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Apparent treatment-resistant hypertension (aTRH) is a clinically challenging condition with
heterogeneous etiologies. Understanding the biological pathways underlying resistance to
antihypertensive treatment could inform targeted therapeutic strategies. To evaluate how
methodological choices in SNP selection influence biological inference, we applied two approaches
to select aTRH-associated variants for clustering: PRS-CSx and pruning and thresholding (P&T).
Using k-means clustering, we grouped aTRH-associated variants based on their association profiles
across 91 cardiometabolic-related phenotypes. We then performed pathway and tissue enrichment
analyses to evaluate the biological processes represented by each cluster. Both methods identified
multiple genetic clusters, but the distribution of variants and biological signals differed. Clustering
based on PRS-CSx produced unequally distributed clusters of SNPs and yielded limited tissue
enrichment, while P&T-based clustering captured more uniform trends across cardiometabolic traits
and broader tissue and pathway enrichment. These results demonstrate that methodological choices
in SNP selection influence downstream clustering and biological interpretation. Despite some
overlap in identified pathways and tissue enrichment, each approach identified unique biological
signals, highlighting the potential of pairing polygenic methods and k-means clustering to elucidate
the biological heterogeneity of aTRH and guide future mechanistic studies.
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1. Introduction

Elevated blood pressure (BP), or hypertension (HTN), is defined by systolic BP (SBP) > 130 mmHg
and/or diastolic BP (DBP) > 80 mmHg. HTN contributes to over 13% of global premature deaths
and is implicated in many cardiovascular diseases, including coronary artery disease, stroke, and
renal damage.! In the United States, 34% and 44% of non-Hispanic White (NHW) and non-Hispanic
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Black (NHB) adults, respectively, have HTN, which rank among the highest prevalence rates around
the world.?? Treatment guidelines include BP-lowering strategies like antihypertensive medications
and lifestyle alterations. However, nearly 25% of individuals with HTN do not achieve target blood
pressures.*

Apparent treatment-resistant HTN (aTRH), defined as failure to achieve BP control on three
antihypertensive medications or concurrent prescriptions for four or more medications regardless of
achieving control, increases risk for severe health outcomes including coronary heart disease and
stroke, particularly in African ancestry populations.*> Due to varying definitions of aTRH and
methods of BP assessment, the estimated prevalence of aTRH has a wide range, from 8.4-50%.5
Individuals with aTRH are at a greater risk for diabetes, chronic kidney disease, cardiovascular
disease, and stroke than individuals with controlled HTN.’

Despite its clinical significance, the biological mechanisms underlying aTRH remain poorly
understood. aTRH is a heterogeneous condition — patients may reach treatment resistance through
different biological routes, such as altered renal sodium handling®, impaired vascular tone
regulation’, or neurohormonal dysregulation.!® Additionally, compared to NHW individuals, those
who identify as Hispanic, Asian, and NHB have 10-12% lower rates of BP control!!, with some
antihypertensive medications having lower efficacy in these populations as well.!? These differences
likely reflect multiple genetic and environmental conditions, underscoring the need for more
nuanced classification of aTRH beyond conventional clinical definitions.

To begin addressing this complexity, we sought to apply a k-means clustering approach to
identify distinct, non-overlapping clusters of genetic variants associated with aTRH. Previous
studies'® have utilized this approach for well-characterized phenotypes, such as type 2 diabetes
mellitus, by clustering based on genome-wide significant (P < 5x107®) independent loci. Given the
complexities in phenotyping for aTRH, leading to limited sample sizes and power, this strategy may
fail to capture the breadth of relevant genetic variation. To address this limitation, we evaluated
alternative approaches to SNP selection that capture a broader spectrum of polygenic effects: linkage
disequilibrium (LD) pruning and thresholding (P&T!#) and PRS-CSx'’, a Bayesian shrinkage
method that integrates LD information across populations. We then performed k-means clustering
using SNPs selected by each method, grouping variants based on their association patterns across
91 cardiometabolic phenotypes.

These clusters, which varied by SNP selection method, may represent candidate mechanistic
pathways underlying treatment resistance that can be personalized. For example, one individual may
have strong genetic loading for sodium handling mechanisms, while another may have elevated risk
through vascular reactivity mechanisms. By performing pathway and tissue enrichment analyses,
we can compare how PRS-CSx- and P&T-selected SNPs result in differences in both cluster
assignment and the biological processes implicated. This framework allowed us to assess not only
the biological heterogeneity of aTRH, but also how methodological choices in SNP selection
influence downstream interpretation.

This study evaluates analytic approaches that provide opportunities to further understand the
underlying mechanisms of treatment resistance, with the long-term goal of identifying more
targeted, biology-informed therapeutic strategies. Further, these approaches may be utilized for SNP
selection for other phenotypes where large numbers of genome-wide significant independent loci
may be unavailable, allowing for opportunities to further understand biological mechanisms of
disease that may not be possible otherwise.
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2. Methods

2.1. Study Population and Phenotype Definition
2.1.1. The Million Veteran Program (MVP)

We used MVP cross-population summary statistics from an aTRH genome-wide association study
(GWAS) in this analysis to select aTRH-associated loci.'® The MVP cohort is comprised of Veteran
Health Administration users, 35% of whom identify as a racial or ethnic minority, making it one of
the most heterogeneous research cohorts. Genotypes for approximately 750,000 genetic markers
have been measured with the Affymetrix Axiom Biobank array. Genetic variants not covered by the
array were imputed using the Trans-Omics for Precision Medicine (TOPMed) reference panel.!”
The case definition for this analysis has been previously described.!® Briefly, aTRH cases were
defined using a previously validated algorithm®, based on failure to achieve controlled BP on three
antihypertensive medications, one of which must be a thiazide diuretic, or prescribed four or more
medications regardless of achieving control, excluding patients with chronic kidney disease (stages
4 and 5) as well as causes of secondary HTN. Controls were defined as individuals who achieved
control (<140/90 mmHg) on 1 or 2 medication classes. The total number of samples included 16,833
cases (11,762 NHW and 5,071 NHB) and 53,931 controls (42,850 NHW and 11,091 NHB). The
GWAS was performed race-stratified and then meta-analyzed.

2.1.2. Vanderbilt University Medical Center’s (VUMC) BioVU

BioVU is an institutional resource that supports large-scale genomic research at VUMC. A
description of human subjects’ protection employed for BioVU has been previously described.!”
BioVU genotype data of NHW and NHB adults was used for polygenic score (PS) development and
p-value thresholding (described in 2.2).2° BioVU participant DNA samples were genotyped on a
custom Illumina Multi-Ethnic Genotyping Array (MEGA-ex; Illumina Inc., San Diego, CA, USA).
Phenotyping of BioVU participants used the same algorithm for defining aTRH cases and controls
as above. The total number of samples included 4,286 cases (3,541 NHW and 745 NHB) and 39,356
controls (33,552 NHW and 5,804 NHB).

2.2. Defining aTRH Loci with PS Development and P-Value Thresholding

An overview of the methods can be found in Figure 1. Due to the small number of independent
genome-wide Bonferroni-corrected significant SNPs (P < 5x107%) from the MVP aTRH GWAS
meta-analysis, we compared two methods which could be used to identify the best threshold
reflecting genetic contribution to phenotypic variation, prior to clustering. The first method
combined PS development with PRS-CSx!° followed by optimal p-value thresholding.?! The
optimal p-value threshold determined by this step was then used as a p-value cutoff for SNPs that
would be used downstream in the clustering analysis (described in 2.3).

PS weights were generated using the MVP NHW and NHB summary statistics with PRS-CSx!?
software and --meta flag. Using those weights, PSs at variable p-value thresholds were built using
BioVU genotype data with PLINK2?2, followed by p-value thresholding (range: P=1 to 5x10%, 16
thresholds), as described previously.?! We then performed logistic regression analyses of the PSs
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and aTRH, adjusted for age, age?, sex, body mass index (BMI), and the first ten principal
components, and determined which p-value threshold resulted in the maximal variance explained
by the PS. Optimal p-value thresholds were P < 1 in the NHW population and P < 0.01 in the NHB
population, as determined by maximal variance explained (0.05% and 0.14%, respectively). After
filtering to SNPs with P < 0.01 in the MVP cross-population meta-analysis, we had 17,361 SNPs
(aTRH SNPs) that were used for the PRS-CSx-based clustering analysis.

The second method utilized the pruning and thresholding approach (P&T!¥). We performed
linkage disequilibrium (LD) pruning of SNPs at the same 16-variable p-value thresholds, using an
r? threshold of 0.1 within a 250 kb window. Independent SNPs at each of the 16-variable p-value

thresholds were used to
. { 1. aTRH Polygenic Score (PS) Development & P-Value Thresholding J
construct PSs as described
. g . { PRS-CSx } [ Pruning & Thresholding }
above. Logistic regression
d . f . 1 1. Build weights: MVP aTRH GWAS summary statistics 1. LD prune MVP aTRH sumstats with PLINK2
an teStlng or maxima 2. Build scores with BioVU genotype data (MEGA) 2. Build scores with BioVU genotype data (MEGA)
Variance explained were 3. Optimal PS SNP p-value selection 3. Optimal PS SNP p-value selection
performed as abOVe. The Optimal P-value threshold: P < 1e-2
optimal p-value threshold ) 2
was P < 001 for the NHW [ 2. Defining aTRH Loci & Clustering Analysis J
and NHB populaﬁons 1. Subset MVP GWAS to SNPs with P < le-2 4. Clustlmpute R package: impute missing data
. . 2. Subset 91 traits to same aTRH SNPs & align to risk allele 5. NbClust R package: determines optimal number of
(maleal variance 3. Calculate z-scores for the 91 traits non-overlapping clusters of SNPs
explained:  0.58% and
3 . 3 O% , respec tlvely) We 4 non-overlapping clusters of SNPs 3 non-overlapping clusters of SNPs
then eXtraCted the 5 3479 [ 3. Cluster-Specific Pathway Analyses J

. . <
lndependent SNPS Wlth P 1. Subset the MVP aTRH cross-population meta-analysis summary statistics to cluster-specific SNPs
001 from the MVP aTRH 2. Utilize the SNP2GENE function of FUMA to perform gene mapping

. 3. Perform cluster-specific pathway and tissue enrichment analyses with the GENE2FUNC function of FUMA
GWAS meta-analysis
summary statistics to be Fig. 1. Schematic overview of methods. MVP GWAS refers to the cross-
used for the P&T-based population meta-analysis of aTRH. BioVU data refers to the genotype data
from BioVU (MEGA). PS: Polygenic scores. LD: Linkage disequilibrium.

clustering analysis.

2.3. Defining Clusters of aTRH SNPs with Distinct Cardiometabolic Profiles

We adapted our approach based on a previously published unsupervised “hard clustering” method
with imputation of missing traits.!3 Briefly, we identified 91 cardiometabolic-related traits?*->° that
are associated with aTRH, HTN, or BP. Publicly available summary statistics were obtained and the
effect estimates were aligned to the aTRH risk allele from the cross-population MVP meta-analysis.
Z-scores were then calculated for each trait. K-means clustering of the aTRH SNPs and 91 traits
was performed using the Clustimpute’! and NbClust>> R packages. The Clustlmpute package
imputes missing data and the NbClust package determines the optimal number of clusters.
ClustImpute was performed with three clusters (minimum). NbClust parameters were based on
those used previously!'® which included a minimum of three and maximum of 15 clusters, distance
was set to Euclidean, all indices were used, and the significance value for Beale’s index was set to
0.1. Clustering parameters were identical for both the PRS-CSx and P&T approaches.
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2.4. Cluster-Specific Pathway Analyses 3,140

! SNPs
To investigate the biological pathways and =2~ 330 SNPs
tissue-specific expression patterns associated s 1
with each cluster, we used the SNP2GENE and o Closter
GENE2FUNC  functions of FUMA® —F
(Functional Mapping and Annotation of i !
GWAS). We input cluster-specific subsets of 1 [

the aTRH MVP cross-population meta-analysis e
summary statistics into the SNP2GENE swee | 2
function of FUMA to perform gene mapping
and then used the GENE2FUNC function for

functional enrichment analyses, including wo FI]
. . SNP. L= | —4—
pathway and tissue enrichment based on "P&T Cluster PRS-CSx Cluster o

Genotype-Tissue Expression (GTEx) version Fig. 2. Alluvial plot showing the differences in
8 profiles. Parameters for FUMA analyses distribution of SNPs between P&T Clusters and PRS-

. . . CSx Clusters. The number of SNPs per cluster is
were identical for both SNP selection methods. shown next to each bracket. SNPs that were not shared

between both methods were excluded for plotting.

3. Results

We compared the PRS-CSx and P&T methods as two different SNP selection approaches to k-
means clustering for phenotypes with limited numbers of independent genome-wide significant loci,
with the overarching goal of determining the genetic underpinnings of phenotypic heterogeneity in
aTRH. For PRS-CSx, the optimal p-value thresholds were P < 1 in the NHW population and P <
0.01 in the NHB population (maximal variance explained: 0.05% and 0.14%, respectively). For
P&T, the optimal threshold was P < 0.01 for the NHW and NHB populations (maximal variance
explained: 0.58% and 3.30%, respectively). We then performed two sets of clustering analyses,
using the 17,367 SNPs selected from PRS-CSx and 5,479 from P&T (SNPs with P <0.01), aligned
to the aTRH risk allele, across 91 cardiometabolic traits. The optimal number of clusters was
determined to be four for the PRS-CSx-based method and three for P&T-based method, which
represented non-overlapping subsets of SNPs with similar cardiometabolic profiles through
application of an unsupervised ‘“hard clustering” method with imputation of missing trait
associations.!® The distribution of SNPs by cluster and method is shown in Figure 2. Clustering
based on P&T resulted in two near-equally proportioned clusters out of a total of three, whereas
PRS-CSx-based clustering resulted in four clusters, with one including over four times as many
SNPs than the next largest cluster (Figure 2). Most SNPs in P&T-based Clusters 1 and 2 were
captured in the PRS-CSx-based Cluster 3, where P&T Cluster 3 mostly overlapped with PRS-CSx
Cluster 1 (Figure 2).

3.1. Identifying Biologically Meaningful Clusters of aTRH SNPs

Each of the non-overlapping SNP clusters derived from both PRS-CSx and P&T showed a unique
pattern of association across the 91 cardiometabolic traits (Figure 3), reflecting the genetic and
mechanistic heterogeneity of aTRH.
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PRS-CSx Cluster 1 showed mixed positive and negative associations across traits, with strong
positive associations for SBP, DBP, and pulse pressure, as well as traits related to metabolic health,
including fasting glucose, two-hour glucose, and most of the anthropometric and central adipose
tissue volume traits. Moderately negative associations were observed for certain cardiac
structural/functional traits and some blood cell traits, including hematocrit, hemoglobin
concentration, mean corpuscular hemoglobin, and mean corpuscular volume (Figure 2A). PRS-CSx
Cluster 2 was characterized by increased associations of all the anthropometric measures, all but
one liver-related trait, and many of the lifestyle, sleep and BP traits, as well as cardiac
structural/functional phenotypes (Figure 2A). Negative associations appeared for multiple blood
cell traits, circulating plasma lipids, women’s health and endocrine traits, including age at menarche,
sex hormone binding globulin, and plasma renin. PRS-CSx Cluster 3 showed consistently weak or
near-zero associations across most traits, except for strong negative associations with BP traits.
Cluster 4 displayed nearly inverse patterns of Cluster 2, with negative associations with
anthropometric, liver, lifestyle, BP, and cardiac traits, but strong positive associations with blood
cell traits and moderate positive associations with women’s health and lipid traits (Figure 2A).

P&T Cluster 1 displayed broadly increased associations across nearly all glycemic,
anthropometric, adiposity, BP and heart rate, liver, blood cell, lifestyle and women’s health traits,
with only a few exceptions: decreased associations for HDL, select blood cell traits, testosterone,
and sex hormone binding globulin (Figure 2B). P&T Cluster 2 showed the opposite pattern, with
negative associations across nearly all glycemic, adiposity, lipid, BP, heart rate, and blood cell traits,
while cardiac structural/functional traits remained weakly associated (Figure 2B). Cluster 3 was
characterized by strong associations with cardiac structural/functional traits, largely in the negative
direction, coupled with positive associations for BP traits and negative associations for adiposity,
lipid, and blood cell traits.
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Fig. 3. Heatmap of cluster-trait associations with aTRH at P < 0.01. Columns correspond to 91 cardiometabolic
traits, grouped by category. Rows correspond to the clusters. Color intensity reflects the direction and
magnitude of association (z-score aligned to the aTRH risk allele), with blue indicating negative and red
indicating positive associations. Breaks for the color scale were calculated using a quantile-based method.
*Traits adjusted for BMI. A) PRS-CSx-based results. B) P&T-based results.

Overall, both methods produced clusters with nearly inverse association patterns. Compared to
PRS-CSx-derived clusters, P&T clusters tended to capture broader and more uniformly positive or
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negative trends. These differences indicate that SNP selection strategy can shape both cluster
composition and the biological pathways implicated, with PRS-CSx highlighting more subtle
contrasts between variant groups and P&T emphasizing broader cardiometabolic signatures.

3.2. Cluster-Specific Pathways

The GENE2FUNC tissue specificity analyses revealed significant enrichment (Ponferroni < 0.05) for

both PRS-CSx- and P&T-  Table 1. Cluster-specific FUMA GENE2FUNC results for tissue
based Clusters, though the specificity. Only significantly (Pgonferroni < 0.05) enriched tissues are shown.

patterns differed between Method Cluster Tissue PBonferroni
methods (Table 1). PRS- Bladder 5.15x107
CSx Cluster 1 showed 1 Adrenal gland 7.82x107
enrichment in the bladder, PRS-CSx Heart left ventricle 2.20x10™
adrenal gland, and heart 3 Bladder 5-90X10:§
(left  ventricle),  while Adrenal gland 1.10x1 0_3
Cluster 3 was enriched for I “ih(ﬂe blood 2.46x10°
the bladder and adrenal ]é;iier 335;87
gland (Table 1). P&T P&T ) Uterus 8: 94x10°
Clqsters revealed tissue Prostate 4.66x1072
enrichment for more total Kidney 4.70x107

tissues, including whole
blood for Cluster 1 and the bladder, colon, uterus, prostate, and kidney for Cluster 2.

Table 2. Cluster-specific GENE2FUNC results for significantly enriched gene sets (Pepr < 0.05). The
top 4 of over 20 significant pathways are presented for PRS-CSx Cluster 1 and P&T Cluster 2.

Method  Cluster Gene Ontology Biological Process Prpr
Anterior-posterior pattern specification 7.33x10°
1 Glucocorticoid biosynthetic process 1.87x107
PRS- Embryonic skeletal system development 1.87x10
CSx Membrane repolarization during cardiac muscle cell action potential  3.61x10”
3 Homophilic cell adhesion via plasma membrane adhesion molecules  1.32x107
Embryonic skeletal system development 3.08x107
Glucocorticoid biosynthetic process 4.33x107
1 Ubiquitin dependent endoplasmic reticulum-associated degradation ~ 2.91x10”
Endoplasmic reticulum-associated degradation 3.40x107
P&T Embryonic skeletal system development 3.92x10°
) Embryonic skeletal system morphogenesis 2.41x107
Skeletal system development 2.41x107
Anterior-posterior pattern specification 3.50x107

The GENE2FUNC analysis also revealed both convergences and divergences between methods
for significant enrichment (Prpr < 0.05) of gene ontology biological pathways (Table 2). The top
four PRS-CSx-based Cluster 1 pathways were enriched for developmental and regulatory processes,
including anterior-posterior pattern specification (P=7.33x10-3), glucocorticoid biosynthetic process
(P=1.87x102), embryonic skeletal system development (P=1.87x10?), and membrane
repolarization during cardiac muscle cell action potential (P=3.61x102). PRS-CSx Cluster 3 was
enriched for homophilic cell adhesion via plasma membrane adhesion molecules (P=1.32x107),
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embryonic skeletal system development (P=3.08x102), and glucocorticoid biosynthetic process
(P=4.33x102). In contrast, P& T-based Cluster 1 was enriched for endoplasmic reticulum-associated
degradation pathways (P=2.91x102 and P=3.40x102), while the top four significant pathways for
P&T Cluster 2 were strongly enriched for a broader set of developmental processes, including
embryonic skeletal system development and morphogenesis (P=3.92x10% and P=2.41x107),
skeletal system development (P=2.41x107), and anterior-posterior pattern specification
(P=3.50x107).

4. Discussion

This study provides insights into the biological heterogeneity of aTRH by applying a clustering
framework to genetic variants using two different SNP selection strategies: PRS-CSx and P&T.
Each approach identified distinct, non-overlapping clusters of variants with unique cardiometabolic
association profiles, supporting the hypothesis that aTRH is a disorder influenced by multiple
pathophysiological processes.

Despite differences in SNP selection, both methods revealed clusters enriched for multiple
groups of cardiometabolic traits. However, notable divergences were observed. PRS-CSx selected
approximately five times the number of SNPs selected by P&T and yielded four clusters with more
nuanced traits profiles, whereas P&T produced three clusters characterized by broader and more
interpretable trends. These methodological differences highlight how SNP selection strategy can
influence both the composition of clusters and downstream biological interpretations.

Across methods, clusters enriched for adiposity and glycemic traits (PRS-CSx Cluster 1 and
P&T Cluster 1) suggest a metabolic energy-driven pathway to treatment resistance. These findings
are supported by the results of another study that reported a gradual increase in the prevalence of
resistant HTN with BMI in overweight patients.>* Increased adipose tissue is related to increased
activity of the renin-angiotensin-aldosterone system (RAAS), which is crucial in BP regulation. In
particular, increased adiposity can lead to increased expression of angiotensin type 1 and 2 receptors,
elevated circulating angiotensin II, angiotensin-converting enzyme, and aldosterone levels.> In
obesity specifically, the increased activity of the RAAS can increase sodium retention, leading to
volume expansion and HTN.>¢

Positive associations between multiple biomarkers and aTRH are well supported by current
literature. One study reported increased risk of aTRH with biomarkers such as interleukin-6 (IL-6),
tumor necrosis factor-o, (TNF-a), and transforming growth factor-B (TGF-B).” These results align
with the strong positive association of multiple biomarkers observed in PRS-CSx Cluster 2 and P&T
Cluster 3. Other positive associations shared between these clusters include sleep-related traits.
Sleep disturbances, obstructive sleep apnea in particular, are highly prevalent (60-71%) among
individuals with aTRH.® In particular, one study found sleep apnea was significantly more common
in individuals with resistant HTN compared to individuals with controlled HTN.*

Lastly, positive associations with blood cell traits (PRS-CSx Cluster 4 and P&T Cluster 1) may
indicate a vascular-reactivity related mechanism. In a large Japanese cohort over a 40-year follow-
up period, absolute neutrophil and white blood cell count have been shown to predict new onset
HTN. Further, one study found that compared to both normotensive and controlled hypertensive
patients, individuals with aTRH had a significantly higher neutrophil count and
neutrophil/lymphocyte ratio.®! Positive associations with white blood cell, neutrophil and
lymphocyte count for both clusters support these findings.
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Pathway and tissue enrichment analyses reinforced the unique biological profiles of clusters
identified by each method. For PRS-CSx, Cluster 1 was significantly enriched in gene sets related
to anterior-posterior pattern specification, glucocorticoid biosynthesis, and embryonic skeletal
system development, suggesting early development and hormonal regulation pathways.
Glucocorticoid receptor signaling has been implicated in HTN, particularly through sodium and
potassium handling and BP regulation.> One study reported 51% of patients who carried a
heterozygous or homozygous glucocorticoid receptor mutation had HTN.®?> Tissue specificity
analysis of PRS-CSx Cluster 1 further revealed enrichment in the adrenal gland, heart, and bladder,
aligning with traits tied to volume regulation and hormonal control. PRS-CSx Cluster 3 was enriched
for biological processes related to homophilic cell adhesion, embryonic development, and
glucocorticoid biosynthesis. One study®® examined the relationship between adhesion molecules and
aTRH and found that endothelial-selectin was a significant indicator of aTRH.

In contrast, P&T identified clusters enriched in a broader range of tissues, including whole
blood, bladder, colon, uterus, prostate, and kidney. Functionally, P&T Cluster 1 was linked to
protein quality-control pathways including ubiquitin-dependent and endoplasmic reticulum-
associated degradation. P&T Cluster 2 was highly significantly enriched for skeletal system
development and morphogenesis pathways, overlapping partially with the PRS-CSx findings, but
with stronger statistical support, and implicated bladder tissue as well. Together, these enrichment
patterns indicate that while both methods highlight developmental and hormonal pathways, PRS-
CSx emphasized neurohormonal and cardiac regulation, whereas P&T uncovered stronger signals
in developmental and protein homeostasis processes, as well as a broader set of tissues, including
reproductive and gastrointestinal systems.

These results demonstrate that both methods recover biologically meaningful clusters but may
emphasize different aspects of underlying biology. In this analysis, PRS-CSx tended to highlight
pathways related to developmental, endocrine, and cardiac processes, whereas P&T captured a
wider range of tissue and pathway enrichments, including immune, reproductive, and protein
degradation pathways. The partial overlap between enriched skeletal-related processes across both
methods suggests stronger biological themes, but each approach also identified distinct biological
signals. These results reinforce that the choice of SNP selection method influences both cluster
composition and downstream enrichment analyses. Despite the differences, the overlap in
developmental and hormonal pathways across methods provides converging evidence for their role
in aTRH, while method-specific findings may reflect complementary aspects of the underlying
biology. Taken together, the findings of this study underscore the biological heterogeneity
underlying aTRH, suggesting that distinct clusters of genetic variants act through different
cardiometabolic routes to contribute to HTN that is refractory to standard treatments.

The identification of mechanistically distinct genetic clusters has implications for precision
therapeutics in aTRH. By understanding the unique pathway through which a patient becomes
resistant, for example, metabolic overload vs. vascular stiffness vs. hematologic dysfunction,
clinicians may be able to tailor interventions to target the underlying biology. Stratification by
genetic cluster could test whether pathway-informed interventions improve BP control, which may
have potential to overcome the limitations of current treatment guidelines and address population
differences in HTN control and efficacy of antihypertensives.

While promising, this work has some limitations. First, the analyses were performed in NHW
and NHB cohorts, limiting generalizability to other populations. Given known differences in HTN
prevalence and treatment response, population-specific clustering approaches should be further
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explored. Additionally, the clustering approach is based solely on genetic association profiles.
Future studies including transcriptomic or proteomic data may provide additional biologically
relevant information. Finally, SNP selection methods clearly influenced results, underscoring the
need for continued methodological evaluation in clustering-based approaches. The difference in
number of SNPs along with the SNPs selected could both contribute to these influences.

Together, our findings underscore the potential of genetic clustering to disentangle the biological
and mechanistic heterogeneity underlying aTRH and demonstrate that SNP clustering provides a
powerful framework to identify distinct mechanistic pathways. Both PRS-CSx and P&T produced
biologically interpretable clusters but emphasized different aspects of the genetic architecture. In
this analysis, P&T demonstrated clearer interpretability and stronger tissue and pathway signals,
indicating that it may be a preferred SNP selection strategy. This work also lays the foundation for
use of clustering methods for phenotypes with a limited number of independent genome-wide
significant variants. This study represents a step toward precision medicine in aTRH by linking
genetic architecture to putative mechanistic pathways, and ultimately, a shift from broad,
population-level HTN treatment strategies toward more tailored interventions.
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