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Recent studies have demonstrated that eye tracking is a valuable tool in the detec-
tion, classification and staging of neurodegenerative diseases such as Parkinson’s Disease
(PD). However, traditional methods for capturing gaze data often rely on expensive and
non-engaging clinical equipment such as video-oculography, limiting their accessibility and
scalability. In this work, we investigate the feasibility of using eye tracking data collected
via consumer-grade virtual reality (VR) headsets to support neurological diagnostics in a
more accessible and user-friendly manner.

This approach enables large-scale, low-cost, and remote assessments, which are particu-
larly valuable in early detection and monitoring of neurodegenerative conditions. We show
that relevant oculomotor features extracted from VR-based eye tracking can be used for
predictive assessment. Despite the inherent noise and lower precision of consumer devices,
careful preprocessing and robust feature engineering, including deep learning embeddings,
mitigate these limitations. Our results demonstrate that both handcrafted and learned fea-
tures from gaze behavior enable promising levels of classification performance. This research
represents an important step towards scalable, automated, and accessible diagnostic tools
for neurodegenerative diseases using ubiquitous VR technology.
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1. Introduction

Eye tracking data has been shown to be a valuable tool in many medical applications, such
as detecting concussions in athletes'* or studying behavior to, e.g. , identify ADHD in chil-
dren.>® Many conditions that affect oculomotor function are marked by eye movement abnor-
malities such as slowed saccades, fixation instability, square wave jerks, impaired smooth pur-
suit, gaze-evoked nystagmus, vertical gaze palsy, reduced optokinetic nystagmus (OKN) and
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Fig. 1. Overview of our approach. We use raw eye tracking data (center) from a game-like VR
experiment (left), where the user gaze starts in a resting position (a) and has to focus on dynami-
cally appearing objects (b). Upon successful fixation, these objects playfully ”explode” into confetti,
providing immediate visual feedback (c). From multiple repetitions with different target locations we
extract various types of features and perform classification (right).
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vestibuloocular reflex (VOR) gain as can be observed for Parkinson’s disease (PD), atypical
Parkinsonian disorders such as multiple system atrophy (MSA), progressive supranuclear palsy
(PSP) and corticobasal degeneration (CBD), spinocerebellar ataxias (SCA), Huntington’s dis-
ease (HD), frontotemporal dementia (FTD), Alzheimer’s Disease and schizophrenia.®! Of
those, PD features decreased saccade amplitudes, quantified as task-specific hypometria, as
a probable reflection of early nigrostriatal degeneration, whilst increased saccadic latency,
and antisaccade errors, attributed to the non-dopaminergic degeneration of higher-level eye
movement related circuits later in the disease course, thereby linking eye-tracking metrics
to cognitive decline.''"'3 Oculomotor signatures — such as asymmetry of corrective saccades
and VOR gain measured by video head-impulse tests (VHIT) to distinguish central causes
(e.g., posterior circulation strokes or cerebellar ataxia, neuropathy and vestibular areflexia
syndrome [CANVAS]) from peripheral vestibulopathies (e.g., vestibular neuritis), as well as
slow or absent vertical saccades to differentiate early PSP from PD — highlight the broader di-
agnostic utility of eye tracking across diverse disorders, without the need for costly diagnostic
measures such as alpha — synuclein seed amplification assays or PET-CT scans.!4 17

At the same time, consumer-grade eye tracking hardware (webcams, phone cameras, VR
headsets) has become more accessible and demonstrated potential for unintrusive, remote
eye-tracking assessments, thus offering scalable tools to complement traditional methods for
early detection and monitoring.'®!? This enables remote assessment of problems and widely
accessible diagnostic tools. However, it remains unclear whether these devices can measure
data that is qualitatively sufficient for diagnostics.

In the following, we will focus on eye tracking data obtained from a virtual reality (VR)
headset in the prediction of PD. VR headsets have several advantages over traditional camera
recordings, e.g. eye tracking independent of head movement which allows for more reliable
handling of movement artifacts, a built-in calibration for faster setup, and complete control
over the visual environment which allows for repeatable, immersive experimental conditions
with complete control over both foreground and background stimuli. By contrast, conventional
camera-based systems typically require stricter environmental control and are more sensitive
to external distractions. And, even though they are less common than phone cameras, they
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can be bought at a reasonable price nowadays. By developing an automated analysis and
classification of this data, we can simplify assessment of movement disorders such as PD.
The experiment tracks the gaze of patients and healthy controls as they look at different
objects in the form of fruits, according to simple instructions: The user’s task is to look at
pseudo-randomly appearing objects (see Fig. 1), starting from a reference resting position,
in order to explode them and increase a score with each successfully performed action. This
approach leverages gamification to enhance engagement, making the task more enjoyable and
potentially more effective in sustaining user attention and compliance.

We analyze the applicability of three classes of features for predicting the diagnosis of PD
using eye tracking data. General features, such as those established in prior work,?° can easily
be extracted but may underperform with low-quality or noisy recordings. Task-evoked features
like reaction time, derived directly from the experimental setup, can capture meaningful re-
sponses but require careful computation and may still have limited predictive power (compare
Fig. 4). Learning-based features obtained through neural network training offer a data-driven
approach that may uncover latent patterns not accessible through traditional methods. We
demonstrate that combining and selectively integrating these feature types yields improved
predictive performance. This classification can potentially become a tool to help identify early
oculomotor changes of movement disorders and monitor disease progression in a cost-effective,
reproducible, and scalable fashion.

Contributions. This work takes a step towards accessible and automated analysis of eye
tracking data from consumer-grade VR devices for the detection of oculomotor dysfunction.
We explore the potential of such data for distinguishing PD from healthy controls and other
movement disorders. In summary, our contributions are

e We design a gamified eye tracking experiment in virtual reality to capture controlled
gaze behavior in a reproducible setting while remaining accessible and engaging through
consumer VR hardware.

e We evaluate multiple feature classes for PD classification: (i) general statistical features,
(ii) task-evoked metrics derived from the experimental design, and (iii) deep features
learned via a supervised variational autoencoder.

e We demonstrate that combining these feature types improves classification performance
across multiple metrics and extends to multiclass scenarios involving spinocerebellar
ataxia patients.

2. Related Work

In this section, we discuss prior work from two intersecting areas: (1) the application of eye
tracking in medical diagnostics, particularly for movement disorders, and (2) machine learning
methods for oculographic data in both traditional and immersive environments.

2.1. Ophthalmology for Diagnostics

Eye movement behavior has long been studied as a non-invasive window into motor, coordi-
native, and cognitive function.?’?? In clinical contexts, eye tracking has been used to assess
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cognitive abilities, such as in dementia screening,?® as well as to evaluate social behaviors,?*

and neurological conditions such as Parkinson’s disease (PD).11:2527 Moreover, it has also
been used to differentiate PD from related disorders like Progressive Supranuclear Palsy.?®
Eye tracking has found applications outside of neurodegenerative disease as well and has
shown promise in concussion assessment, particularly in sports contexts.!™ Additionally, it
has been explored as a tool for screening and diagnosing neurodevelopmental disorders, includ-
ing attention-deficit /hyperactivity disorder (ADHD) and autism spectrum disorder.’® Beyond
patient diagnosis, several studies investigate eye movements in decision making and clinical
reasoning,?? 32 for instance by analyzing the connection between time-related costs in decision
processes and eye movement?? or exploring the relationship between diagnostic performance
and visual search behaviors of the radiologists.??

A variety of eye tracking tools have supported these investigations. High-fidelity systems
such as the EyeLink 10002%%° and the iView X Hi-Speed? are commonly used in controlled lab
settings. More recent efforts have also examined the feasibility of webcam-based eye tracking
for remote cognitive assessments, despite current limitations in resolution and precision.??
Immersive and extended reality platforms have opened new avenues for eye tracking in clinical
research. In mixed reality, Daniol et al.?* used the Microsoft HoloLens 2 to analyze eye tracking
patterns in PD patients. In the virtual reality (VR) domain, Orlosky et al.3> recorded eye
movements of PD patients during VR tasks for subsequent clinical evaluation. Other VR-
based efforts include tools for post-COVID symptom assessment®® and dementia screening.??
Adhanom et al.?” provide a comprehensive review of eye tracking applications in VR. In our
work, we also use immersive VR with the Meta Quest Pro headset to capture oculographic
data from patients with PD.

2.2. Machine Learning for Oculometrics

Machine learning and deep learning techniques have been increasingly applied to eye tracking
data across a range of medical contexts. Recent studies demonstrate their utility in detecting
PD and monitoring its progression, highlighting the potential of eye tracking as a non-invasive
digital biomarker.3®3° These approaches typically operate on small-scale datasets and employ
classifiers such as Naive Bayes, Decision Trees, and Random Forests.*%4! Other work extracts
a feature set from video-based eye trackers, and trains an ensemble classifier composed of
Support Vector Machines, Logistic Regression, and Random Forest models.*?> Additionally,
tablet-based eye tracking has been used both to differentiate Parkinson’s patients from healthy
controls using Logistic Regression,*3 and to predict the severity of motor symptoms (e.g., MDS-
UPDRS scores) using SVM classifiers.#* There are specific eye movement abnormalities in PD
patients, which leverage many of these approaches; an overview can be found in.!2:4
Recently, deep learning models have been increasingly applied to PD detection and mon-
itoring using eye tracking data. Mao et al.*® proposed a classification pipeline that combines
deep learning with ensemble methods to identify neurological disorders, using features such
as pupil position extracted from 30 Hz infrared video eye tracking data. Their approach uti-
lizes a long short-term memory (LSTM) network for initial temporal modeling, followed by
a decision-tree ensemble (Random Forest) for final classification. Vodrahalli et al.4" used a
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500 Hz binocular infrared eye tracking system to detect eye movement disorders, including
PD. Their method generates convolutional neural network (CNN) embeddings from gaze data
recorded while patients read numbers on a page, which are then classified using a Random
Forest model. Similarly, Uribarri et al.*® applied state-of-the-art deep learning architectures
to classify PD using 300 Hz eye tracking data. They used near-infrared illumination to track
pupil movements, focusing their predictions on short fixation intervals. Reiner et al.*’
ployed a Tobii Fusion Pro remote eye tracker to collect oculometric data, which was processed
using a deep learning pipeline designed for visual feature extraction. In a related effort, Jiang
et al.’? developed a custom deep neural network for automated PD classification using eye
tracking data acquired with an HTC Vive Pro Eye VR headset featuring integrated Tobii
tracking with 120 Hz.%! Deep learning-based eye tracking analysis has also been employed
to detect other neurodegenerative and developmental conditions, including Alzheimer’s dis-
5458 and autism spectrum disorder.59-61

In contrast to prior work, our approach targets PD (and spinocerebellar ataxia) classifi-
cation using eye tracking data from consumer-grade VR hardware with lower sampling rates
of 70 Hz. We employ a structured, gamified task and a robust feature extraction pipeline,
showing that even under these constrained conditions, effective classification is possible. This
performance is supported in part by higher-order statistical features (e.g., skewness, kurtosis),
learned features, and task-evoked metrics that capture subtle but clinically relevant variations
in gaze behavior.

€111~

ease,”>3 dyslexia,

3. Experimental Setup

In this work, we explore the potential of using eye tracking data from widely available VR
headsets to enable more accessible approaches to support neurological diagnostics. To this
end, we use a dataset collected in a virtual reality (VR) environment with the Meta Quest
Pro, a consumer-grade headset featuring integrated infrared-based eye tracking. Despite its
accessibility, the system introduces challenges related to signal noise and reduced accuracy in
peripheral regions, which must be considered during data preprocessing and model design.
The AVERT-MD (Avatar Evaluation in Real-Time for Movement Disorders) study has
been granted ethical approval by the institutional review board of the University Hospital
Bonn in compliance with the Helsinki Declaration (File number: 2024-367-BO). All partici-
pants are recruited either from the Department of Parkinson, Sleep and Movement Disorders
at the University Hospital Bonn or from the observational study cohorts of the German Center
for Neurodegenerative Diseases (DZNE): healthy individuals (DANCER), Parkinson’s disease
(DESCRIBE-PD), and spinocerebellar ataxia (SCA-Registry). Participants with congenital
nystagmus, age-related macular degeneration, or head tremor were excluded from study par-
ticipation. After providing written informed consent, demographic data were collected, and
participants underwent clinical motor assessments consisting of the Movement Disorder Soci-
ety’s Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) and the Scale for the Rating
and Assessment of Ataxia (SARA), which were administered by a movement disorders spe-
cialist certified in the aforementioned clinical assessment scales. At the beginning of the VR
game, an instructional text will be shown to participants in VR, and the test will be run

223



Pacific Symposium on Biocomputing 2026

without any interference from the examiner, only to be repeated in case of involuntary head
movements.

The dataset is recorded through a controlled gaze-tracking task in which individual ob-
jects in the form of fruits appear sequentially at varying positions in the user’s field of view.
Participants are instructed to fixate on each new target upon its appearance, which is marked
by the explosion of the object, followed by return to a centrally located reference object.
The timing of each trial is participant-dependent and dynamically gated by real-time gaze
detection, resulting in session durations in the order of several minutes. Each session yields
continuous recordings of gaze vectors, the participant’s positions, and 3D object coordinates
for both central and target stimuli. The dataset includes recordings from 75 participants,
comprising 33 individuals with Parkinson’s disease (PD), mainly of Stage I or II of the Hoehn
and Yahr staging system, which is well representative of the early stages of PD, 27 healthy
controls (HC), and 15 individuals diagnosed with Ataxia, a separate neurological disorder
characterized by motor impairments. The PD participants had an average UPDRS III score
of 16.86 with a standard deviation of 10.27, and the PD group’s male predominance reflects
projected global prevalence ratios, rising from 1.46 in 2021 to 1.64 in 2050.92 Recordings were
performed at a 70 Hz sampling rate using the native Quest Pro SDK, without additional hard-
ware modifications, resulting in 75 VR sequences with consistent task structure and spatial
alignment.

By using the Meta Quest Pro, a widely available consumer VR headset with built-in eye
tracking, the setup enables scalable data collection without the need for specialized hardware
or lab environments. Note that the system has only been tested with this VR headset model,
so its generalizability to other devices remains unclear.

4. Feature Extraction

To analyze gaze behavior, we extracted a range of features from the raw eye tracking data.
These include handcrafted features based on task-evoked reaction metrics such as saccadic
latency and velocity, spontaneous fixations and saccades, and higher-level representations
learned via deep neural networks.

4.1. Task-FEvoked Saccadic Response Features

To systematically analyze response dynamics in the eye movement behavior of the participants,
we calculated two primary metrics from the gaze data: the saccadic latency (sl) and the
saccadic velocity (sv). The saccadic latency refers to the time from appearance of the target
to the start of the participants eye movement, as illustrated in Fig. 2. From the duration of the
saccade and the distance to the target at movement start, we compute the saccadic velocity,
the angular velocity of the eye movement in degrees per second.

To determine the initiation of eye movement toward the target, we analyze the angular
distance between the gaze and the target object over time. As shown in Fig. 2, the angular
distance remains approximately constant prior to movement initiation, reflecting gaze stability
at a non-target location. Movement onset is identified as the point where the angular distance
begins to decrease sharply. While methods based on fixed angular or velocity thresholds were
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Fig. 2. Timeline illustrating the visual response to a stimulus. Eye movement initiation and target
fixation are detected based on angular distance to the target over time. The blue curve represents
the angular distance between the gaze and the target object. Eye movement initiation is defined as
the point of closest approach to a reference line with a 45° negative slope. Target fixation is identified
as the point where the gaze intersects a 45° positive slope reference line.

found to be sensitive to noise and inter-subject variability, we fit a reference line with a fixed
slope of 45° to the angular distance profile and define the initiation point as the location
of closest approach to this line. Fixation is defined similarly as the point, where the gaze
intersects a 45° positive slope reference line. From the saccade duration, the saccadic velocity
is calculated using the angular distance between the central fixation point and the target.

To prepare the data for classification, we extract statistical features from saccadic latency
and velocity measurements recorded during the experiment. Each participant was exposed to
n = 127 object appearances, with each trial i € {1,...,n} yielding a pair of scalar values (¢;, v;)
corresponding to their saccadic latency/sl and velocity /sv.

To generate meaningful participant-level features that characterize the empirical distri-
butions of these sequences, we computed a set of descriptive statistics based on statistical
moments over £ = ({1,...,¢,) and v = (v1,...,v,). The first and second central moments,

representing the sample mean p(x) and variance o(x)?,

pa) =S w o= S (- o)), (1)
=1

i=1
quantify the average saccadic latency or velocity and the overall variability in oculomotor
responses, respectively. The standard deviation o(x) is simply the square root of the vari-

ance. The third and fourth standardized moments, corresponding to skewness and kurtosis,
respectively,

skew(z) = ;2: (W)s kurt(z) = ;é (1’—#‘(9”))4 2)

whereby skewness quantifies the asymmetry of the distribution, with positive values indicating
a longer right tail, while kurtosis measures the heaviness of the tails and sharpness of the peak,
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relative to a normal distribution. To complement these moment-based features, we computed
robust statistics that are less sensitive to outliers. The median offers a robust measure of
central tendency, and represents the 50th percentile of the sequence, and the interquartile
range IQR = Q3 — Q1 is the difference between the 75th and 25th percentiles and captures the
spread of the central 50% of observations. We also included the minimum and mazimum values
min(z) = min; z;, max(z) = max;z;, which highlight the extremal responses and indicate
anomalously fast or slow responses. The range range(x) = max(x) — min(x) measures the
spread between the most extreme observations, reflecting the total span of variation.

Each statistic is computed independently for the saccadic latency vector £ and the move-
ment speed vector v, resulting in a total of 18 features per participant.

4.2. General Fixation and Saccade Features

Saccadic eye movements and visual fixation provide important insights into motor and cog-
nitive function, particularly in Parkinson’s disease.*>%3 Therefore, we evaluated a variety of
fixation- and saccade-based features from the gaze data. Fixations and saccades were identi-
fied using the Buscher method,®* which classifies a fixation as a cluster of gaze points within
a 1° visual angle for at least 100 ms. Saccades were inferred as the rapid transitions between
consecutive fixations during free viewing. Similar to Jiang et al.’ we extracted the total num-
ber of fixations (TNF), total duration of fixations (TDF), mean duration of fixations (MDF),
and their number, as well as the scan path length (SL) and its duration (SD), and the rate of
saccade/fixation. We compute them for both the interval of the target visibility and the com-
plete recording. To extract additional insights into the feature distribution, we also compute
statistical features as described in Sec. 4.

4.3. Deep Feature Extraction

To capture higher-level representations of gaze behavior beyond handcrafted features, we em-
ploy a deep neural network on the gaze data as shown in Fig. 3. We use a 1D convolutional
neural network encoder with residual connections to extract features from the input. To sum-
marize the temporal dynamics of the extracted features, we apply attention inspired average
pooling. These pooled features are passed through a reparameterization layer, yielding latent
representations which are subsequently processed by a classification module. The model out-
puts a 4-dimensional latent embedding z ~ ¢g(z|z) that captures the underlying structure of
gaze behavior and is used for subsequent classification.

Model parameters 6 and ¢ are optimized by minimizing a composite loss function that
combines a cross-entropy loss with a regularization term based on the Kullback—Leibler (KL)
divergence,

min Lo (G5(2).y) + A~ L. (a0(z]2) p(2)). (3)

where z is the input, y is the ground-truth label, and G,(z) denotes the classification head
applied to the sampled latent representation. The KL divergence term encourages the approx-
imate posterior gyg(z|x) to remain close to the prior p(z) = N(0,I).
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Fig. 3. (a) Architecture of the 1D convolutional network for gaze representation learning. (b) PCA
projection of the learned feature space showing task-specific clustering.

5. Experiments

We now assess the ability of the features introduced in Sec. 4 to discriminate between healthy
individuals (HC) and those with Parkinson’s disease (PD) by evaluating their performance
in a binary classification task using standard machine learning classifiers. We then extend
this analysis to a more challenging three-class classification problem by additionally including
spinocerebellar ataxia participants.

5.1. Prediction of Parkinson’s Disease

To identify the most discriminative features, we begin with a statistical analysis based on the
independent two-sample t-test, comparing feature distributions between PD and HC groups.
Features yielding p-values less than 0.05 are considered statistically significant and are hypoth-
esized to contribute meaningfully to classification. Fig. 4 illustrates the mean and standard
deviation of the normalized feature space and shows significant differences across several fea-
tures, with varying levels of significance indicated by asterisks.

Next, we evaluate the ability of several machine learning models to distinguish between
HC and PD participants, using both the statistical features extracted from saccadic latencies
and velocity, as well as the general fixation and saccade features (Sec. 4). For each model,
we use Sequential Feature Selector from scikit-learn% to identify optimal feature subsets.
(Classification performance is assessed using stratified k-fold cross-validation with random-
ized splits (four independent seeds) to ensure robustness. We evaluate nine representative
machine learning models: Logistic Regression, Linear Discriminant Analysis (LDA), Support
Vector Machine (SVM) with a linear and radial basis function (RBF) kernel, Random Forest,
Gradient Boosted Trees (GBT), k-nearest neighbors (KNN), and perceptron. Tab. 1 reports
performance metrics for all classifiers, including weighted accuracy, precision, recall, F1 score,
and ROC AUC, based on classification results using both generic and task-evoked features. We
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Fig. 4. Mean and standard deviation of normalized (task-evoked and general) feature spaces for
Parkinson’s disease and healthy controls. Significance levels are based on t-test p-values across fea-
tures, indicating statistical differences: *p < 0.05, **p < 0.01, ***p < 0.001.

additionally report weighted accuracy without the higher-order statistical features (denoted as
Accuracy™). To further analyze classifier performance, we visualize the confusion matrices for
the three best-performing models in Fig. 5. These show well each model distinguishes between
PD and HC participants, highlighting common misclassification patterns.

To assess how well the learned latent representations separate classes, we apply the Naive
Bayes classifiers to the deep features extracted from a deep neural network (compare Sec. 4.3).
We evaluate the latent representations as complementary information by concatenating the
latent vectors z ~ gg(z|z) with the most informative handcrafted features f € RY, selected
through sequential feature selection. The increased accuracy observed in Tab. 1 for Naive
Bayes*t*™P shows that the learned feature space is able to capture additional discriminative
information not present in classical features. In parallel, we evaluate the performance of the
full neural architecture in an end-to-end supervised learning setup, which demonstrates perfor-

228



Pacific Symposium on Biocomputing 2026

Table 1. Performance comparison of models using sequentially selected features. Superscripts indi-
cate the specific set of selected features used by each model, and “Accuracy™” reports the model’s
classification accuracy without the use of higher statistical features. Here, sv refers to saccadic ve-
locity and sl to saccadic latency. The tag vis marks features computed only when the object was
visible; features without this tag are calculated across the entire dataset.

Model Accuracy Precision Recall F1 Score ROC AUC Accuracy*
Naive Bayes # 0.824 0.913 0.756 0.808 0.873 0.713
Random Forest P 0.804 0.829 0.824 0.818 0.836 0.758
GBT © 0.772 0.823 0.780 0.780 0.821 0.754
LDA 9 0.748 0.796 0.713 0.737 0.737 0.697
SVM RBF Kernel € 0.743 0.868 0.614 0.703 0.715 0.723
KNN f 0.710 0.798 0.643 0.692 0.679 0.683
Logistic Regression & 0.681 0.733 0.671 0.681 0.771 0.646
SVM Linear Kernel " 0.667 0.756 0.571 0.624 0.722 0.679
Perceptron ! 0.648 0.746 0.637 0.647 0.724 0.558
Naive Bayes 2temb 0.831 0.859 0.821 0.816 0.871 —
End-to-end 0.741 0.773 0.738 0.731 0.768 —

? mean sv, max sv, median TNF vis, range MDF vis, kurtosis rate vis, range rate

® min sl, iqr sv, kurtosis sv, iqr TDF vis, median TNF vis, median TDF, mean SL, mean SD, median SD

¢ min TNF vis, mean SL, max SD

4 std sl, kurtosis sv, mean TNF vis, median TNF vis, range MDF vis, median SL vis, iqr TNF, kurtosis MDF
¢ median sv, iqr ms, kurtosis sl, mean SL, median SL, max SL, range SL, kurtosis SD

f median SL

& median TNF vis, kurtosis TNF

%‘ range sl, max MDF vis, range MDF vis, range rate vis, mean TDF, median SL

! std sl, skew sl, kurtosis sl vis, range SD vis, min rate vis, iqr rate vis, mean TDF, kurtosis TNF

True label
True label
True label

HC PD HC PD HC PD
Predicted label Predicted label Predicted label
(a) Naive Bayes (a) Naive Bayes + Emb (c) Random Forest

Fig. 5. Confusion matrices for the top three binary classifiers. Each matrix summarizes the classi-
fication performance for distinguishing between HC and PD participants.
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Fig. 6. Confusion matrices for the top three classifiers in the multiclass case. Each matrix summa-
rizes the classification performance for distinguishing between healthy controls, Parkinson’s disease
and Ataxia participants. Diagonal elements represent correctly classified instances, while off-diagonal
entries indicate misclassifications.

mance competitive with classical approaches. We believe that with a larger training dataset,
this potential could be further leveraged, leading to greater performance gains. To interpret
the learned embedding space, we project latent vectors to two dimensions using PCA. As
shown in Fig. 3(b), samples cluster clearly by diagnostic label, highlighting that the latent
space encodes disease-specific behavioral patterns.

5.2. Discrimination of Neurodegenerative Diseases

To evaluate the scalability of our approach, we extend the classification task to a three-class
setting by incorporating spinocerebellar ataxias (SCA) as an additional target class. SCAs are
a group of hereditary neurodegenerative disorders whose hallmark is the neurodegeneration of
Purkinje cells in the cerebellum, as well as the deep cerebellar nuclei and brainstem, leading
to discoordination of oculomotion, speech, standing, gait, and fine motor skills. The resulting
task requires models to distinguish between oculometric signatures across three groups: HC,
PD, and SCA. We adopt the same feature selection and cross-validation strategy used in
the binary task, and account for class imbalance by using balanced class weights due to the
smaller number of SCA participants. As shown in Tab. 2 and in Fig. 6, all models exhibit
a decrease in absolute classification metrics, reflecting the increased difficulty of multi-class
discrimination. Nevertheless, classifiers continue to perform above chance, confirming that the
extracted features retain discriminative power across heterogeneous movement disorders.

6. Discussion

We highlight the feasibility of using consumer-grade VR headsets for automated neurological
assessment, focusing on Parkinson’s disease (PD) classification from eye tracking data. Our
approach combines a controlled VR gaze task with a diverse feature extraction strategy that
includes both statistical metrics and learned representations, addressing the limitations of
noisy, low-resolution hardware and a limited dataset. We demonstrate that combining gen-
eral oculomotor metrics with task-evoked feature computation of saccadic latency and velocity
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Table 2. Multiclass performance comparison of models using sequentially selected features. Super-
scripts indicate the specific set of selected features used by each model, where sv refers to saccadic
velocity and sl to saccadic latency. vis marks features computed only when the object was visible.

Model Accuracy Precision Recall F1 Score
LDA # 0.759 0.804 0.733 0.734
Naive Bayes ” 0.708 0.774 0.642 0.629
Random Forest © 0.693 0.740 0.667 0.661
Gradient Boosted Trees 4 0.692 0.751 0.692 0.686
SVM (RBF Kernel) © 0.591 0.551 0.579 0.523
Logistic Regression f 0.583 0.653 0.613 0.598
SVM (Linear Kernel) & 0.558 0.623 0.625 0.597
Perceptron ! 0.516 0.589 0.525 0.510

# median sl, kurtosis sv, std TDF vis, median TNF vis, median MDF vis, skew MDF vis, max SD vis, iqr TDF, median SD, skew rate
b kurtosis v, median TDF vis, iqr TDF vis, kurtosis MDF vis, kurtosis TDF, min TNF
¢ median TDF vis, max MDF vis, kurtosis MDF vis, mean SL vis, mean SD vis, median SD vis, std rate, max rate, range rate
max MDF vis, kurtosis MDF vis, mean SD vis, min TNF
mean sl, median sl, median TDF vis, min TDF vis, max MDF vis, range MDF vis, median&min SD vis, mean MDF, median MDF
median sl, min sl, min TDF vis, median TNF vis, range MDF, skew MDF, kurtosis MDF, skew rate
& median TDF vis, min TDF vis, skew MDF vis, skew SL vis, skew TDF, skew MDF, min SD
mean sl, skew MDF vis, std SD vis, min SD vis, min rate vis, std rate, min rate, max rate, iqr rate

d
e
f

results in high discriminative performance. In particular, features based on higher-order statis-
tics such as skewness and kurtosis contribute meaningfully to classification, indicating that
distributional shape carries relevant diagnostic information not captured by simple averages.
Deep learning has also proven to be a valuable tool for extracting additional features, and we
believe that with a larger dataset, its contribution could be even more substantial. Finally, we
show that our experimental setup is scalable, achieving robust performance not only in binary
classification but also in more complex multi-class scenarios.

Note, that this approach does not yet provide sufficiently reliable confidence estimates
to serve as a standalone diagnostic tool and remains a research prototype that can offer
supportive measures. Integration into clinical practice requires privacy-compliant handling of
eye-tracking data, clear communication to patients about possible insurance implications of
early PD diagnosis, and approval of consumer VR devices as medical devices, which demands
transparent data curation and close collaboration between clinicians and data scientists. Its
main potential lies in the quantitative monitoring of PD symptoms, for example, to assess
current symptom levels, track treatment response, and to assist differential diagnosis.
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