large. If there are multiple osteophytes in a
given subregion, the largest will be evaluated. The size of osteophyte should reflect pro-
tuberance (how far the osteophyte extends from the joint) rather than total volume of
osteophyte. Provide your reasoning and the MOAKS grade.”. This instruction provides
models with a systematic framework for interpreting 3D MRI data without prescribing
specific findings, allowing us to evaluate how effectively models can apply structured
reasoning processes to clinical assessment tasks.

• Zero-shot Inference with Instruction Schema and Ground Truth Region. In
this setting, first, we augmented the zero-shot prompt with the structured instruction
schema used in the previous baseline, explicitly outlining the expected reasoning pro-
cess. Second, we cropped the input MRI volume to include only the ground-truth region
of interest. By eliminating the need for the model to localize the relevant anatomical
structure, this setting isolates its reasoning and grading capabilities.

• Supervised Fine-tuning. For the supervised approach, we fine-tune each baseline
model on our training set. Models with the best performance on our validation set are
used for evaluation.

Baselines. Table 2 summarizes the performance of different approaches on MOAKS compo-
nent grading diagnostic accuracy, while Table 3 presents the localization performance across
anatomical subregions. In zero-shot settings, even state-of-the-art models struggle with the
complex task of MOAKS grading, with Qwen2.5VL-3B achieving only 0.158 overall accuracy.
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Table 2. Results Summary of MOAKS Grading Performance. We report average accuracy on at-
tributes for each lesion category (BML, Cartilage, Osteophyte, Meniscus, and Others) as well as the
Overall average across all categories.

Model Method BML Cartilage Osteophyte Meniscus Others Overall

Qwen2.5VL-3B Zero-shot 0.081 0.253 0.251 0.093 0.159 0.158
Qwen2.5VL-7B Zero-shot 0.642 0.309 0.348 0.347 0.469 0.470
o1 Zero-shot 0.479 0.553 0.353 0.332 0.476 0.477

Qwen2.5VL-3B Instruction Zero-shot 0.092 0.149 0.253 0.205 0.146 0.146
Qwen2.5VL-7B Instruction Zero-shot 0.629 0.466 0.342 0.297 0.503 0.504
o1 Instruction Zero-shot 0.635 0.579 0.345 0.391 0.567 0.568

Qwen2.5VL-7B Instruction Zero-shot w/ GT region 0.697 0.549 0.338 0.166 0.563 0.556

Qwen2.5VL-3B SFT w/o CoT 0.706 0.602 0.345 0.387 0.616 0.613
Med3DVLM SFT w/o CoT 0.670 0.578 0.330 0.346 0.600 0.596

Qwen2.5VL-3B SFT w/ CoT 0.667 0.600 0.342 0.340 0.590 0.588
Med3DVLM SFT w/ CoT 0.671 0.579 0.333 0.343 0.605 0.581

Table 3. Results Summary of Anatomical Subregion Localization (IoU). Values represent
average IoU scores for each subregion of each anatomical structure across different models.

Model Patella Femur Tibia Meniscus ACL PCL Synovitis

Qwen2.5VL-3B 0.293 0.275 0.322 0.174 0.299 0.305 0.519
Med3DVLM 0.298 0.314 0.359 0.197 0.319 0.384 0.470

The larger Qwen2.5VL-7B model shows some improvement (0.470), comparable to the o1
model (0.477), but both fall short of clinically acceptable performance. Note that medical
VLMs like Med3DVLM fail to follow the instructions and give valid outputs. For models that
successfully follow instructions, prompting with structured instruction schemas significantly
improves performance across models. When prompted with the instruction schema and the
ground truth region, we observed a 0.05 increase in overall accuracy (0.556 vs. 0.504) com-
pared to the Instruction Zero-shot baseline. This indicates that when the localization step
is solved, the model’s reasoning and final diagnostic grading improve. The o1 model showed
the most substantial gains from instruction following, with overall accuracy increasing from
0.477 to 0.568 (+19.1%). This improvement was particularly pronounced for BML assess-
ment, where accuracy increased from 0.479 to 0.635 (+15.6%). Supervised fine-tuning (SFT)
yielded substantial performance improvements, with Qwen2.5VL-3B achieving 0.613 overall
accuracy. While incorporating CoT reasoning during this SFT phase did not translate to ac-
curacy gains in our initial experiments, the supervised models still significantly outperformed
o1. We believe that the rich, expert-generated CoT annotations within our dataset hold con-
siderable potential that may be more effectively unlocked with alternative training paradigms
beyond standard supervised fine-tuning. Additionally, we observed a clear positive correlation
between localization accuracy (IoU) and diagnostic accuracy for our supervised models, with
the Med3DVLM model trained with CoT exhibiting the strongest positive correlation between
these two metrics.
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Failure Modes. Taken together, these two experiments provide an initial failure analysis
across all the models evaluated. Grounding is a major failure point. Performance improves
notably when the ground-truth region is provided, indicating that many errors arise from
incorrect localization. Reasoning and grading remain challenging for certain categories. Even
when localization is provided, categories such as Meniscus and Osteophyte still show low ac-
curacy, suggesting that fine-grained reasoning about subtle lesion patterns is also a limitation.

5. Discussion

Our work lays the crucial groundwork for training grounded reasoning models in medical imag-
ing. By demonstrating the current limitations of VLMs in this domain, 3DReasonKnee pro-
vides a vital resource to catalyze the development of models capable of reasoning through
complex 3D medical data in a manner that mirrors the structured, region-first approach
of clinicians. 3DReasonKnee provides a foundation for developing interpretable AI tools
that integrate into diagnostic workflows and improve patient care. Future research directions
stemming from this work are manifold. We believe this dataset shows promise for exploring
reinforcement learning (RL) approaches, which can guide VLMs to diagnose by emulating
the expert clinical process..11,16,22 Notably, 3DReasonKnee features vision-language diagnos-
tic problems paired with CoT rationales and a structured response format, a combination
conducive to effective RL training. This dataset could serve as an SFT layer, establishing co-
herent thinking patterns and output structures, in conjunction with advanced RL techniques
that strengthen both reasoning performance and generalization, as demonstrated in success-
ful approaches like OpenAI o3. Another promising training avenue involves exploring novel
training processes that directly embed both the full image and the localized subregion/lesion
information, a strategy that has been eplored in 2D but is currently limited by computational
constraints for 3D images.23 Furthermore, the structured nature of 3DReasonKnee opens doors
for investigating longitudinal reasoning, analyzing disease progression at different time points,
and ultimately contributing to prognosis and treatment planning. Extending this framework
to other medical imaging modalities beyond knee MRI and other joints such as hand and hip
OA represents another significant future direction, paving the way for more broadly applicable
and clinically impactful grounded reasoning models.8,20
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