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Apparent treatment-resistant hypertension (aTRH) is a clinically challenging condition with 
heterogeneous etiologies. Understanding the biological pathways underlying resistance to 
antihypertensive treatment could inform targeted therapeutic strategies. To evaluate how 
methodological choices in SNP selection influence biological inference, we applied two approaches 
to select aTRH-associated variants for clustering: PRS-CSx and pruning and thresholding (P&T). 
Using k-means clustering, we grouped aTRH-associated variants based on their association profiles 
across 91 cardiometabolic-related phenotypes. We then performed pathway and tissue enrichment 
analyses to evaluate the biological processes represented by each cluster. Both methods identified 
multiple genetic clusters, but the distribution of variants and biological signals differed. Clustering 
based on PRS-CSx produced unequally distributed clusters of SNPs and yielded limited tissue 
enrichment, while P&T-based clustering captured more uniform trends across cardiometabolic traits 
and broader tissue and pathway enrichment. These results demonstrate that methodological choices 
in SNP selection influence downstream clustering and biological interpretation. Despite some 
overlap in identified pathways and tissue enrichment, each approach identified unique biological 
signals, highlighting the potential of pairing polygenic methods and k-means clustering to elucidate 
the biological heterogeneity of aTRH and guide future mechanistic studies.  
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1.  Introduction  

Elevated blood pressure (BP), or hypertension (HTN), is defined by systolic BP (SBP) ≥ 130 mmHg 
and/or diastolic BP (DBP) ≥ 80 mmHg. HTN contributes to over 13% of global premature deaths 
and is implicated in many cardiovascular diseases, including coronary artery disease, stroke, and 
renal damage.1 In the United States, 34% and 44% of non-Hispanic White (NHW) and non-Hispanic 
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Black (NHB) adults, respectively, have HTN, which rank among the highest prevalence rates around 
the world.2,3 Treatment guidelines include BP-lowering strategies like antihypertensive medications 
and lifestyle alterations. However, nearly 25% of individuals with HTN do not achieve target blood 
pressures.4  

Apparent treatment-resistant HTN (aTRH), defined as failure to achieve BP control on three 
antihypertensive medications or concurrent prescriptions for four or more medications regardless of 
achieving control, increases risk for severe health outcomes including coronary heart disease and 
stroke, particularly in African ancestry populations.4,5 Due to varying definitions of aTRH and 
methods of BP assessment, the estimated prevalence of aTRH has a wide range, from 8.4-50%.6 
Individuals with aTRH are at a greater risk for diabetes, chronic kidney disease, cardiovascular 
disease, and stroke than individuals with controlled HTN.7  

Despite its clinical significance, the biological mechanisms underlying aTRH remain poorly 
understood. aTRH is a heterogeneous condition – patients may reach treatment resistance through 
different biological routes, such as altered renal sodium handling8, impaired vascular tone 
regulation9, or neurohormonal dysregulation.10 Additionally, compared to NHW individuals, those 
who identify as Hispanic, Asian, and NHB have 10-12% lower rates of BP control11, with some 
antihypertensive medications having lower efficacy in these populations as well.12 These differences 
likely reflect multiple genetic and environmental conditions, underscoring the need for more 
nuanced classification of aTRH beyond conventional clinical definitions.  

To begin addressing this complexity, we sought to apply a k-means clustering approach to 
identify distinct, non-overlapping clusters of genetic variants associated with aTRH. Previous 
studies13 have utilized this approach for well-characterized phenotypes, such as type 2 diabetes 
mellitus, by clustering based on genome-wide significant (P < 5x10-8) independent loci. Given the 
complexities in phenotyping for aTRH, leading to limited sample sizes and power, this strategy may 
fail to capture the breadth of relevant genetic variation. To address this limitation, we evaluated 
alternative approaches to SNP selection that capture a broader spectrum of polygenic effects: linkage 
disequilibrium (LD) pruning and thresholding (P&T14) and PRS-CSx15, a Bayesian shrinkage 
method that integrates LD information across populations. We then performed k-means clustering 
using SNPs selected by each method, grouping variants based on their association patterns across 
91 cardiometabolic phenotypes.  

These clusters, which varied by SNP selection method, may represent candidate mechanistic 
pathways underlying treatment resistance that can be personalized. For example, one individual may 
have strong genetic loading for sodium handling mechanisms, while another may have elevated risk 
through vascular reactivity mechanisms. By performing pathway and tissue enrichment analyses, 
we can compare how PRS-CSx- and P&T-selected SNPs result in differences in both cluster 
assignment and the biological processes implicated. This framework allowed us to assess not only 
the biological heterogeneity of aTRH, but also how methodological choices in SNP selection 
influence downstream interpretation.  

This study evaluates analytic approaches that provide opportunities to further understand the 
underlying mechanisms of treatment resistance, with the long-term goal of identifying more 
targeted, biology-informed therapeutic strategies. Further, these approaches may be utilized for SNP 
selection for other phenotypes where large numbers of genome-wide significant independent loci 
may be unavailable, allowing for opportunities to further understand biological mechanisms of 
disease that may not be possible otherwise.  
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2.  Methods 

2.1.  Study Population and Phenotype Definition  

2.1.1.  The Million Veteran Program (MVP)  

We used MVP cross-population summary statistics from an aTRH genome-wide association study 
(GWAS) in this analysis to select aTRH-associated loci.16 The MVP cohort is comprised of Veteran 
Health Administration users, 35% of whom identify as a racial or ethnic minority, making it one of 
the most heterogeneous research cohorts. Genotypes for approximately 750,000 genetic markers 
have been measured with the Affymetrix Axiom Biobank array. Genetic variants not covered by the 
array were imputed using the Trans-Omics for Precision Medicine (TOPMed) reference panel.17 
The case definition for this analysis has been previously described.18 Briefly, aTRH cases were 
defined using a previously validated algorithm6, based on failure to achieve controlled BP on three 
antihypertensive medications, one of which must be a thiazide diuretic, or prescribed four or more 
medications regardless of achieving control, excluding patients with chronic kidney disease (stages 
4 and 5) as well as causes of secondary HTN. Controls were defined as individuals who achieved 
control (<140/90 mmHg) on 1 or 2 medication classes. The total number of samples included 16,833 
cases (11,762 NHW and 5,071 NHB) and 53,931 controls (42,850 NHW and 11,091 NHB). The 
GWAS was performed race-stratified and then meta-analyzed.  

2.1.2.  Vanderbilt University Medical Center’s (VUMC) BioVU 

BioVU is an institutional resource that supports large-scale genomic research at VUMC. A 
description of human subjects’ protection employed for BioVU has been previously described.19 
BioVU genotype data of NHW and NHB adults was used for polygenic score (PS) development and 
p-value thresholding (described in 2.2).20 BioVU participant DNA samples were genotyped on a 
custom Illumina Multi-Ethnic Genotyping Array (MEGA-ex; Illumina Inc., San Diego, CA, USA).  
Phenotyping of BioVU participants used the same algorithm for defining aTRH cases and controls 
as above. The total number of samples included 4,286 cases (3,541 NHW and 745 NHB) and 39,356 
controls (33,552 NHW and 5,804 NHB). 

2.2.  Defining aTRH Loci with PS Development and P-Value Thresholding 

An overview of the methods can be found in Figure 1. Due to the small number of independent 
genome-wide Bonferroni-corrected significant SNPs (P < 5x10-8) from the MVP aTRH GWAS 
meta-analysis, we compared two methods which could be used to identify the best threshold 
reflecting genetic contribution to phenotypic variation, prior to clustering. The first method 
combined PS development with PRS-CSx15 followed by optimal p-value thresholding.21 The 
optimal p-value threshold determined by this step was then used as a p-value cutoff for SNPs that 
would be used downstream in the clustering analysis (described in 2.3).  

PS weights were generated using the MVP NHW and NHB summary statistics with PRS-CSx15 
software and --meta flag. Using those weights, PSs at variable p-value thresholds were built using 
BioVU genotype data with PLINK222, followed by p-value thresholding (range: P=1 to 5x10-8, 16 
thresholds), as described previously.21 We then performed logistic regression analyses of the PSs 
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and aTRH, adjusted for age, age2, sex, body mass index (BMI), and the first ten principal 
components, and determined which p-value threshold resulted in the maximal variance explained 
by the PS. Optimal p-value thresholds were P < 1 in the NHW population and P < 0.01 in the NHB 
population, as determined by maximal variance explained (0.05% and 0.14%, respectively). After 
filtering to SNPs with P < 0.01 in the MVP cross-population meta-analysis, we had 17,361 SNPs 
(aTRH SNPs) that were used for the PRS-CSx-based clustering analysis.  

The second method utilized the pruning and thresholding approach (P&T14). We performed 
linkage disequilibrium (LD) pruning of SNPs at the same 16-variable p-value thresholds, using an 
r2 threshold of 0.1 within a 250 kb window. Independent SNPs at each of the 16-variable p-value 
thresholds were used to 
construct PSs as described 
above. Logistic regression 
and testing for maximal 
variance explained were 
performed as above. The 
optimal p-value threshold 
was P < 0.01 for the NHW 
and NHB populations 
(maximal variance 
explained: 0.58% and 
3.30%, respectively). We 
then extracted the 5,479 
independent SNPs with P < 
0.01 from the MVP aTRH 
GWAS meta-analysis 
summary statistics to be 
used for the P&T-based 
clustering analysis. 

2.3.  Defining Clusters of aTRH SNPs with Distinct Cardiometabolic Profiles  

We adapted our approach based on a previously published unsupervised “hard clustering” method 
with imputation of missing traits.13 Briefly, we identified 91 cardiometabolic-related traits23-50 that 
are associated with aTRH, HTN, or BP. Publicly available summary statistics were obtained and the 
effect estimates were aligned to the aTRH risk allele from the cross-population MVP meta-analysis. 
Z-scores were then calculated for each trait. K-means clustering of the aTRH SNPs and 91 traits 
was performed using the ClustImpute51 and NbClust52 R packages. The ClustImpute package 
imputes missing data and the NbClust package determines the optimal number of clusters. 
ClustImpute was performed with three clusters (minimum). NbClust parameters were based on 
those used previously13 which included a minimum of three and maximum of 15 clusters, distance 
was set to Euclidean, all indices were used, and the significance value for Beale’s index was set to 
0.1. Clustering parameters were identical for both the PRS-CSx and P&T approaches. 

 

1. aTRH Polygenic Score (PS) Development & P-Value Thresholding

1. Subset the MVP aTRH cross-population meta-analysis summary statistics to cluster-specific SNPs
2. Utilize the SNP2GENE function of FUMA to perform gene mapping 
3. Perform cluster-specific pathway and tissue enrichment analyses with the GENE2FUNC function of FUMA

4 non-overlapping clusters of SNPs

2. Defining aTRH Loci & Clustering Analysis

1. Build weights: MVP aTRH GWAS summary statistics
2. Build scores with BioVU genotype data (MEGA)
3. Optimal PS SNP p-value selection

1. LD prune MVP aTRH sumstats with PLINK2 
2. Build scores with BioVU genotype data (MEGA)
3. Optimal PS SNP p-value selection

Optimal P-value threshold: P < 1e-2

1. Subset MVP GWAS to SNPs with P < 1e-2
2. Subset 91 traits to same aTRH SNPs & align to risk allele
3. Calculate z-scores for the 91 traits 

4. ClustImpute R package: impute missing data 
5. NbClust R package: determines optimal number of 
    non-overlapping clusters of SNPs

PRS-CSx Pruning & Thresholding 

3. Cluster-Specific Pathway Analyses

3 non-overlapping clusters of SNPs

Fig. 1. Schematic overview of methods. MVP GWAS refers to the cross-
population meta-analysis of aTRH. BioVU data refers to the genotype data 
from BioVU (MEGA). PS: Polygenic scores. LD: Linkage disequilibrium. 
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2.4.  Cluster-Specific Pathway Analyses 

To investigate the biological pathways and 
tissue-specific expression patterns associated 
with each cluster, we used the SNP2GENE and 
GENE2FUNC functions of FUMA53 
(Functional Mapping and Annotation of 
GWAS). We input cluster-specific subsets of 
the aTRH MVP cross-population meta-analysis 
summary statistics into the SNP2GENE 
function of FUMA to perform gene mapping 
and then used the GENE2FUNC function for 
functional enrichment analyses, including 
pathway and tissue enrichment based on 
Genotype-Tissue Expression (GTEx) version 
8 profiles. Parameters for FUMA analyses 
were identical for both SNP selection methods.  

3.  Results 

We compared the PRS-CSx and P&T methods as two different SNP selection approaches to k-
means clustering for phenotypes with limited numbers of independent genome-wide significant loci, 
with the overarching goal of determining the genetic underpinnings of phenotypic heterogeneity in 
aTRH. For PRS-CSx, the optimal p-value thresholds were P < 1 in the NHW population and P < 
0.01 in the NHB population (maximal variance explained: 0.05% and 0.14%, respectively). For 
P&T, the optimal threshold was P < 0.01 for the NHW and NHB populations (maximal variance 
explained: 0.58% and 3.30%, respectively). We then performed two sets of clustering analyses, 
using the 17,367 SNPs selected from PRS-CSx and 5,479 from P&T (SNPs with P < 0.01), aligned 
to the aTRH risk allele, across 91 cardiometabolic traits. The optimal number of clusters was 
determined to be four for the PRS-CSx-based method and three for P&T-based method, which 
represented non-overlapping subsets of SNPs with similar cardiometabolic profiles through 
application of an unsupervised “hard clustering” method with imputation of missing trait 
associations.13 The distribution of SNPs by cluster and method is shown in Figure 2. Clustering 
based on P&T resulted in two near-equally proportioned clusters out of a total of three, whereas 
PRS-CSx-based clustering resulted in four clusters, with one including over four times as many 
SNPs than the next largest cluster (Figure 2). Most SNPs in P&T-based Clusters 1 and 2 were 
captured in the PRS-CSx-based Cluster 3, where P&T Cluster 3 mostly overlapped with PRS-CSx 
Cluster 1 (Figure 2). 
 
3.1.  Identifying Biologically Meaningful Clusters of aTRH SNPs 

Each of the non-overlapping SNP clusters derived from both PRS-CSx and P&T showed a unique 
pattern of association across the 91 cardiometabolic traits (Figure 3), reflecting the genetic and 
mechanistic heterogeneity of aTRH. 

 Fig. 2. Alluvial plot showing the differences in 
distribution of SNPs between P&T Clusters and PRS-
CSx Clusters. The number of SNPs per cluster is 
shown next to each bracket. SNPs that were not shared 
between both methods were excluded for plotting.  
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PRS-CSx Cluster 1 showed mixed positive and negative associations across traits, with strong 
positive associations for SBP, DBP, and pulse pressure, as well as traits related to metabolic health, 
including fasting glucose, two-hour glucose, and most of the anthropometric and central adipose 
tissue volume traits. Moderately negative associations were observed for certain cardiac 
structural/functional traits and some blood cell traits, including hematocrit, hemoglobin 
concentration, mean corpuscular hemoglobin, and mean corpuscular volume (Figure 2A). PRS-CSx 
Cluster 2 was characterized by increased associations of all the anthropometric measures, all but 
one liver-related trait, and many of the lifestyle, sleep and BP traits, as well as cardiac 
structural/functional phenotypes (Figure 2A). Negative associations appeared for multiple blood 
cell traits, circulating plasma lipids, women’s health and endocrine traits, including age at menarche, 
sex hormone binding globulin, and plasma renin. PRS-CSx Cluster 3 showed consistently weak or 
near-zero associations across most traits, except for strong negative associations with BP traits. 
Cluster 4 displayed nearly inverse patterns of Cluster 2, with negative associations with 
anthropometric, liver, lifestyle, BP, and cardiac traits, but strong positive associations with blood 
cell traits and moderate positive associations with women’s health and lipid traits (Figure 2A).  

P&T Cluster 1 displayed broadly increased associations across nearly all glycemic, 
anthropometric, adiposity, BP and heart rate, liver, blood cell, lifestyle and women’s health traits, 
with only a few exceptions: decreased associations for HDL, select blood cell traits, testosterone, 
and sex hormone binding globulin (Figure 2B). P&T Cluster 2 showed the opposite pattern, with 
negative associations across nearly all glycemic, adiposity, lipid, BP, heart rate, and blood cell traits, 
while cardiac structural/functional traits remained weakly associated (Figure 2B). Cluster 3 was 
characterized by strong associations with cardiac structural/functional traits, largely in the negative 
direction, coupled with positive associations for BP traits and negative associations for adiposity, 
lipid, and blood cell traits.  

Overall, both methods produced clusters with nearly inverse association patterns. Compared to 
PRS-CSx-derived clusters, P&T clusters tended to capture broader and more uniformly positive or 

 

A)

B)

v

v

v

Fig. 3. Heatmap of cluster-trait associations with aTRH at P < 0.01. Columns correspond to 91 cardiometabolic 
traits, grouped by category. Rows correspond to the clusters. Color intensity reflects the direction and 
magnitude of association (z-score aligned to the aTRH risk allele), with blue indicating negative and red 
indicating positive associations. Breaks for the color scale were calculated using a quantile-based method. 
*Traits adjusted for BMI. A) PRS-CSx-based results. B) P&T-based results.  
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negative trends. These differences indicate that SNP selection strategy can shape both cluster 
composition and the biological pathways implicated, with PRS-CSx highlighting more subtle 
contrasts between variant groups and P&T emphasizing broader cardiometabolic signatures.  

 
3.2.  Cluster-Specific Pathways   

The GENE2FUNC tissue specificity analyses revealed significant enrichment (PBonferroni < 0.05) for 
both PRS-CSx- and P&T-
based Clusters, though the 
patterns differed between 
methods (Table 1). PRS-
CSx Cluster 1 showed 
enrichment in the bladder, 
adrenal gland, and heart 
(left ventricle), while 
Cluster 3 was enriched for 
the bladder and adrenal 
gland (Table 1). P&T 
Clusters revealed tissue 
enrichment for more total 
tissues, including whole 
blood for Cluster 1 and the bladder, colon, uterus, prostate, and kidney for Cluster 2. 

The GENE2FUNC analysis also revealed both convergences and divergences between methods 
for significant enrichment (PFDR < 0.05) of gene ontology biological pathways (Table 2). The top 
four PRS-CSx-based Cluster 1 pathways were enriched for developmental and regulatory processes, 
including anterior-posterior pattern specification (P=7.33x10-3), glucocorticoid biosynthetic process 
(P=1.87x10-2), embryonic skeletal system development (P=1.87x10-2), and membrane 
repolarization during cardiac muscle cell action potential (P=3.61x10-2). PRS-CSx Cluster 3 was 
enriched for homophilic cell adhesion via plasma membrane adhesion molecules (P=1.32x10⁻3), 

Table 2. Cluster-specific GENE2FUNC results for significantly enriched gene sets (PFDR < 0.05). The 
top 4 of over 20 significant pathways are presented for PRS-CSx Cluster 1 and P&T Cluster 2.  
Method Cluster Gene Ontology Biological Process  PFDR 

PRS-
CSx 

1 

Anterior-posterior pattern specification 7.33x10-3 
Glucocorticoid biosynthetic process 1.87x10-2 
Embryonic skeletal system development  1.87x10-2 
Membrane repolarization during cardiac muscle cell action potential 3.61x10-2 

3 
  

Homophilic cell adhesion via plasma membrane adhesion molecules 1.32x10-3 
Embryonic skeletal system development 3.08x10-2 
Glucocorticoid biosynthetic process 4.33x10-2 

P&T 

1 Ubiquitin dependent endoplasmic reticulum-associated degradation  2.91x10-2 
Endoplasmic reticulum-associated degradation   3.40x10-2 

2 

Embryonic skeletal system development  3.92x10-8 
Embryonic skeletal system morphogenesis 2.41x10-7 
Skeletal system development 2.41x10-7 
Anterior-posterior pattern specification 3.50x10-7 

 

Table 1. Cluster-specific FUMA GENE2FUNC results for tissue 
specificity. Only significantly (PBonferroni < 0.05) enriched tissues are shown.    
Method Cluster Tissue PBonferroni  

PRS-CSx 
1 

Bladder 5.15x10-7 
Adrenal gland 7.82x10-7 
Heart left ventricle 2.20x10-4 

3 Bladder 5.90x10-5 
Adrenal gland 1.10x10-3 

P&T 

1 Whole blood 2.46x10-3 

2 

Bladder 4.98x10-9 
Colon 2.92x10-7 
Uterus 8.94x10-4 
Prostate 4.66x10-2 
Kidney 4.70x10-2 
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embryonic skeletal system development (P=3.08x10⁻2), and glucocorticoid biosynthetic process 
(P=4.33x10⁻2). In contrast, P&T-based Cluster 1 was enriched for endoplasmic reticulum-associated 
degradation pathways (P=2.91x10⁻2 and P=3.40x10⁻2), while the top four significant pathways for 
P&T Cluster 2 were strongly enriched for a broader set of developmental processes, including 
embryonic skeletal system development and morphogenesis (P=3.92x10⁻8 and P=2.41x10⁻7), 
skeletal system development (P=2.41x10⁻7), and anterior-posterior pattern specification 
(P=3.50x10⁻7). 

4.  Discussion 

This study provides insights into the biological heterogeneity of aTRH by applying a clustering 
framework to genetic variants using two different SNP selection strategies: PRS-CSx and P&T. 
Each approach identified distinct, non-overlapping clusters of variants with unique cardiometabolic 
association profiles, supporting the hypothesis that aTRH is a disorder influenced by multiple 
pathophysiological processes. 

Despite differences in SNP selection, both methods revealed clusters enriched for multiple 
groups of cardiometabolic traits. However, notable divergences were observed. PRS-CSx selected 
approximately five times the number of SNPs selected by P&T and yielded four clusters with more 
nuanced traits profiles, whereas P&T produced three clusters characterized by broader and more 
interpretable trends. These methodological differences highlight how SNP selection strategy can 
influence both the composition of clusters and downstream biological interpretations.  

Across methods, clusters enriched for adiposity and glycemic traits (PRS-CSx Cluster 1 and 
P&T Cluster 1) suggest a metabolic energy-driven pathway to treatment resistance. These findings 
are supported by the results of another study that reported a gradual increase in the prevalence of 
resistant HTN with BMI in overweight patients.54 Increased adipose tissue is related to increased 
activity of the renin-angiotensin-aldosterone system (RAAS), which is crucial in BP regulation. In 
particular, increased adiposity can lead to increased expression of angiotensin type 1 and 2 receptors, 
elevated circulating angiotensin II, angiotensin-converting enzyme, and aldosterone levels.55 In  
obesity specifically, the increased activity of the RAAS can increase sodium retention, leading to 
volume expansion and HTN.56  

Positive associations between multiple biomarkers and aTRH are well supported by current 
literature. One study reported increased risk of aTRH with biomarkers such as interleukin-6 (IL-6), 
tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β).57 These results align 
with the strong positive association of multiple biomarkers observed in PRS-CSx Cluster 2 and P&T 
Cluster 3. Other positive associations shared between these clusters include sleep-related traits. 
Sleep disturbances, obstructive sleep apnea in particular, are highly prevalent (60-71%) among 
individuals with aTRH.58 In particular, one study found sleep apnea was significantly more common 
in individuals with resistant HTN compared to individuals with controlled HTN.59 

Lastly, positive associations with blood cell traits (PRS-CSx Cluster 4 and P&T Cluster 1) may 
indicate a vascular-reactivity related mechanism. In a large Japanese cohort over a 40-year follow-
up period, absolute neutrophil and white blood cell count have been shown to predict new onset 
HTN.60 Further, one study found that compared to both normotensive and controlled hypertensive 
patients, individuals with aTRH had a significantly higher neutrophil count and 
neutrophil/lymphocyte ratio.61 Positive associations with white blood cell, neutrophil and 
lymphocyte count for both clusters support these findings.  
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Pathway and tissue enrichment analyses reinforced the unique biological profiles of clusters 
identified by each method. For PRS-CSx, Cluster 1 was significantly enriched in gene sets related 
to anterior-posterior pattern specification, glucocorticoid biosynthesis, and embryonic skeletal 
system development, suggesting early development and hormonal regulation pathways. 
Glucocorticoid receptor signaling has been implicated in HTN, particularly through sodium and 
potassium handling and BP regulation.62 One study reported 51% of patients who carried a 
heterozygous or homozygous glucocorticoid receptor mutation had HTN.62 Tissue specificity 
analysis of PRS-CSx Cluster 1 further revealed enrichment in the adrenal gland, heart, and bladder, 
aligning with traits tied to volume regulation and hormonal control. PRS-CSx Cluster 3 was enriched 
for biological processes related to homophilic cell adhesion, embryonic development, and 
glucocorticoid biosynthesis. One study63 examined the relationship between adhesion molecules and 
aTRH and found that endothelial-selectin was a significant indicator of aTRH.  

In contrast, P&T identified clusters enriched in a broader range of tissues, including whole 
blood, bladder, colon, uterus, prostate, and kidney. Functionally, P&T Cluster 1 was linked to 
protein quality-control pathways including ubiquitin-dependent and endoplasmic reticulum-
associated degradation. P&T Cluster 2 was highly significantly enriched for skeletal system 
development and morphogenesis pathways, overlapping partially with the PRS-CSx findings, but 
with stronger statistical support, and implicated bladder tissue as well. Together, these enrichment 
patterns indicate that while both methods highlight developmental and hormonal pathways, PRS-
CSx emphasized neurohormonal and cardiac regulation, whereas P&T uncovered stronger signals 
in developmental and protein homeostasis processes, as well as a broader set of tissues, including 
reproductive and gastrointestinal systems. 

These results demonstrate that both methods recover biologically meaningful clusters but may 
emphasize different aspects of underlying biology. In this analysis, PRS-CSx tended to highlight 
pathways related to developmental, endocrine, and cardiac processes, whereas P&T captured a 
wider range of tissue and pathway enrichments, including immune, reproductive, and protein 
degradation pathways. The partial overlap between enriched skeletal-related processes across both 
methods suggests stronger biological themes, but each approach also identified distinct biological 
signals. These results reinforce that the choice of SNP selection method influences both cluster 
composition and downstream enrichment analyses. Despite the differences, the overlap in 
developmental and hormonal pathways across methods provides converging evidence for their role 
in aTRH, while method-specific findings may reflect complementary aspects of the underlying 
biology. Taken together, the findings of this study underscore the biological heterogeneity 
underlying aTRH, suggesting that distinct clusters of genetic variants act through different 
cardiometabolic routes to contribute to HTN that is refractory to standard treatments.   

The identification of mechanistically distinct genetic clusters has implications for precision 
therapeutics in aTRH. By understanding the unique pathway through which a patient becomes 
resistant, for example, metabolic overload vs. vascular stiffness vs. hematologic dysfunction, 
clinicians may be able to tailor interventions to target the underlying biology. Stratification by 
genetic cluster could test whether pathway-informed interventions improve BP control, which may 
have potential to overcome the limitations of current treatment guidelines and address population 
differences in HTN control and efficacy of antihypertensives.  

While promising, this work has some limitations. First, the analyses were performed in NHW 
and NHB cohorts, limiting generalizability to other populations. Given known differences in HTN 
prevalence and treatment response, population-specific clustering approaches should be further 
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explored. Additionally, the clustering approach is based solely on genetic association profiles. 
Future studies including transcriptomic or proteomic data may provide additional biologically 
relevant information. Finally, SNP selection methods clearly influenced results, underscoring the 
need for continued methodological evaluation in clustering-based approaches. The difference in 
number of SNPs along with the SNPs selected could both contribute to these influences.   

Together, our findings underscore the potential of genetic clustering to disentangle the biological 
and mechanistic heterogeneity underlying aTRH and demonstrate that SNP clustering provides a 
powerful framework to identify distinct mechanistic pathways. Both PRS-CSx and P&T produced 
biologically interpretable clusters but emphasized different aspects of the genetic architecture. In 
this analysis, P&T demonstrated clearer interpretability and stronger tissue and pathway signals, 
indicating that it may be a preferred SNP selection strategy. This work also lays the foundation for 
use of clustering methods for phenotypes with a limited number of independent genome-wide 
significant variants. This study represents a step toward precision medicine in aTRH by linking 
genetic architecture to putative mechanistic pathways, and ultimately, a shift from broad, 
population-level HTN treatment strategies toward more tailored interventions.  

5.  Acknowledgements 

Vanderbilt University Medical Center’s BioVU is supported by institutional funding and by the 
Vanderbilt CTSA grant UL1 TR000445 from NCATS/NIH. HMS and JK were funded by 
TL1TR002244. HMS was also funded by T32GM145734-01. ATA was funded by T32HL007737. 
We thank the Veterans who participated in the Million Veteran Program and the participants of 
Vanderbilt University Medical Center’s BioVU. This research is based on data from the Million 
Veteran Program, Office of Research and Development, and Veterans Health Administration 
(MVP000 and MVP001/002). This publication does not represent the views of the Department of 
Veterans Affairs or the United States Government.  
 

VA Million Veteran Program 
Core Acknowledgements for Publications 

June 2025 
MVP Program Office  

- Sumitra Muralidhar, Ph.D., Program Director 
US Department of Veterans, 810 Vermont Avenue NW, Washington, DC 20420  

- Jennifer Moser, Ph.D., Associate Director, Scientific Programs 
US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420 

- Jennifer E. Deen, B.S., Associate Director, Cohort & Public Relations 
US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420 

MVP Executive Committee 
- Co-Chair: Philip S. Tsao, Ph.D., Program Director 

VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304 
- Co-Chair: Sumitra Muralidhar, Ph.D. 

US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420 
- J. Michael Gaziano, M.D., M.P.H 

VA Boston Healthcare System, 105 S. Huntington Avenue, Boston, MA 02130 
- Elizabeth Hauser, Ph.D. 

Pacific Symposium on Biocomputing 2026

673



 
 

 

Durham VA Medical Center, 508 Fulton Street, Durham, NC 27705 
- Amy Kilbourne, Ph.D., M.P.H. 

VA HSR&D, 2215 Fuller Road, Ann Arbor, MI 48105 
- Michael Matheny, M.D., M.S., M.P.H 

VA Tennessee Valley Healthcare System, 1310 24th Ave. South, Nashville, TN 37212 
- Dave Oslin, M.D 

Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104 
- Deepak Voora, M.D. 

Durham VA Medical Center, 508 Fulton Street, Durham, NC 27705 
MVP Co-Principal Investigators  

- J. Michael Gaziano, M.D., M.P.H 
VA Boston Healthcare System, 105 S. Huntington Avenue, Boston, MA 02130 

- Philip S. Tsao, Ph.D. 
VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304 

MVP Core Operations 
- Jessica V. Brewer, M.P.H., Director, MVP Cohort Operations 

VA Boston Healthcare System, 105 S. Huntington Avenue, Boston, MA 02130 
- Mary T. Brophy M.D., M.P.H., Director, VA Central Biorepository  

VA Boston Healthcare System, 105 S. Huntington Avenue, Boston, MA 02130 
- Kelly Cho, M.P.H., Ph.D., Director, MVP Phenomics  

VA Boston Healthcare System, 105 S. Huntington Avenue, Boston, MA 02130 
- Lori Churby, B.S., Director, MVP Regulatory Affairs 

VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304 
- Scott L. DuVall, Ph.D., Director, VA Informatics and Computing Infrastructure (VINCI) 

VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148 
- Saiju Pyarajan, Ph.D., Director, Data and Computational Sciences 

VA Boston Healthcare System, 105 S. Huntington Avenue, Boston, MA 02130 
- Robert Ringer, Pharm.D., Director, VA Albuquerque Central Biorepository  

New Mexico VA Health Care System, 1501 San Pedro Drive SE, Albuquerque, NM 87108 
- Luis E. Selva, Ph.D., Director, MVP Biorepository Coordination 

VA Boston Healthcare System, 105 S. Huntington Avenue, Boston, MA 02130 
- Shapoor (Alex) Shayan, M.S., Director, MVP PRE Informatics 

VA Boston Healthcare System, 105 S. Huntington Avenue, Boston, MA 02130 
- Brady Stephens, M.S., Principal Investigator, MVP Cohort Development and Management 

VA Boston Healthcare System, 105 S. Huntington Avenue, Boston, MA 02130 
- Stacey B. Whitbourne, Ph.D., Director, MVP Cohort Development and Management 

VA Boston Healthcare System, 105 S. Huntington Avenue, Boston, MA 02130 

References 
1 Lawes, C. M., Vander Hoorn, S., Rodgers, A. & International Society of, H. Global burden 

of blood-pressure-related disease, 2001. Lancet 371, 1513-1518 (2008). 
https://doi.org:10.1016/S0140-6736(08)60655-8 

2 Roger, V. L. et al. Executive summary: heart disease and stroke statistics--2012 update: a 
report from the American Heart Association. Circulation 125, 188-197 (2012). 
https://doi.org:10.1161/CIR.0b013e3182456d46 

Pacific Symposium on Biocomputing 2026

674

https://doi.org:10.1016/S0140-6736(08)60655-8
https://doi.org:10.1161/CIR.0b013e3182456d46


 
 

 

3 Whelton, P. K. et al. 2017 
ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the 
Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: 
Executive Summary: A Report of the American College of Cardiology/American Heart 
Association Task Force on Clinical Practice Guidelines. Hypertension 71, 1269-1324 
(2018). https://doi.org:10.1161/HYP.0000000000000066 

4 Muntner, P. et al. Potential U.S. Population Impact of the 2017 ACC/AHA High Blood 
Pressure Guideline. J Am Coll Cardiol 71, 109-118 (2018). 
https://doi.org:10.1016/j.jacc.2017.10.073 

5 Noubiap, J. J. et al. Global prevalence of resistant hypertension: a meta-analysis of data from 
3.2 million patients. Heart 105, 98-105 (2019). https://doi.org:10.1136/heartjnl-2018-
313599 

6 Shuey, M. M. et al. Characteristics and treatment of African-American and European-
American patients with resistant hypertension identified using the electronic health record 
in an academic health centre: a case-control study. BMJ Open 8, e021640 (2018). 
https://doi.org:10.1136/bmjopen-2018-021640 

7 Irvin, M. R. et al. Apparent treatment-resistant hypertension and risk for stroke, coronary 
heart disease, and all-cause mortality. J Am Soc Hypertens 8, 405-413 (2014). 
https://doi.org:10.1016/j.jash.2014.03.003 

8 Khawaja, Z. & Wilcox, C. S. Role of the kidneys in resistant hypertension. Int J Hypertens 
2011, 143471 (2011). https://doi.org:10.4061/2011/143471 

9 Ma, J. et al. Signaling pathways in vascular function and hypertension: molecular 
mechanisms and therapeutic interventions. Signal Transduct Target Ther 8, 168 (2023). 
https://doi.org:10.1038/s41392-023-01430-7 

10 Tsioufis, C. et al. Pathophysiology of resistant hypertension: the role of sympathetic nervous 
system. Int J Hypertens 2011, 642416 (2011). https://doi.org:10.4061/2011/642416 

11 Abrahamowicz, A. A., Ebinger, J., Whelton, S. P., Commodore-Mensah, Y. & Yang, E. 
Racial and Ethnic Disparities in Hypertension: Barriers and Opportunities to Improve Blood 
Pressure Control. Curr Cardiol Rep 25, 17-27 (2023). https://doi.org:10.1007/s11886-022-
01826-x 

12 Jamerson, K. & DeQuattro, V. The impact of ethnicity on response to antihypertensive 
therapy. Am J Med 101, 22S-32S (1996). https://doi.org:10.1016/s0002-9343(96)00265-3 

13 Suzuki, K. et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 
627, 347-357 (2024). https://doi.org:10.1038/s41586-024-07019-6 

14 Prive, F., Vilhjalmsson, B. J., Aschard, H. & Blum, M. G. B. Making the Most of Clumping 
and Thresholding for Polygenic Scores. Am J Hum Genet 105, 1213-1221 (2019). 
https://doi.org:10.1016/j.ajhg.2019.11.001 

15 Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat Genet 
54, 573-580 (2022). https://doi.org:10.1038/s41588-022-01054-7 

16 Irvin, M. R. et al. Genome-Wide Association Study of Apparent Treatment-Resistant 
Hypertension in the CHARGE Consortium: The CHARGE Pharmacogenetics Working 
Group. Am J Hypertens 32, 1146-1153 (2019). https://doi.org:10.1093/ajh/hpz150 

17 Gaziano, J. M. et al. Million Veteran Program: A mega-biobank to study genetic influences 
on health and disease. J Clin Epidemiol 70, 214-223 (2016). 
https://doi.org:10.1016/j.jclinepi.2015.09.016 

Pacific Symposium on Biocomputing 2026

675

https://doi.org:10.1161/HYP.0000000000000066
https://doi.org:10.1016/j.jacc.2017.10.073
https://doi.org:10.1136/heartjnl-2018-313599
https://doi.org:10.1136/heartjnl-2018-313599
https://doi.org:10.1136/bmjopen-2018-021640
https://doi.org:10.1016/j.jash.2014.03.003
https://doi.org:10.4061/2011/143471
https://doi.org:10.1038/s41392-023-01430-7
https://doi.org:10.4061/2011/642416
https://doi.org:10.1007/s11886-022-01826-x
https://doi.org:10.1007/s11886-022-01826-x
https://doi.org:10.1016/s0002-9343(96)00265-3
https://doi.org:10.1038/s41586-024-07019-6
https://doi.org:10.1016/j.ajhg.2019.11.001
https://doi.org:10.1038/s41588-022-01054-7
https://doi.org:10.1093/ajh/hpz150
https://doi.org:10.1016/j.jclinepi.2015.09.016


 
 

 

18 Breeyear, J. H., Shuey, M. M., Edwards, T. L. & Hellwege, J. N. Blood Pressure Polygenic 
Scores Are Associated With Apparent Treatment-Resistant Hypertension. Circ Genom 
Precis Med 15, e003554 (2022). https://doi.org:10.1161/CIRCGEN.121.003554 

19 Pulley, J., Clayton, E., Bernard, G. R., Roden, D. M. & Masys, D. R. Principles of human 
subjects protections applied in an opt-out, de-identified biobank. Clin Transl Sci 3, 42-48 
(2010). https://doi.org:10.1111/j.1752-8062.2010.00175.x 

20 Armstrong, N. D. et al. Whole genome sequence analysis of apparent treatment resistant 
hypertension status in participants from the Trans-Omics for Precision Medicine program. 
Front Genet 14, 1278215 (2023). https://doi.org:10.3389/fgene.2023.1278215 

21 Hellwege, J. N. et al. Predictive models for abdominal aortic aneurysms using polygenic 
scores and PheWAS-derived risk factors. Pac Symp Biocomput 28, 425-436 (2023).  

22 Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 
datasets. Gigascience 4, 7 (2015). https://doi.org:10.1186/s13742-015-0047-8 

23 Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat Genet 53, 
840-860 (2021). https://doi.org:10.1038/s41588-021-00852-9 

24 Broadaway, K. A. et al. Loci for insulin processing and secretion provide insight into type 2 
diabetes risk. Am J Hum Genet 110, 284-299 (2023). 
https://doi.org:10.1016/j.ajhg.2023.01.002 

25 Williamson, A. et al. Genome-wide association study and functional characterization 
identifies candidate genes for insulin-stimulated glucose uptake. Nat Genet 55, 973-983 
(2023). https://doi.org:10.1038/s41588-023-01408-9 

26 Warrington, N. M. et al. Maternal and fetal genetic effects on birth weight and their 
relevance to cardio-metabolic risk factors. Nat Genet 51, 804-814 (2019). 
https://doi.org:10.1038/s41588-019-0403-1 

27 Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide 
range of complex diseases of middle and old age. PLoS Med 12, e1001779 (2015). 
https://doi.org:10.1371/journal.pmed.1001779 

28 Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. 
Nat Genet 53, 1415-1424 (2021). https://doi.org:10.1038/s41588-021-00931-x 

29 Sinnott-Armstrong, N. et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. 
Nat Genet 53, 185-194 (2021). https://doi.org:10.1038/s41588-020-00757-z 

30 Liu, Y. et al. Genetic architecture of 11 organ traits derived from abdominal MRI using deep 
learning. Elife 10 (2021). https://doi.org:10.7554/eLife.65554 

31 Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of 
lipids. Nature 600, 675-679 (2021). https://doi.org:10.1038/s41586-021-04064-3 

32 Keaton, J. M. et al. Genome-wide analysis in over 1 million individuals of European ancestry 
yields improved polygenic risk scores for blood pressure traits. Nat Genet 56, 778-791 
(2024). https://doi.org:10.1038/s41588-024-01714-w 

33 Chen, M. H. et al. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 
Individuals from 5 Global Populations. Cell 182, 1198-1213 e1114 (2020). 
https://doi.org:10.1016/j.cell.2020.06.045 

34 Saunders, G. R. B. et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. 
Nature 612, 720-724 (2022). https://doi.org:10.1038/s41586-022-05477-4 

Pacific Symposium on Biocomputing 2026

676

https://doi.org:10.1161/CIRCGEN.121.003554
https://doi.org:10.1111/j.1752-8062.2010.00175.x
https://doi.org:10.3389/fgene.2023.1278215
https://doi.org:10.1186/s13742-015-0047-8
https://doi.org:10.1038/s41588-021-00852-9
https://doi.org:10.1016/j.ajhg.2023.01.002
https://doi.org:10.1038/s41588-023-01408-9
https://doi.org:10.1038/s41588-019-0403-1
https://doi.org:10.1371/journal.pmed.1001779
https://doi.org:10.1038/s41588-021-00931-x
https://doi.org:10.1038/s41588-020-00757-z
https://doi.org:10.7554/eLife.65554
https://doi.org:10.1038/s41586-021-04064-3
https://doi.org:10.1038/s41588-024-01714-w
https://doi.org:10.1016/j.cell.2020.06.045
https://doi.org:10.1038/s41586-022-05477-4


 
 

 

35 Khurshid, S. et al. Clinical and genetic associations of deep learning-derived cardiac 
magnetic resonance-based left ventricular mass. Nat Commun 14, 1558 (2023). 
https://doi.org:10.1038/s41467-023-37173-w 

36 Pirruccello, J. P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 individuals 
yields genetic insights into dilated cardiomyopathy. Nat Commun 11, 2254 (2020). 
https://doi.org:10.1038/s41467-020-15823-7 

37 Schmidt, A. F. et al. Druggable proteins influencing cardiac structure and function: 
Implications for heart failure therapies and cancer cardiotoxicity. Sci Adv 9, eadd4984 
(2023). https://doi.org:10.1126/sciadv.add4984 

38 Aung, N. et al. Genome-Wide Analysis of Left Ventricular Maximum Wall Thickness in the 
UK Biobank Cohort Reveals a Shared Genetic Background With Hypertrophic 
Cardiomyopathy. Circ Genom Precis Med 16, e003716 (2023). 
https://doi.org:10.1161/CIRCGEN.122.003716 

39 Pirruccello, J. P. et al. Genetic analysis of right heart structure and function in 40,000 people. 
Nat Genet 54, 792-803 (2022). https://doi.org:10.1038/s41588-022-01090-3 

40 Ahlberg, G. et al. Genome-wide association study identifies 18 novel loci associated with 
left atrial volume and function. Eur Heart J 42, 4523-4534 (2021). 
https://doi.org:10.1093/eurheartj/ehab466 

41 Liu, H. et al. Epigenomic and transcriptomic analyses define core cell types, genes and 
targetable mechanisms for kidney disease. Nat Genet 54, 950-962 (2022). 
https://doi.org:10.1038/s41588-022-01097-w 

42 Agrawal, S. et al. Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat 
depots. Nat Commun 13, 3771 (2022). https://doi.org:10.1038/s41467-022-30931-2 

43 Teumer, A. et al. Genome-wide association meta-analyses and fine-mapping elucidate 
pathways influencing albuminuria. Nat Commun 10, 4130 (2019). 
https://doi.org:10.1038/s41467-019-11576-0 

44 Dashti, H. S. et al. Genome-wide association study identifies genetic loci for self-reported 
habitual sleep duration supported by accelerometer-derived estimates. Nat Commun 10, 
1100 (2019). https://doi.org:10.1038/s41467-019-08917-4 

45 van de Vegte, Y. J. et al. Genetic insights into resting heart rate and its role in cardiovascular 
disease. Nat Commun 14, 4646 (2023). https://doi.org:10.1038/s41467-023-39521-2 

46 Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at 
menarche and support a role for puberty timing in cancer risk. Nat Genet 49, 834-841 (2017). 
https://doi.org:10.1038/ng.3841 

47 Kim, J. et al. Genome-wide meta-analysis identifies novel risk loci for uterine fibroids within 
and across multiple ancestry groups. Nat Commun 16, 2273 (2025). 
https://doi.org:10.1038/s41467-025-57483-5 

48 Leinonen, J. T. et al. Genetic analyses implicate complex links between adult testosterone 
levels and health and disease. Commun Med (Lond) 3, 4 (2023). 
https://doi.org:10.1038/s43856-022-00226-0 

49 Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 
30,931 individuals. Nat Metab 2, 1135-1148 (2020). https://doi.org:10.1038/s42255-020-
00287-2 

Pacific Symposium on Biocomputing 2026

677

https://doi.org:10.1038/s41467-023-37173-w
https://doi.org:10.1038/s41467-020-15823-7
https://doi.org:10.1126/sciadv.add4984
https://doi.org:10.1161/CIRCGEN.122.003716
https://doi.org:10.1038/s41588-022-01090-3
https://doi.org:10.1093/eurheartj/ehab466
https://doi.org:10.1038/s41588-022-01097-w
https://doi.org:10.1038/s41467-022-30931-2
https://doi.org:10.1038/s41467-019-11576-0
https://doi.org:10.1038/s41467-019-08917-4
https://doi.org:10.1038/s41467-023-39521-2
https://doi.org:10.1038/ng.3841
https://doi.org:10.1038/s41467-025-57483-5
https://doi.org:10.1038/s43856-022-00226-0
https://doi.org:10.1038/s42255-020-00287-2
https://doi.org:10.1038/s42255-020-00287-2


 
 

 

50 Loh, P. R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association 
for biobank-scale datasets. Nat Genet 50, 906-908 (2018). https://doi.org:10.1038/s41588-
018-0144-6 

51 Pfaffel, O. CLUSTIMPUTE: AN R PACKAGE FOR K-MEANS CLUSTERING 
WITHBUILD-IN MISSING DATA IMPUTATION. Preprint (2020). 
https://doi.org:10.13140/RG.2.2.20143.36007 

52 Charrah, M., Ghazzali N., Boiteau, V., Niknafs A. NbClust: An R Package for Determining 
the Relevant Number of Clusters in a Data Set. Journal of Statistical Software 61, 1-36 
(2014). https://doi.org:https://doi.org/10.18637/jss.v061.i06 

53 Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and 
annotation of genetic associations with FUMA. Nat Commun 8, 1826 (2017). 
https://doi.org:10.1038/s41467-017-01261-5 

54 Haddadin, F. et al. The prevalence and predictors of resistant hypertension in high-risk 
overweight and obese patients: A cross-sectional study based on the 2017 ACC/AHA 
guidelines. J Clin Hypertens (Greenwich) 21, 1507-1515 (2019). 
https://doi.org:10.1111/jch.13666 

55 Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity-induced 
hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 116, 991-1006 
(2015). https://doi.org:10.1161/CIRCRESAHA.116.305697 

56 Lohmeier, T. E. & Iliescu, R. The sympathetic nervous system in obesity hypertension. Curr 
Hypertens Rep 15, 409-416 (2013). https://doi.org:10.1007/s11906-013-0356-1 

57 Chen, J. et al. Inflammation and Apparent Treatment-Resistant Hypertension in Patients 
With Chronic Kidney Disease. Hypertension 73, 785-793 (2019). 
https://doi.org:10.1161/HYPERTENSIONAHA.118.12358 

58 Carnethon, M. R. & Johnson, D. A. Sleep and Resistant Hypertension. Curr Hypertens Rep 
21, 34 (2019). https://doi.org:10.1007/s11906-019-0941-z 

59 Bhandari, S. K. et al. Comparisons of sleep apnoea rate and outcomes among patients with 
resistant and non-resistant hypertension. Respirology 21, 1486-1492 (2016). 
https://doi.org:10.1111/resp.12840 

60 Tian, N., Penman, A. D., Mawson, A. R., Manning, R. D., Jr. & Flessner, M. F. Association 
between circulating specific leukocyte types and blood pressure: the atherosclerosis risk in 
communities (ARIC) study. J Am Soc Hypertens 4, 272-283 (2010). 
https://doi.org:10.1016/j.jash.2010.09.005 

61 Belen, E., Sungur, A., Sungur, M. A. & Erdogan, G. Increased Neutrophil to Lymphocyte 
Ratio in Patients With Resistant Hypertension. J Clin Hypertens (Greenwich) 17, 532-537 
(2015). https://doi.org:10.1111/jch.12533 

62 Verouti, S., Hummler, E. & Vanderriele, P. E. Role of glucocorticoid receptor mutations in 
hypertension and adrenal gland hyperplasia. Pflugers Arch 474, 829-840 (2022). 
https://doi.org:10.1007/s00424-022-02715-6 

63 de Faria, A. P. et al. Deregulation of Soluble Adhesion Molecules in Resistant Hypertension 
and Its Role in Cardiovascular Remodeling. Circ J 80, 1196-1201 (2016). 
https://doi.org:10.1253/circj.CJ-16-0058 

 

Pacific Symposium on Biocomputing 2026

678

https://doi.org:10.1038/s41588-018-0144-6
https://doi.org:10.1038/s41588-018-0144-6
https://doi.org:10.13140/RG.2.2.20143.36007
https://doi.org:https://doi.org/10.18637/jss.v061.i06
https://doi.org:10.1038/s41467-017-01261-5
https://doi.org:10.1111/jch.13666
https://doi.org:10.1161/CIRCRESAHA.116.305697
https://doi.org:10.1007/s11906-013-0356-1
https://doi.org:10.1161/HYPERTENSIONAHA.118.12358
https://doi.org:10.1007/s11906-019-0941-z
https://doi.org:10.1111/resp.12840
https://doi.org:10.1016/j.jash.2010.09.005
https://doi.org:10.1111/jch.12533
https://doi.org:10.1007/s00424-022-02715-6
https://doi.org:10.1253/circj.CJ-16-0058



