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We introduce a pipeline for implicitly representing a protein, or protein complex, as the
union of signed distance functions (SDFs) by representing each atom as a sphere with the
appropriate van der Waals radius. While this idea has been used previously as a way to
render images of proteins, it has not, to our knowledge, been widely adopted in a machine
learning setting. Mirroring recent successful work applying SDF's to represent 3D geometry,
we present a proof of concept that this representation of proteins could be useful in several
biologically relevant applications. We also propose further experiments that are necessary
to validate the proposed approach.
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1. Introduction

Modeling the three-dimensional shape of proteins is crucially important for understanding
how they interact with other molecules. Advances in representations of protein structure have
lead to corresponding advances in the ability for machine learning (ML) methods to predict
biologically relevant properties of proteins, such as: binding affinity with bioactive molecules;
prediction of protein conformation; and simulation of protein behavior under a variety of
external conditions. One common representation of proteins that has received much attention
is the protein surface,! also sometimes called the solvent accessible surface (SAS), which is a
2D manifold that represents the portion of the protein’s surface that is physically accessible
to a solvent. Classical methods? for computing the SAS involve rolling an imaginary probe
(with the radius of a solvent molecule, typically water) over the surface of the protein and
storing the points of contact between the probe and the surface.

In contrast, in this work, we propose an alternate protein surface representation: an iso-
surface of a signed distance function (SDF), produced by smoothing the boolean union of
individual spherical SDFs for each of the protein’s component atoms. This approach natu-
rally produces the same biologically relevant notion of a protein’s solvent-accessible surface,
but represented as an alternative object that naturally integrates with current ML methods
and tooling. Historically, changes in the way an object is represented can significantly affect
the tractability of modeling it for ML tasks. We present a proof-of-concept demonstration of
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how this representation can be applied to predict protein-protein interactions; further work is
needed to quantify the benefits of the proposed approach. The main contributions of this work
are as follows: 1) we discuss prior work training machine learning models on protein surface
geometry; 2) we demonstrate a way to represent this surface as the zero-level set of a signed
distance function, constructed with boolean operations; 3) we investigate using acceleration
structures to query a protein SDF more efficiently; 4) we produce a dataset of protein-protein
interface meshes, and provide code to reproduce our results; 5) we illustrate two potential
applications to analyzing proteins in motion as well as binding sites.

1.1. Mathematical and Biological Background

We first introduce some necessary background in protein biology, geometry, and geometric
machine learning. Throughout this paper, variables with an arrow (#) represent points in nD
Euclidean space, lowercase letters represent constants, and || - || is the nD Euclidean norm.

Signed Distance Functions (SDFs) Let Q C R” be a compact subset of Euclidean space,
and let 9 represent its boundary. For any point # € R"™, the signed distance dq(%) is defined
as:
0 x € 0N
do(f)={ —||7—¢|| TeQ where §=argmin|Z— 7| (1)
yeo
1Z—gll T¢Q
In other words, the signed distance measures the distance between any point and the
boundary of Q, with the sign indicating whether a point is inside the shape or not (some
authors take the opposite sign as convention, i.e. positive values denote an object’s interior).
Signed distance functions have many properties that make them useful in a machine learning
context: 1) they have unit gradient everywhere the gradient is defined; 2) analytic formulae
have been found for a wide variety of SDFs for specfic shapes;® and most significantly for this
work, 3) simple SDF's can be combined into SDF's for more complex shapes using basic boolean
operations. We will specifically make use of the exponential smooth-min operation, one of a
family of SDF blending operations originally proposed by Quilez.* If dy(x),d2(z),...d,(z) are
a set of SDFs, then their smooth-min d is given by

d(%) = —klog <Z e_;di(f)> where k determines the smoothing radius. (2)
i=1
As a relevant example of a specific closed-form analytic SDF, the SDF d for a n-dimensional
sphere of radius r centered at ¢ is given by d(%) = ||Z — ¢]| — .
When SDFs are combined with boolean operations, the resulting function may not be a
true SDF, in the sense that it may not strictly satisfy Equation 1, but in practice the resulting
distance fields are approximate enough for typical applications including training ML models.

Protein Surfaces Protein surfaces® are a common way to represent the parts of a protein
that are available to react/bind with other proteins or small molecules. A protein surface is
typically calculated by representing each atom as a hard-shell sphere of a given radius, and
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rolling a simulated spherical probe (typically taken to have the radius of a single hydrogen
atom, 1A) over the collection of atoms. The final mesh representing the protein is produced
by discretizing the surface traced by the probe. If we trace the center of the probe sphere, we
get the Solvent Accessible Surface (SAS) of the protein. Tracing instead all the contact points
between the probe and the atoms of our molecule produces the Solvent Excluded Surface. See
Figure 1 for examples of protein solvent excluded surfaces.

1.2. ML Analysis of Protein Surfaces

Protein design and analysis is a rapidly evolving application area of machine learning.5” For a
more thorough review of ML for protein design and concepts in geometric machine learning, we
refer the reader to Cheng et al.® and Bronstein et. al? respectively. Protein surfaces have been
widely adopted as a representation of proteins that facilitates training machine learning models
to identify possible protein-protein and protein-ligand interactions.'®'® While much of the
prior work on protein surfaces has focused on meshes as an intermediate representation, there
is a complimentary vein of work that uses signed distance functions to represent proteins. SDF's
have been thoroughly examined in the context of rendering 2D and 3D images of proteins.'6-1®
Much of this prior work uses machine learning or an SDF representation of proteins, but not
both. A notable exception is Sverrisson et al.'® which uses a similar atomic union SDF to
the one we propose. However, that work mainly examines the definition of a convolution-like
operation on implicitly defined protein surfaces, and does not consider combinations of such
surfaces with constructive solid geometry operations as we do in the present work.

2. Method
2.1. Protein Representation

We propose representing a protein as the union of spherical SDFs of each of its component
atoms, where each atom is a sphere sized according to its van der Waals radius (as reported
by Bondi?). These spherical SDFs are combined using the smooth-min operation, which we
and others have observed in practice'®?! to closely resemble SAS and SES computed via
other means. See Figure 1 for several examples of protein SDFs computed according to this
method. We implement these SDFs in Pytorch,?? enabling backpropagation of error through
loss functions composed of protein SDF queries, and provide the code for operationalizing ML
tasks using SDF protein surface representations.

2.1.1. Possible Issues

As noted above, boolean operations on SDF's are not guaranteed to produce a function that
satisfies Equation 1. The effect of this on our proposed protein SDF can be seen in Figure 2.
The overlapping SDFs in the protein interior produce a lower bound instead of the true SDF
value. However, for the union operation, the resulting SDF has the correct d = 0 isosurface and
exterior distance values. We expect that this limitation should have little impact on down-
stream applications, since protein-protein and protein-ligand interactions occur exclusively on
the exterior.
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(e) 7CEI (f) 2GAF (g) 1IBR (h) 1A2K

Fig. 1: d = 0-level set meshes of multiple proteins from the DB5 dataset. Each protein imaged
here is the “left” chain of the protein complex, in its bound confirmation. See Table 1 for a
detailed explanation of these proteins.

2.2. Intersection of Protein Chains

In this section, we use properties of SDF's to produce an implicit function that represents the
shared interface between two protein chains. In addition to the smooth min defined in Equation
2, we make use of three operations on SDFs: 1) the rounding operation d(")(#) = d(Z) —r, which
expands the zero level set of an SDF by r in the positive direction; 2) the intersection operation,
where the intersection of two SDF's dy and ds is given by dg,ng, (%) = max (di(Z),d2(Z)), and
finally 3) the union operation, where the union of two SDF's d; and ds is given by dg, 4, (%) =
min (dy(Z), d2(Z)). Let d; and dy be the SDFs for two protein chains. Then we calculate an
interface SDF as:

dinter = min ( max (di (Z) — r,d2 (7)), (3)
max (dy (%) , dz (Z) — 7))
This produces an SDF that represents the area that is within r of both protein surfaces, i.e.

the space between the two chains. See Figures 3 and 5 for examples of these interface meshes
with an intersection radius of r = 4A.

2.3. Accelerating Queries

We investigate the use of two data structures for accelerating spatial queries of protein SDF's:
Bounding Volume Hierarchies (BVHs) and K-D Trees. For further details about these data
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Table 1: PDB ID, atom count, and short description for each of the proteins used in figures
in this paper. For more information, we refer the reader to the individual PDB entries, or to
the description pages for the DB5% or PLINDER?** datasets.

Source PDB ID # Atoms Description

DB5 219B 11696 ATF-urokinase receptor complex

DBb5 1JK9 5954 Heterodimer between H48F-ySOD1 and yCCS
DBb5 1WEJ 4166 IGG1 fragment with horse cytochrome

DBb5 1PXV 4816 Staphostatin-staphopain complex

DBb5 7CEI 1724 Colicin E7 in complex with inhibitor

DBb5 2GAF 6011 Vaccinia polyadenylate polymerase

DB5 1IBR 9739 RAN with Beta

DB5 1A2k 6732 NTF2:RanGDP complex

DBb 1WDW 29252 Tryptophan synthase a2b2 complex

PLINDER  1GOL 2901 Rat MAP kinaser ERK2

PLINDER 2CJM 8856 CDK2 Y15p T160p in complex with cyclin
PLINDER 2PY7 4133 E. coli phosphoenolpyruvate carboxykinase
PLINDER  3DAW 4056 Actin-depolymerizing factor

PLINDER  4EOM 8710 Human cyclin A3 complex with ATP
PLINDER  4EOQ 8717 Human cyclin A3 complex with ATP
PLINDER  6AEC 2579 Human DNA Polymerase Mu with MnATP
PLINDER SAEC 2748 Compound 17 bound to CK2alpha

Fan et al.?® 2QF1 4410 Zinc transporter YiiP

structures, we refer the reader to several surveys on data structures.?62® BVHs in particular

have been previously explored as a technique to accelerate SDF queries.?? Both of these data
structures use spatial subdivision to accelerate finding the k& nearest points to a given query
point. See Figure 4 for an illustration of the BVH approach. Both of these data structures
yield an approximation (see Figure 6) of the original signed distance function, but with a
substantially lower memory footprint, which we analyze in Section 3.4. We also note here
that the object-oriented implementation of a protein as a Torch module may add overhead in
comparison to computing the all-pairs distance between a query point and all of a protein’s
atoms. A further potential benefit of the object-oriented approach, which we hope to explore in
future work, is the ability to represent protein subunits like residues and secondary structure.

2.4. Implementation Details

Code used to build the SDFs described in this paper is available at https://github.com/
cory-b-scott/protein_sdfs. Our code is built on top of the torch_sdf package, which is
available at https://github.com/cory-b-scott/torch_sdf. For visualizing SDF's, we first
convert each to a mesh using the Marching Cubes algorithm?” as implemented in SciKit-
Image.?! We render images of each mesh using the meshplot package. The final meshes for
each interface in the DB5 dataset may be downloaded from https://osf.io/xzgyc/?view_
only=6634b1aa0bf6401990ac2f217cef068b.
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Fig. 2: An illustration of one possible issue when representing a protein as a collection of
spherical SDFs. The left shows the union SDF, while the right shows the true distance to the
d = 0 isosurface. The union SDF is incorrect in the protein’s interior.

(b) (c)

Fig. 3: An example of the d(x) = 0 isosurface generated by our method for the protein 1IWDW
from the DB5 dataset. Left: The intersection isosurface rendered alongside both chains of
the protein complex (color denotes chain ID). Nodes in the intersection region have been
highlighted in green. Right: two views of the isolated intersection mesh.

3. Results and Applications

For this paper, we evaluate our model on the Docking Benchmark 5 (DB5)?3 and PLINDER?*
datasets. DB5 consists of protein complexes, where each complex includes two chains. Each
chain is represented with PDB files?? with atom coordinates for both its undocked pose (i.e.
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Fig. 4: A visualization of the bounding volume hierarchy built by our method for the protein
1WDW.

(b)
Fig. 5: As in Figure 3, but for protein 2GAF.

Table 2: Comparison of time/memory usage by two acceleration structures.

Avg time (ms) Peak memory

Basic 48.01 1.91MB
KDTree 77.43 11.15 kB
BVH 45.77 7.06 kB
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(c) 1A2K, kd-tree rendering. (d) IWDW, kd-tree rendering.

Fig. 6: Illustration of SDFs produced by the two acceleration structures we examine in this
paper. Each picture shows a 2D slice through the signed distance field at z = 0. We see that
both accelerated SDFs are only approximations of the SDFs in Figure 2. In particular, the
BVH approach leads to rectilinear artifacts on the exterior of the SDF; this could likely be
ameliorated by using a different shape as the bounding volume (as opposed to axis-aligned
rectangular prisms).

the pose it folds into naturally) and its docked pose with the other protein in the complex. We
use the “bound” version of each chain in the complex. PLINDER is a searchable catalogue of
protein-ligand complexes which can be filtered by protein/ligand /complex properties. We use
the holo conformation of several proteins bound to ATP for the SDFs we render in Figure 8.

3.1. Calculation of Protein Interaction Surfaces Using Smooth-Min SDFs

We use the SDF defined in Equation 3 to compute signed distance functions for all of the
protein complexes in the DB5 dataset, as well as SDFs and meshes for their interfaces. We
use an interaction radius of 4.0A in line with previous work on protein-protein interaction.33:34
This data supports ML tasks using SDF representations, as well as explicit modeling of the
biologically active surfaces. See Figures 3 and 5 for example protein interface meshes.

3.2. Visualizing Molecular Dynamics Trajectories

In this section, we demonstrate using protein SDF's to visualize a protein’s shape over time
during a molecular dynamics (MD) simulation. We generate an SDF for an entire protein
trajectory as follows: first, we generate an SDF f,(Z) for the protein at each timestep using
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the approach introduced in Section 2.1. Then we take the smooth-min of all of these SDF's
over t: F(Z) = smin, f;(&). This produces an outer envelope showing the shape of the protein
over the course of the entire simulation. Visualizing a protein in this way can tell us which
structural features of the protein are persistent over time. To illustrate this technique we use
a 9ns trajectory of the YiiP membrane protein?® (See Figure 7). This illustrates that this SDF
representation extends naturally to time-series protein data.

Fig. 7: An SDF computed over all timesteps of a MD simulation of the YiiP membrane protein
in water. Left: the protein SDF for the first timestep only. Right: the SDF computed by taking
the smooth-min blend of all timesteps. Center: left and right views overlaid.

3.3. Visualizing Ligand Pockets

We use the method described in Section 3 to generate visualizations of ligands and their
associated binding sites. We download a subset of arbitrarily chosen protein-ligand complexes
from the PLINDER training dataset,?* filtering for complexes which consist of a single protein
bound to ATP. We extract an SDF representing the binding site by building the smooth-min
SDF for the protein, and then taking the intersection of that SDF with that of a 10Asphere
centered on the ATP molecule. We visualize these binding site SDF's in Figure 8, both with
and without the ATP molecule visualized. Because each of these SDFs is constructed in a
fully differentiable way, we could train a neural net to memorize and reproduce these pocket
shapes, in the manner of a DeepSDF?> model.

3.4. Comparison of Acceleration Structures

We compare the performance of the two acceleration structures described in Section 2.3.
For each protein complex in the DB5 dataset, we benchmark the time and GPU memory
needed to evaluate all grid points in a 256 grid laid over the bounding box of the complex.
In Figure 9, we compare the accelerated version of each protein structure to the time and
memory required to query all of the atomic SDFs for a given complex. We see that the BVH
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1GOL 2CJM 2PYT 3DAW 4EOM 4E0Q 6AEC S8AEC

Fig. 8: Visualization of binding pockets for ATP for several proteins. Top row shows the pocket
only; bottom row shows the pocket occupied by the ATP molecule (orange). See Table 1 for
a description of each protein.
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Fig. 9: Time/memory benchmarking of acceleration structures for querying protein SDF's.

approach is slightly faster than the naive approach, but the KDTree is much slower, likely
due to CPU-GPU latency (at time of writing, there was no functional Torch+CUDA KDTree
implementation, so the KDTree approach necessitates copying data back to the CPU. We
hope to ameliorate this inefficiency in future work). All timings were collected on a consumer
NVIDIA RTX A6000 GPU. Both the KDTree and BVH approaches offer significant memory
savings (see Table 2). However, this approximation does incur some rectangular artifacts in
the BVH tree approach; this could likely be resolved by using a different shape primitive in
the volume hierarchy (e.g. bounding spheres instead of axis-aligned rectangles).

4. Conclusion and Future Work

This paper demonstrates the utility of representing a protein using the signed distance to
its solvent-accessible surface (as approximated by the smooth-min function to the protein’s
component atoms). We also show how this can facilitate constructive solid geometry operations
on protein interfaces. While this technique is promising, further work is needed to validate
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the proposed approach. One of the major advantages of building our protein representation in
PyTorch?? is the ability to optimize over parts of the protein representation. In future work,
we hope to use our framework to optimize protein shape, conformation, and position according
to SDF-based loss functions.

Recent work?® has used neural networks as maps between vectors of latent states and
signed distance functions, producing a single model that is able to predict SDF values for
a dataset of multiple 3D shapes. We hope to investigate a combination of this approach
and our SDF construction, perhaps by utilizing embedding vectors from a pretrained protein
transformer architecture.?® We also hope to incorporate atomic characteristics as features of
the generated surfaces. Finally, the literature includes examples of data structures like the
ChainTree3” which have been specifically developed for fast querying of energy potentials of
proteins. It is likely that our proposed approach could be further enhanced by one of these
protein-specific acceleration structures.

Finally, we note that constructing an SDF that implicitly stores the SAS shape is only
the first step. We anticipate that this approach could be useful in any case where a machine
learning model operates on the solvent accessible surface (AKA, where differentiability is
needed). An example could include optimizing the position and pose of amino acids to produce
an SAS that fits some other structural motif; or to provide some other machine learning
model with a training signal that takes protein shape into account. We hope to use our SAS
representation in one or more of these applications.
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