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Pinpointing causal genes at genome-wide association study (GWAS) loci remains a major
bottleneck. Existing literature-mining approaches are often limited in accuracy and scalabil-
ity. We show that large language models (LLMs) can accurately prioritize likely causal genes
at GWAS loci. We systematically evaluated several widely available general-purpose LLMs
against benchmark datasets of high-confidence causal genes, including a unique set from
23 unpublished GWAS. Our results demonstrate that LLMs outperform or match current
state-of-the-art methods and, crucially, exhibit robust performance on novel loci not previ-
ously linked to traits, underscoring their generalizability. Moreover, when integrated with
existing methods, LLMs substantially enhance overall performance. This work establishes
LLMs as an accurate, scalable, and broadly generalizable approach to accelerate causal gene
identification in complex traits.
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1. Introduction

Genome-wide association studies (GWAS) have identified numerous genomic regions associ-
ated with complex traits, enhancing our understanding of trait biology. However, pinpointing
the exact causal genes within these regions remains a major hurdle. Approaches to causal
gene identification from GWAS loci utilize a broad range of information including functional
annotation, colocalization with quantitative trait loci (QTL) datasets, biological insights, and
literature evidence. Literature mining for the co-occurrence of a (disease, gene) pair in a publi-
cation can provide evidence for the causal role of the gene, recapitulating knowledge an expert
biologist might use. However, current literature mining approaches1,2 have been evaluated in
limited settings or through indirect tasks, and their generalizability to diverse phenotypes
remains unclear.

Large language models (LLMs) are deep learning models trained on large text corpora
for tasks including text generation, summarization, and question-answering. Recent studies
have demonstrated their capability to perform biomedical tasks,3 including summarizing gene
function,4 medical question answering,5 cell-type annotation,6 predicting CRISPR screening
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results,7 and identifying causal genetic factors from murine experimental data.8 We hypoth-
esize that LLMs like GPT-49 and Claude 3.5,10 with extensive training on scientific publica-
tions, provide a systematic and scalable approach to identify likely causal genes at GWAS
loci, potentially overcoming the limitations of manual expert annotation.

We systematically evaluated several general-purpose LLMs, comparing their performance
to state-of-the-art methods (Supplementary Figure S1, available online). We assembled three
distinct evaluation sets with different ground-truth criteria (Supplementary Table S1, available
online). The first set comprises recently published GWAS loci (after April 2023) (the “GWAS
Catalog”). The second set contains loci from a benchmark not publicly available online11

(“Weeks et al.”). Finally, we created a new dataset from 23 previously unpublished GWAS
from a 23andMe cohort to test performance on novel loci. Our results demonstrate that LLM-
based predictions surpass existing methods, including the polygenic priority score (PoPS)11

and the ‘nearest gene’ method,12 in precision, recall, and F-score (Supplementary Figure S2
and Supplementary Table S2, available online). Furthermore, we show that integrating LLM
predictions with existing methods can lead to substantial performance improvements.

2. Methods

2.1. Evaluation Datasets

We assembled three datasets to benchmark LLMs for causal gene prioritization. A key chal-
lenge in evaluating performance is potential data contamination, where evaluation data may
have been part of the LLM training corpora. To mitigate this, our datasets were chosen for
their varying levels of public availability and recency. Additionally, we tested for direct inclu-
sion of these datasets in the LLMs via prompting and found no evidence of contamination
(Supplementary Table S20, available online). For all datasets, we defined a standard locus
window of 500 kbp on either side of the lead variant to generate candidate gene lists, a com-
mon distance used in causal gene prioritization methods.11,12,21 We restricted our gene lists
to only include protein-coding genes. Our evaluation framework assumes a single causal gene
per locus for each prediction.

2.1.1. Weeks et al. Dataset

TheWeeks et al. benchmark dataset11 contains 1,348 causal gene-phenotype pairs, with ground
truth established through genetic interpretation. The authors identified non-coding credible
sets from UK Biobank GWAS that were located within 500 kbp of a high-confidence (Posterior
Inclusion Probability > 0.5) fine-mapped coding variant from the same GWAS. The gene
containing the coding variant was designated the causal gene. As this dataset is not publicly
available online and was obtained directly from the authors via email, it serves as a strong
control against LLM training data contamination.

2.1.2. GWAS Catalog Dataset

To evaluate performance on recent discoveries, we created a dataset from the GWAS Cat-
alog (v1.0.2, associations e111 r2024-03-11, downloaded March 19, 2024). To minimize the
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possibility of these loci being included in the benchmark LLMs trainings, we selected only as-
sociations from manuscripts published after April 30, 2023. A causal gene was assigned using
a methodology similar to the Weeks et al. dataset: if a non-coding lead variant was within 500
kbp of a coding lead variant in the same study, the gene corresponding to the coding variant
was considered causal. This process resulted in a dataset of 641 loci. Candidate genes for each
locus were identified using GENCODE release 43.

2.1.3. Unpublished 23andMe Novel Loci Dataset

To test the generalizability of LLMs to novel unseen data, we utilized unpublished GWAS data
from 23andMe for 23 phenotypes (Supplementary Table S13, available online). We first per-
formed fine-mapping using SuSiE to identify credible sets containing a protein-coding variant
(PIP > 0.5). We then identified independent non-coding credible sets within 500 kbp of these.
A locus was defined as “novel” if its lead variant had a linkage disequilibrium (LD) r2 < 0.5

with any variant in the entire GWAS catalog. This process resulted in a test set of 403 loci to
assess performance on genetic associations not previously documented in the GWAS catalog.

2.2. LLM Execution and Prompting Strategy

2.2.1. Models and Prompting

We evaluated version-controlled models from major developers: OpenAI (gpt-3.5-turbo-0125,
gpt-4-0613, gpt-4o-2024-08-06), Anthropic (Claude 3.5 Sonnet), Google (Gemini 1.5 Pro),
and Meta (Llama 3.1-405b). To ensure more consistent behavior, all models were queried
with temperature set to 0. OpenAI and Google models were queried via their native APIs,
while Anthropic and Meta models were accessed via AWS Bedrock using the LangChain23

framework. To prevent any potential for positional bias, all gene lists provided to the models
were lexicographically sorted.

We used a two-part prompt structure: a general system prompt outlining the task, and
a locus-specific user prompt providing the data. As a sanity check, we confirmed that model
performance degraded considerably when provided with randomly shuffled phenotypes instead
of the correct ones, validating that the models were using the phenotype information for their
predictions (Supplementary Table S21, available online).

System Prompt: LLM Instructions

You are an expert in biology and genetics.

Your task is to identify likely causal genes within a locus for a

given GWAS phenotype based on literature evidence.

From the list, provide the likely causal gene (matching one of the

given genes), confidence (0: very unsure to 1: very confident),

and a brief reason (50 words or less) for your choice.

Return your response in JSON format, excluding the GWAS phenotype

name and gene list in the locus. JSON keys should be

’causal_gene’,’confidence’,’reason’.
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Your response must start with ’{’ and end with ’}’.

User Prompt: Locus-Specific Data

Identify the causal gene.

GWAS phenotype: {Morning person}

Genes in locus: {A},{B},{C},{D}

2.3. Benchmark Methods for Comparison

2.3.1. Nearest Gene Method

This baseline method assigns causality to the gene whose body (defined by GENCODE release
43 on the hg38 reference genome) has the smallest physical distance to the lead GWAS variant.
For the Weeks et al. dataset, we used the nearest gene predictions provided directly by the
authors. In the approximately 4% of cases where a lead variant was located within the bodies
of multiple genes, one gene was chosen at random to simplify the evaluation.

2.3.2. Polygenic Priority Score (PoPS)

PoPS is a state-of-the-art gene prioritization method that integrates gene-level features with
polygenic enrichments to generate a prioritization score for a given phenotype.11 We obtained
pre-computed PoPS scores for the 1,348 loci in the Weeks et al. dataset directly from the
original authors. For each locus, the gene with the highest PoPS score was selected as the
predicted causal gene.

We did not include other methods, such as ones that leverage expression quantitative trait
loci (eQTLs) in our comparison, since previous work has shown that they are outperformed
by the nearest gene and PoPS approaches.11

2.4. Performance Evaluation and Statistical Analysis

Model performance was quantified using standard metrics: Precision (the proportion of correct
predictions among all predictions made), Recall (the proportion of true causal genes correctly
identified), and the F-score (the harmonic mean of precision and recall). We computed 95%
confidence intervals for all metrics using bootstrapping with 1,000 samples. Statistical signifi-
cance for performance differences between methods was assessed using a Wilcoxon signed-rank
test.

To understand factors influencing performance, we analyzed the impact of locus complex-
ity (measured as the number of genes in the locus) and publication bias (measured by the
publication count per gene from NCBI’s gene2pubmed database) using Spearman correlation.
To assess the impact of multiple independent signals at the same locus, which can complicate
evaluation, we also analyzed performance on deduplicated datasets where only one signal per
unique gene window was retained for each phenotype (Supplementary Figure S4 and Supple-
mentary Table S5, available online).
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2.5. Analysis of Model Behavior and Robustness

We conducted several analyses to probe the behavior of the LLMs. A prediction was classified
as a “hallucination” if the predicted gene was not present in the input list provided to the
model; these were penalized as incorrect predictions in our evaluation. We assessed the cali-
bration of the LLM-provided confidence scores by comparing them to the empirical precision
at different score levels.

Robustness was tested through multiple experiments. We tested sensitivity to the input
gene list by removing the true causal gene and observing the change in prediction confidence.
We also randomly shuffled the gene order to check for sensitivity to input structure. To under-
stand if a more complex prompting strategy would improve results, we tested minimal “ab-
lation” prompts and “chain-of-thought” prompting, neither of which improved performance
(Supplementary Figure S6, S10 and Supplementary Table S9, available online). Finally, to
probe the models’ internal representations of biological concepts, we generated gene and phe-
notype descriptions with GPT-3.5, embedded these descriptions into a high-dimensional space
using OpenAI’s text-embedding-3-large model,19 and calculated their cosine similarity.

2.6. Ensemble Modeling Framework

To explore whether combining the distinct information captured by LLMs and traditional
methods could yield superior performance, we developed an ensemble learning framework.
The problem was framed as a classification task to predict which method (e.g., LLM or
nearest gene) would be correct for a given locus. We trained a decision tree classifier using the
scikit-learn25 library with two primary features: (1) a binary indicator of whether the LLM
and a non-LLM method agreed on the prediction, and (2) the confidence score provided by
the LLM. To prevent data leakage during training, we employed a nested, chromosome-based
cross-validation scheme, where all loci from a given chromosome were held out for the test
set while the model was trained on the remaining chromosomes. Model features are listed in
Supplementary Table S19 (available online).

3. Results

Our study systematically evaluated the ability of LLMs to identify causal genes at GWAS
loci. We compared their performance against established methods, analyzed their robustness
and reasoning, and developed an ensemble framework to enhance prediction accuracy. The
overall methodology is depicted in Figure 1.

3.1. LLMs Significantly Outperform Existing Methods on Public
Benchmarks

To establish a performance baseline, we first compared a suite of LLMs against established
methods on two public benchmark datasets. Our evaluation revealed that recent LLMs, par-
ticularly Claude 3.5 Sonnet10 and OpenAI’s GPT-4o,14 deliver a substantial performance
improvement. On the GWAS Catalog dataset, Claude 3.5 Sonnet achieved an F-score of 0.66,
representing a 49% improvement over the “nearest gene” method (F-score = 0.44).12 Simi-
larly, on the Weeks et al. dataset, Claude 3.5 Sonnet (F-score = 0.60) and GPT-4o (F-score
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Fig. 1. Schematic of the LLM-based approach for identifying causal genes at GWAS loci. For a
given locus, a 500 kbp window around the lead variant defines the candidate gene set. The LLM
receives the phenotype name and an alphabetical list of candidate genes. The model is instructed to
return the most likely causal gene, a confidence score, and a brief justification. The orange-colored
text in the prompt is fixed, while the green-colored text is locus-specific. The example shows a locus
for LDL cholesterol containing the well-established causal gene PCSK9.

= 0.58) showed a marked improvement over PoPS, the best non-LLM method (F-score =
0.50)11 (Figure 2a-b). The performance difference between Claude 3.5 Sonnet and GPT-4o
was not statistically significant, establishing these two models as a clear top tier for this task
(Supplementary Table S3, available online).

To understand the drivers of this performance advantage, we examined how performance
varied with locus complexity and the extent of existing literature. While all methods per-
formed worse in loci with a higher number of candidate genes, this performance drop was
less pronounced for LLMs. This amplified their advantage in gene-dense regions, where LLMs
achieved up to a 67% improvement on the GWAS catalog dataset and a 38% improvement on
the Weeks et al. dataset relative to the next-best method (Figure 2c; Supplementary Figure S3
and Supplementary Table S4, available online). Furthermore, LLM accuracy positively corre-
lated with the number of publications for the causal gene, indicating these models effectively
leverage the scientific literature to inform their predictions (Figure 2d; Supplementary Table
S2, available online).

3.2. LLM Predictions are Robust, Calibrated, and Reasoned

Beyond raw accuracy, a critical aspect of any predictive model is reliability. We therefore
conducted a series of experiments to assess the robustness, calibration, and reasoning capa-
bilities of the top-performing LLMs. We found that LLM-generated confidence scores were
well-calibrated at high levels (≥ 0.9) but tended toward overconfidence at lower scores (0.6 to
0.8) (Supplementary Figure S5 and Supplementary Table S6, available online). Importantly,
these confidence scores were highly reproducible, with identical inputs yielding identical scores
in 96% of test cases (Supplementary Table S7, available online). An examination of the justi-
fications for correct predictions revealed that the models frequently provided valid rationales
based on gene function (e.g., “is involved in,” “key regulator of”) or established phenotype
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Fig. 2. Performance comparison of leading LLMs and benchmark methods. (a) F-scores show that
Claude 3.5 Sonnet and GPT-4o outperform Nearest Gene and PoPS on both evaluation datasets.
(b) The precision-recall plot highlights the superior balance of LLM performance. (c) Prediction
accuracy for all methods negatively correlates with the number of genes at a locus. (d) LLM and
PoPS accuracy positively correlates with the number of publications for the causal gene, unlike the
nearest gene method.

associations (Supplementary Table S8, available online).
Robustness of the model was further confirmed through perturbation experiments.18 Re-

moving the true causal gene from the input list not only caused a significant drop in confidence
but also led to a 77% reduction in high-confidence predictions, demonstrating that the model
relies on the correct gene’s presence (Supplementary Table S11, available online). Conversely,
shuffling the input gene order had a minimal impact, resulting in a prediction match 87% of
the time, with mismatches concentrated in lower-confidence predictions (Supplementary Table
S12, available online). Finally, obvious hallucinations (predicting a gene not provided in the
input) were rare, occurring in fewer than 4% of loci for Claude 3.5 Sonnet (Supplementary
Table S15, available online).

3.3. Impact of deduplication on performance

To assess potential performance inflation due to multiple signals within the same locus, we
deduplicated loci with overlapping gene windows. Dataset sizes were reduced (Weeks: 1,348
to 965 loci; GWAS Catalog: 641 to 336 loci), and performance dropped by 10–20% across
all methods. However, Claude 3.5 Sonnet and GPT-4o continued to outperform non-LLM
methods (Supplementary Figure S4 and Table S5). We therefore retained the original datasets
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for subsequent analyses to mirror typical GWAS post-processing pipelines.

Fig. 3. Performance on the unpublished 23andMe dataset containing novel loci. F-scores are shown
for the full dataset (All), the subset of known loci, and the subset of novel loci. Novel loci are defined
as having an index variant with LD r-squared < 0.5 with any variant in the GWAS catalog. LLM
performance remains stable on novel loci.

3.4. LLMs Generalize to Novel Loci and Leverage Semantic Similarity

A key question is whether LLMs simply retrieve known associations or can generalize to novel
biological inferences. To test this, we evaluated their performance on an unpublished 23andMe
dataset containing loci absent from the GWAS catalog. On this dataset, Claude 3.5 Sonnet
again performed best (F-score = 0.45), slightly ahead of PoPS (0.44) and ‘nearest gene’ (0.41).
Crucially, LLM performance did not degrade on these novel loci compared to known loci (F-
score 0.48 on novel vs. 0.42 on known). In contrast, the performance of PoPS was significantly
better on novel loci (F-score 0.52 vs. 0.38), suggesting LLMs may generalize more consistently
across varying levels of prior evidence (Figure 4; Supplementary Table S14, available online).
A logistic regression model confirmed that locus complexity (number of genes) was a much
stronger predictor of LLM accuracy (McFadden’s pseudo-R-squared = 3.6%) than novelty
status (pseudo-R-squared = 0.26%).

This generalization capability appears to be driven by a semantic understanding of biology,
a concept foundational to modern language models.20 An approach based solely on the cosine
similarity of gene and phenotype text embeddings (generated using the ‘text-embedding-3-
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large‘ model19) achieved 58-68% of the performance of Claude 3.5 Sonnet (Supplementary
Figure S7, available online). For a locus associated with LDL cholesterol, the causal gene
PCSK9 is closest to the phenotype in the embedding space (Figure 4a; Supplementary Figure
S8, available online). Across our datasets, the true causal gene was among the top 5 most
semantically similar genes to the corresponding phenotype for 75-93% of loci. This observation
indicates that while semantic similarity is a key driver, LLMs utilize additional context from
the prompt to refine predictions (Figure 4b; Supplementary Figure S9, available online).

Fig. 4. Text embeddings of genes and phenotypes partially explain LLM performance. (a) A t-SNE
plot visualizing text embeddings for a locus associated with LDL cholesterol shows the causal gene
PCSK9 is closest to the phenotype in the embedding space. (b) Across both datasets, the causal
gene is the most semantically similar to the phenotype in over 35% of cases.

3.5. Failure Modes of LLMs

LLMs occasionally struggled with ambiguous phenotype descriptions or overly broad trait
interpretation. For example, gpt-4-0613 achieved only 0.08 precision on the “Total protein”
phenotype, likely due to misinterpreting the term as general protein synthesis rather than
serum protein levels. Providing more specific phenotype descriptions improved performance,
and newer models such as Claude 3.5 Sonnet and GPT-4o did not show this issue (precision
= 0.52). Another failure mode occurred when highly studied genes dominated predictions.
For “Neonatal circulating Complement Component 4 (C4) protein concentration,” Claude 3.5
Sonnet always predicted C4A as causal (precision = 0.0), despite coding variant evidence
pointing to other genes. This suggests that LLMs over-rely on well-known gene–phenotype
associations, underscoring the need to combine LLMs with functional annotations for im-
proved causal gene prioritization. Precision and recall values for all phenotypes are provided
in Supplementary Table S10 (available online).

3.6. Ensemble Framework Boosts Performance by Integrating Methods

We sought to investigate whether LLMs provide orthogonal information to existing gene pri-
oritization methods and whether combining them would enhance causal gene prediction. Pre-
vious work has shown that combining multiple gene prioritization methods improves perfor-
mance.11,12,21 We hypothesized this would also apply to LLM-based approaches. We began by
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examining the concordance of predictions across different methods. We found that LLM-based
methods showed the highest agreement with other LLM-based methods, but only moderate
agreement with the polygenic priority score (PoPS) and the ’nearest gene’ methods (Supple-
mentary Figure S12 and Supplementary Table S16, available online). These findings suggest
that LLMs and existing methods capture distinct aspects of the data, implying a potential
for improved performance through combined approaches.

Fig. 5. Performance of consensus prediction methods. Gray squares represent the performance of
individual methods. Consensus methods, which only make a prediction when two methods agree,
consistently achieve higher precision but lower recall.

To leverage this, we first tested a simple consensus approach, which improved precision
to 0.86-0.89 but did so at a significant cost to recall (0.33-0.36), as this approach discards all
discordant predictions (Figure 5). To overcome this trade-off, we developed a trained ensemble
decision tree framework to intelligently arbitrate between methods. This ensemble approach
significantly enhanced overall performance. By combining Claude 3.5 Sonnet with the ‘nearest
gene’ method, the F-score on the GWAS catalog dataset improved by 48% (from 0.45 to
0.67) (Supplementary Table S17, available online). A similar integration with PoPS on the
Weeks et al. dataset increased the F-score by 17% (from 0.50 to 0.59) (Supplementary Table
S18, available online). These results demonstrate that integrating the unique, literature-based
intelligence of LLMs with traditional methods offers a powerful and robust strategy to advance
causal gene prediction (Figure 6).

4. Discussion

This work establishes that LLMs are a powerful, scalable, and cost-effective new tool for causal
gene prioritization. We show that LLMs can accurately synthesize vast scientific literature to
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Fig. 6. Performance of the ensemble framework compared to individual methods. The ensemble
classifier (red points), which combines predictions from Claude Sonnet-3.5 and the Nearest Gene
method, significantly outperforms the individual methods on both datasets.

identify high-probability candidate genes. To address the critical issue of data circularity in AI
benchmarking, we introduce a rigorous evaluation framework that includes a novel benchmark
built from 23 unpublished GWAS and systematic comparisons with state-of-the-art methods.
This framework provides a transparent and unbiased assessment of LLM performance, setting
a foundation for best practices in the field.

Our results reveal two key insights. First, on public datasets, advanced LLMs such as
Claude 3.5 Sonnet and GPT-4o substantially outperform established methods, with the largest
gains observed in gene-dense regions, underscoring their ability to exploit the existing knowl-
edge base. Second, on truly novel loci, including the unpublished 23andMe GWAS dataset,
LLMs perform comparably to state-of-the-art tools, confirming their capacity for general-
ization rather than memorization. Finally, our ensemble approach, which integrates LLM
predictions with established methods, significantly improves causal gene identification, po-
sitioning LLMs as a complementary and transformative component of next-generation gene
prioritization pipelines.

Broader Implications and Potential Applications

The LLM-based framework has broad implications for genomics research. It enables rapid
annotation and prioritization of genes from any GWAS, even when full summary statistics
are unavailable, a common limitation of approaches like PoPS. This capability can accelerate
hypothesis generation by highlighting likely causal genes for functional follow-up. In drug
discovery, it could help identify new therapeutic targets by linking disease-associated loci to
druggable genes. Overall, this work provides a blueprint for leveraging the exponential growth
of scientific literature, transforming unstructured text into structured, actionable biological
insights.

A practical advantage of our approach is its scalability and cost-effectiveness. The LLMs
used are accessible via paid APIs with costs determined by the number of processed tokens.
For example, the average per-locus cost for Claude 3.5 Sonnet was approximately $0.0022
USD, meaning that annotating a GWAS with 300 significant loci can be completed for less
than $1 USD. This cost profile makes LLM-based prioritization feasible for routine, large-scale
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analyses.

Limitations and Future Directions

This study provides a foundational baseline for applying LLMs to causal gene prioritization.
Recognizing the risk of data contamination from public training corpora, we employed a
robust evaluation design, testing across multiple datasets, including recent publications and
unpublished GWAS, to provide a reliable assessment of model generalization.

Several challenges remain before LLMs can be fully integrated into scientific workflows.
The “black box” nature of current LLMs limits the ability to trace predictions to specific
sources. A clear next step is the development of Retrieval-Augmented Generation (RAG)
frameworks that cite verifiable references from curated corpora like PubMed, improving both
trust and interpretability.

It is also important to note that LLMs learn statistical associations from text rather than
performing formal causal inference. The “causal” labels in our benchmarks are proxies de-
rived from genetic evidence rather than functional validation. Future work should incorporate
experimentally validated datasets to further refine these models. Moreover, our evaluation
primarily focused on data from individuals of European ancestry. Expanding benchmarks to
include diverse populations is essential to ensure equitable and generalizable applications. In
the benchmark creation, we focused only on examples where the causal gene is a protein-
coding gene. For some published loci, noncoding RNAs have been implicated as causal. The
performance of our approach at such loci remains to be explored.

In conclusion, this work demonstrates that LLMs are powerful and scalable tools for causal
gene prioritization. By synthesizing the scientific literature, they dramatically improve candi-
date gene identification for well-documented associations and perform comparably to state-of-
the-art methods on truly novel loci. The future of this field lies in improving transparency and
mitigating data circularity, likely through RAG-based systems and more robust, prospective
benchmarks. By integrating the reasoning capabilities of LLMs with other data modalities,
we can accelerate the translation of GWAS discoveries into deeper biological understanding.
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