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Precision medicine aims to tailor healthcare strategies to individual differences in genetic, clinical,
and environmental factors. However, identifying subgroup-specific causal relationships in complex
biomedical data remains a major challenge, especially when standard causal inference methods
average over population heterogeneity. We introduce DeepDiff-SHAP, a novel framework that
combines regression-based and deep learning-based differential causal inference to detect changes
in causal relationships across patient subgroups. DeepDiff-SHAP integrates conditional SHapley
Additive exPlanations (SHAP) to estimate conditional dependencies and perform nonlinear
differential causal inference in a principled, interpretable manner. Applying DeepDiff-SHAP to
two population-scale datasets, the CDC Diabetes Health Indicators Dataset and a UK Biobank
sepsis cohort stratified by hypertension status, we identified clinically meaningful and subgroup-
specific causal changes in relationships between features across the datasets including age, general
health, alkaline phosphatase, and cholesterol. Our results reinforce the idea that deep learning
enhances sensitivity to complex interaction patterns overlooked by linear models, providing new
biological insights into disease progression and comorbidity-specific risk mechanisms. DeepDiff-
SHAP offers a scalable and interpretable solution to uncover individualized causal pathways,
advancing the goal of truly personalized medicine.

Keywords: Differential Causal Inference; Deep Learning; Precision Medicine; Shapley Additive
exPlanations (SHAP).

1. Introduction

Precision medicine is transforming biomedical research and clinical care by shifting the focus from
one-size-fits-all treatments to strategies tailored to individual differences in genetic, environmental,
and lifestyle factors. As precision medicine continues to gain traction, there is a growing need for
analytical methods that can identify subgroup-specific risk factors that either influence disease risk
or therapeutic responses differently across distinct populations, or differently across multiple states
within the same population. Examples include genetic variants such as rs/1673407 in the
fucosyltransferase 3 gene (FUT3) elevating cardiovascular risk in men but not in women!, or nine
potentially protective and 25 harmful metabolic biomarkers predicting future incidence of type 2
diabetes®. Traditional causal inference frameworks, however, typically estimate average treatment
or exposure effects across a global population grouping. As an example, CausalMGM is a well-
established mixed graphical model method for inferring causal relationships from observational data
that may include multiple data types®. However, since it runs on a single aggregated cohort, it can
obscure possible nuanced, group-specific mechanisms and lead to ineffective or even harmful
interventions in underrepresented subgroups within the larger data group.

© 2025 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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Recently, a method proposed by Belyaeva et al. called Differential Causal Inference (DCI),
established a principled approach to detect differences in causal effects across groups by directly
comparing the strength of variable-outcome relationships in one subgroup versus another’. DCI is
methodologically distinct from simply performing causal inference separately in two groups and
comparing the results. In a standard two-group approach, causal models are estimated independently
for each group (e.g., diseased and healthy), and differences in effect estimates are compared post
hoc. However, this approach does not account for estimation variance or the statistical significance
of the differences, potentially leading to spurious findings or uncertainty in drawing conclusions. In
contrast, DCI directly models and tests the difference in causal effects between groups as the
primary quantity of interest within a unified framework that allows for more robust inference. This
enables the identification of subgroup-specific causal mechanisms while controlling for variability
and potential biases. Furthermore, the naive approach of fitting models separately in subgroups,
especially in high-dimensional settings, can lead to unstable estimates due to small sample sizes or
overfitting. DCI’s framework borrows strength across groups through joint modeling or shared
representations, improving estimation accuracy and interpretability. This enables researchers and
clinicians to uncover risk factors that are uniquely relevant to particular population subgroups, such
as non-responders to immunotherapy® or patients with treatment-resistant depression’, and in turn
advance the development of more precise and targeted interventions.

Despite its advantage as being the only current differential causal inference method, DCI is
based on regression-based framework and thus limited in its ability to capture the sophisticated
mechanisms underlying disease heterogeneity. Disease heterogeneity arises from complex,
multilayered biological processes that involve nonlinear interactions among genetic, epigenetic, and
environmental factors. Regression models, which rely on additive and linear assumptions, are
insufficient in capturing these involved dependencies, potentially overlooking key disease-driving
mechanisms.

To model complex biological and clinical systems, which are governed by intricate, nonlinear
interactions among molecular signals (e.g., gene expression, DNA methylation)!®!!, environmental
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Figure 1. (A) Causal relationship from A to B to test for the difference based on the conditioning
set expressed as C = {C1, ..., Cs}. (B) Algorithm of DeepDiff-SHAP with the regression and the
deep learning components.
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exposures (e.g., smoking, pollution)'?!3, and clinical variables (e.g., comorbidities, treatment

history)!*!3, we will extend regression-based DCI using deep learning (DL). With its multilayered
architecture and nonlinear activation functions, DL can effectively learn hierarchical feature
representations that capture subtle, high-order dependencies between inputs. It has already
demonstrated success in a variety of biomedical tasks including disease risk prediction'®!” and
image-based diagnostics'®!°. This makes deep learning particularly well-suited for extending DCI
for contexts in which causal effects are likely to vary not just in magnitude, but in functional form,
across subgroups.

Specifically, for a framework outlining a causal association from input feature A to outcome B
with conditioning on set C (Fig. 1A), we will extend the established regression-based three step
approach of DCI’ (Fig. 1B) by using DL architecture. While this approach evaluates model
parameters for the conditional probability of each variable pair between conditions, performing
these steps requires conditional probabilities, e.g., P(A|B, C), where C is a set of conditioning
nodes. In the regression setting, such conditional distributions have closed-form expressions based
on covariances and are thus tractable. However, in DL settings, these conditional distributions
become complex and high-dimensional. To address this, we propose a novel deep learning
framework, DeepDiff-SHAP, that incorporates advanced SHapley Additive exPlanations (SHAP)?°
to quantify differential conditional dependence between variables (Fig. 1C). SHAP has been
adapted to estimate conditional expectations in supervised learning?!, but its use for computing
conditional dependencies between input variables, as required for formal causal inference, remains
limited and underexplored. By adapting SHAP to contrast feature contributions of certain variables,
while conditioning on the shared, high-dimensional covariate space that exists in most biomedical
data, our method enables robust and interpretable identification of variables whose causal effects
differ across groups. This approach directly targets the core objective of DCI and offers a scalable,
principled solution for uncovering subgroup-specific causal mechanisms in complex biomedical
data. Below, we will first formalize the three-step workflow of DeepDiff-SHAP: (1) screen for
causal edges that change between two states by contrasting precision matrices; (2) prune edges that
may appear variant but do not actually differ, using a SHAP-based test of whether one variable’s
influence on another still differs after conditioning on nearby variables; and (3) orient the remaining
edges by checking which putative parent sets keep prediction residuals stable across states using
lightweight neural networks. We apply DeepDiff-SHAP to two case studies: (1) CDC Diabetes
survey data, and (2) a UK Biobank cohort of sepsis patients stratified by hypertension status, both
representing disease groups with distinct etiologies and risk structures for which we discuss key
empirical findings. Finally, we provide practical guidance on aligning comparison groups with the
intended causal effect modifiers and conclude with a transparent discussion of limitations and
planned methodological improvements.

2. Introduction

We introduce DeepDiff-SHAP as a principled, statistically sound three-algorithm approach rooted
in regression and DL frameworks for causal structure changes between two states (Fig. 1B).
DeepDiff-SHAP works without having to fully reconstruct each underlying network in a dataset.
Step 1 involves identifying candidate nodes and edges where the dependency structure differs
between states, based on changes in the precision matrix; in this case, the precision matrix is the
pseudoinverse of the empirical covariance matrix. Since structural changes in a causal graph often
result in shifts in the precision matrix, this step ensures a stable, high recall starting point for further
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evaluation and refinement. In Step 2, we test whether the strength of variable dependency
relationships (i.e., how much one variable predicts another after conditioning on a third variable in
the undirected graph) remains stable across the two states. If a relationship does not change, it is
pruned from the candidate set, thus removing possible false positives identified by Step 1. Finally,
in Step 3, we compute differences in residual (unexplained) variances calculated via deep neural
networks (DNNSs) to infer directionality between nodes; if there is statistical evidence of DNN
residual invariance when conditioning on a set of nodes, it suggests that the node set contains the
true causal parents related to the outcome.

2.1. Estimation of the difference undirected graph

To identify pairwise changes in conditional dependence structure between two states, we begin by
estimating a difference undirected graph (A-UG) that aims to identify statistically significant
evidence of interactions that vary between the two state-separated data groups. Let X(P € R™*P
and X € R"2*P denote independent data groups from states 1 and 2, respectively. Each dataset is
denoted by state-specific precision matrices @ =M™ and 0@ = 3@ where =® is the
covariance matrix of state k.

We implement a constraint-based approach that computes an edge-specific test statistic for
each pair of variables (i, j) based on their estimated precision matrix entries. This step is adapted
from the framework first formalized by Belyaeva et al?2. Specifically, we estimate 0" and 0
using the Moore—Penrose pseudoinverse of the empirical covariance matrices computed from XV

and X?, respectively. The test statistic for each pair (i, ) is defined as:

2
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This statistic quantifies the squared difference in partial correlations between the two states,

scaled by their estimated variances. Under the null hypothesis Hy: G)S) =0, the statistic Q; i

ij
asymptotically follows a noncentral F-distribution?*->*:

Qij ~F(L,v), where v=mn,+n,—2p+2.

We compute p-values from this distribution using the cumulative noncentral F distribution
function and define a significance threshold @ € [0,1]. The difference undirected graph A is then
constructed as:

Ep = {{i,j} | pij < a},

where p;; is the p-value corresponding to Q; ;- To reduce the downstream hypothesis testing burden
in skeleton discovery and edge orientation, we define the set of conditioning nodes as:

C:={i | 3j such that {i,j} € E,}.
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We limit the nodes included in the conditioning set to the nodes involved in the edges of the
difference undirected graph, A-UG. We block the inclusion of any additional nodes (i.e. marginal
or conditional distributions differing across states) leading to node inclusion in the conditioning set,
ensuring a very strict and regulated edge inclusion step.

2.2. Skeleton discovery via SHAP-based conditional invariance testing

In the second step of our method, we further prune the initial undirected difference graph by testing
for conditional invariance of cross-state feature dependencies. Specifically, for each edge (i, j) in
the initial undirected difference graph, we assess whether the importance of feature i for predicting
feature j remains invariant across states, and vice versa, after conditioning on subsets of features
part of the conditioning set S.

We model each feature i as a function of its potential parent j and a conditioning set S € C{i, j},
where C denotes the set of conditioning nodes obtained from Step 1. For each direction, we train
two multilayer perceptron regressors fi(l) and fi(z) on the two datasets X and X® to predict X;
using X; and S.

To assess the contribution of X; to the prediction of X; in each state, we compute conditional
SHAP values using KerneISHAP with a fixed background distribution that isolates the effect of X;
given §%°. Specifically, we calculate:

¢s = SHAP (X, | S £, x©),
where k € {1,2} and qbﬂ? denotes the absolute SHAP values across test samples. These values are
then compared between states using a normalized squared difference statistic:

2
Toom (.ul - ﬂz)
gis == 2 2
91,93
ny  ng

where u;, and o are the mean and variance of the SHAP values in state k, and n; is the number of
SHAP samples. A two-sided p-value is derived from the noncentral F-distribution with degrees of
freedomv =n, +n, — 2 — 2|S|.

For each ordered pair (i « j and j « i) we test for SHAP heterogeneity across states conditional
on the set of conditioning nodes. When p > a, we fail to reject the null hypothesis of conditional
invariance across states and remove the corresponding edge from the undirected difference graph.
When p < a, we reject the null hypothesis of conditional invariance, and we include the edge. This
process is repeated across all conditioning sets up to a specified maximum size 7;,,,. The remaining
edges after this pruning step make up the edge difference skeleton used in the subsequent direction-
orientation step for the leftover edges.

This SHAP-based invariance testing allows for nonlinear, model-flexible detection of
asymmetric changes in feature relationships, extending the regression-based conditional
independence tests to deep neural network models with a more structurally sound framework.
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2.3. Edge orientation via invariance testing

In step 3, we orient edges obtained in step 2 (the pruned edge difference skeleton) to end up with a
directed graph that captures differences in functional dependencies across the two states. We assume
that for any node j, if the conditional variance of X; given a set of likely parents S is invariant across
states, then S represents a valid set of parents for j. This principle is rooted in the theory that the
functional form of the conditional distribution P( X; | Xs ) should remain stable under invariance®S.

For each node j in the graph, we test candidate parent sets S € C{j} of size k = 1, where C is
the set of conditioning nodes identified from the pruned edge difference skeleton from algorithm 2.
We train DNNs to regress X; on X separately in each state using a two-layer multilayer perceptron
(MLP). The residual variance is estimated as:

PN k k k
e )|

where fj(k) denotes the fitted DNN regressor in state k € {1,2}, and 62 is computed on the training

data. To assess whether the conditional variance differs significantly between states, we compute a
two-sided test statistic based on the ratio of residual variances:

~2 (1)
Ojis

T. —
jlIS ~2 )
G7s@

with a p -value computed using the noncentral F -distribution with degrees of freedom
(ny — |S],ny — |SD:

p= 2 - min (chf(Tﬂs); 1- chf(TjIS))'

If the p-value exceeds a specified threshold a, we fail to reject the null hypothesis and conclude
that the conditional variance is invariant, therefore accepting S as the parent set for j. The directed
edges i — j for all i € S are added to the graph. We perform additional cycle and contradiction
checks using transitive closure on the directed graph to prevent invalid orientations.

For any edges that remain unoriented after this test, we apply graph traversal rules to resolve
directionality wherever a consistent path structure allows. For example, for any set of nodes in which
i - node; —» node, — j, we orient i — j. This rationale is formalized by Meek and reviewed by
Colombo et al?’-?8, The final output is a directed adjacency matrix, a log of all the orientation
decisions, and the set of edges that could not be oriented by algorithm 3’s invariance testing.

This DNN-based residual variance orientation strategy expands on the original DCI steps
defined for regression-based models and leverages DL via a DNN framework to capture potentially
nonlinear predictive structure, and tests whether this structure is preserved across states; this allows
for stronger performance of causal inference in a model-independent way?2. Our model eliminates
the assumption of linear-Gaussian data by utilizing DNN-based predictions for variable
dependencies.

For results mentioned in this paper, DeepDiff-SHAP was initialized with the following
parameters: @, 3 = 0.005, Askereron = 0.3, orient = 0.001 corresponding to the threshold levels
for each of the three steps of the algorithm. Conditioning set size was set to 1 (maximum set size is
2, range from O to 2; a higher conditioning set size leads to sparser causal network graphs).
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2.4. Computational feasibility of conditional-based SHAP

While standard KernelSHAP is known to suffer from high computational cost, it is important to note
that conditional SHAP can reduce computational cost significantly. In the cost calculation,
computational expense in KernelSHAP scales as 2(P) model evaluations, where p is the number of
features. On the other hand, instead of evaluating all subsets of non-target features, conditional
SHAP computes the contribution of a predictor j given a limited conditioning set S, integrating over
the distribution of the remaining features via p(Xs\(j; | Xs). As a result, the model evaluation space

collapses from size 2Pto 2! (the subsets of {j} U S). Since our algorithm restricts | S |< r,,,, we

can significantly reduce the number of model evaluations. Reusing a shared conditional background
distribution across all test instances further reduces per-sample computational load.

3. Results

3.1. DeepDiff-SHAP reveals nonlinear subgroup-specific causal structures in diabetes
populations
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Figure 2. DCI graph on the diabetes data as identified by (A) the regression-based and
(B) deep-learning-based DeepDiff-SHAP. Gray lines represent the association changes
that are not attributed as differential causal relationship and red lines represent the
differential causal relationships.

To investigate changes in causal relationships associated with chronic disease, we ran the
regression-based DCI and DL-based DeepDiff-SHAP on the 2014 Centers for Disease Control and
Prevention (CDC) Diabetes Health Indicators Dataset?. This dataset includes health status,
behavioral, and access-to-care survey data for 253,680 individuals, among whom 39,977 were
diagnosed as diabetic or prediabetic and 213,703 were not diagnosed with diabetes. Using the
regression-based module of DeepDiff-SHAP, which follows the original DCI framework, we
detected 68 feature pairs with differential associations between the diabetic and non-diabetic groups.
Many of these association changes involved well-known demographic confounders such as age and
sex, which influence a wide range of lifestyle and health indicators. For instance, age was
differentially associated with features like general health (labeled “GenHIth”), stroke, smoking
status (labeled “Smoker”), and access to health care (labeled “AnyHealthcare”), while sex was
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associated with differences in income, smoking status, and BMI (Fig. 2A). 12 of the 68 differential
associations (17.64%) were attributed to underlying causal relationship changes by the regression-
based model. Notably, among participants categorized as diabetic or prediabetic, worse general
health exerted a stronger causal effect on obtaining a cholesterol check within 5 years (labeled
“CholCheck”), and, in turn, the check had a causal link with individuals who had high-cholesterol
(labeled “HighChol”) and high-blood pressure (HighBP); these relationships were not observed in
the non-diabetic patient group. However, only 2 (16.66%) of the 12 findings involved age or sex as
causal variables, despite their central role in shaping health outcomes. While it is clinically plausible
that age impacts general health status differently in people with and without diabetes, this causal
difference was not detected by the regression model. In contrast, the deep learning module of
DeepDiff-SHAP (Fig. 2B) identified this expected causal difference’® from age to general health,
as well as a differential causal effect of age on high cholesterol. Similarly, while the regression-
based model did not attribute any of the sex-related association changes, such as those from sex to
heart disease or heart attack (labeled “HeartDiseaseAttack™), smoking status, and BMI, to changes
in causal relationships, the DL-based approach successfully identified all these as differential causal
effects between the diabetic/pre-diabetic and non-diabetic groups.

We note the importance of these particular causal relationships in the DeepDiff-SHAP network
graph, age to high cholesterol and sex to coronary heart disease or myocardial infarction, both which
have been previously mentioned in the context of type 2 diabetes being associated with women
having a greater risk of cardiovascular disease, as well as studies implicating earlier cardiovascular
disease events in women with T2D compared to men®!-3. These findings suggest that deep learning-
based causal inference can uncover subtle and nonlinear changes in causal structure that may be
missed by linear models. Notably, the regression-based DCI model identified some relationships
that appear potentially misleading. As an example, regression-based DCI attributed a directional
causal difference in the relationship from stroke to difficulty walking, which is more plausibly
explained in the reverse direction or mediated by baseline functional impairments in diabetic
individuals. Altogether, these results both highlight the limitations of traditional regression-based
causal inference in detecting meaningful shifts in causal mechanisms between disease
subpopulations as well as showcase how our deep learning framework enables more nuanced
detection of differential causal structures, supporting its utility in understanding the biological and
behavioral heterogeneity of chronic diseases such as diabetes.

3.2. Uncovering comorbidity-specific mechanisms in sepsis through causal inference

To investigate how chronic comorbidities modulate causal relationships in sepsis, we applied
DeepDiff-SHAP (Fig. 1B) to a subset of the UK Biobank patient database comprising 3,181
individuals diagnosed with sepsis, stratified by hypertension status (hypertension: n = 2,669; no
hypertension: n = 512). Sepsis remains a leading cause of morbidity and mortality in adults and
children, yet its clinical progression is strongly influenced by pre-existing conditions such as
hypertension, a factor often overlooked in risk modeling®*. We identified sepsis cases using ICD-10
codes (e.g., A40, A41, B37.7, O85), capturing a range of septicemia and related conditions. From
the UK Biobank, we selected 42 variables spanning domains of cardiometabolic health, renal and
liver function, inflammation, hormones, blood pressure, and pulmonary status. Using DeepDift-
SHAP’s regression-based module, we identified 18 associations that differed between hypertensive
and non-hypertensive sepsis patients, of which 8 (44.44%) were attributed to shifts in causal
relationships (Fig. 3A). Notably, these included altered causal links including from urate to SHBG

729



Pacific Symposium on Biocomputing 2026

Age high blood
pressure
diagnosed

A Intra-ocular

pressure,
corneal-compensated
(left)
IGF-1 (Insulin-like

It oculan Growth Factor 1)

pressure,
corneal-compensated
(right)

SHBG (Sex

Hormone-Binding Apolipoprotein B
Globulin

)
Triglycerides \ /
/ Urate

Total bilirubin  —————pirect pilirubin

~~

Total i "
otal protein Alanite

|

Glucose

\Glycaled

haemoglobin

PD (Chronic ~ (HPA1C)

Obstructive
Pulmonary

Disefse)

Creatinine ’

Phosphate

urine
Urea

Diabetes Mellitus

Standing height

Microalbumin in

B

Total Cholesterol

|

Alkaline
Phosphatase

aminotransferase
(ALT)

Systolic blood Chronic renal

pressure, disease
automated reading

Figure 3. Differential causal graphs on UK Biobank sepsis data as
identified by (A) the regression-based and (B) deep-learning-based
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and apolipoprotein B, total bilirubin to triglycerides, calcium to total protein, apolipoprotein Al to
systolic blood pressure, and IGF-1 to age at hypertension diagnosis, suggesting distinct
physiological pathways influenced by vascular stress. Importantly, the deep learning component of
DeepDiff-SHAP uncovered an additional causal shift from alkaline phosphatase to total cholesterol
that was not detectable via the regression-based model (Fig. 3B), highlighting the added value of
incorporating nonlinear modeling.

Together, these findings demonstrate that DeepDiff-SHAP enables a comprehensive discovery
of subgroup-specific causal mechanisms in sepsis by building on regression-driven DCI with a deep
learning framework.

3.3. Benchmarking DeepDiff-SHAP

3.3.1. Benchmarking DeepDiff-SHAP against regression-based DCI: enhanced sensitivity to
nonlinear causal differences

To benchmark performance, we compared DeepDiff-SHAP against DCI, the only existing
differential causal inference method currently available. Importantly, the regression-based
component of DeepDiff-SHAP is mathematically equivalent to this original DCI method, as both
frameworks follow the same three-step procedure: identifying structural differences, testing
conditional invariance, and estimating directionality based on residual variance. Therefore, any
observed differences in results between DeepDiff-SHAP's deep learning (DL) module and the
regression-based DCI can be attributed to the modeling framework itself, rather than the procedural
design. To assess relative sensitivity to causal structure changes, we compared the number of
association differences that were ultimately attributed to changes in causal strength (i.e., differential
causal degrees). Since the comparison holds the inference pipeline constant while varying only the
functional form (linear vs. nonlinear approach), this metric offers a controlled and clear evaluation
of how effectively each approach detects meaningful causal differences. Between the diabetes (pre-
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diabetic and diabetic diagnosis) and healthy population groups in the CDC Diabetes dataset, the
original DCI method identified 68 association changes, but only 12 (17.6%) were attributed to
differences in causal degree. In contrast, DeepDiff-SHAP detected 19 association changes, with 9
(47.3%) resolved as true causal degree differences, demonstrating a significantly higher sensitivity
in uncovering meaningful causal changes (P-value = 0.02). A similar pattern emerged in the sepsis
dataset: DeepDiff-SHAP resolved 1 causal degree difference out of 1 association change, whereas
the original DCI resolved 8 out of 18 association changes (P-value = 0.2). Although the weaker
significance in the sepsis dataset may reflect the presence of only a single nonlinear association
difference, these findings nonetheless underscore the improved sensitivity of DeepDiff-SHAP,
particularly for detecting complex, nonlinear causal relationships.

3.3.2. Benchmarking DeepDiff-SHAP against CausalMGM: comparing objectives and outputs with
an existing causal inference method
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Figure 4. Differential causal graphs on CDC Diabetes data as identified by CausalMGM. (A) non-
diabetic group (B) diabetic and prediabetic group.

We benchmarked DeepDiff-SHAP against CausalMGM® by running CausalMGM separately on
the diabetic/prediabetic and non-diabetic subgroups (Fig. 4). CausalMGM learns which features are
associated via regression and then attempts to assign a causal direction to those associations using
the Peter-Clark (PC) algorithm®. Importantly, PC does not determine causal directions when the
data does not have enough empirical evidence to do so. In our CDC Diabetes dataset, neither
subgroup produced any oriented edges, suggesting that PC as part of CausalMGM has limited power
to infer causal directions in this context. By extension, it would be even more difficult to compare
causal differences between the two groups using CausalMGM. Despite the absence of oriented
edges, CausalMGM did recover several undirected associations. Many were shared across groups
and likely reflect background co-variation rather than diabetes-specific biology (e.g., high blood
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pressure and high cholesterol, labeled “HighBP” and HighChol”; history of stroke and lifetime
cigarette consumption, labeled “Stroke” and “Smoker”’; how many days in the last 30 days were an
individual’s physical and mental health considered “not good”, respectively labeled “PhysHealth”
and “MentHIth”). CausalMGM also reported group-specific patterns; in the diabetic and prediabetic
subgroup, associations centered on having any kind of healthcare, labeled “AnyHealthcare”, with
links to CholCheck, NoDocbcCost (doctor visit skipped due to high cost), and vegetable
consumption once or more per day, labeled “Veggies”, whereas in the non-diabetes subgroup,
associations primarily involved general health condition, labeled “GenHIth” (e.g., connections to
CholCheck, Income, PhysHIth). These findings are suggestive but remain undirected under
CausalMGM. DeepDiff-SHAP advances this framework in two ways. First, DeepDiff-SHAP could
determine causal directions on two diabetes-specific edges that CausalMGM only flagged as
undirected: CholCheck to Age and CholCheck to AnyHealthcare. The CholCheck to Age direction
is not causally plausible (a test cannot cause age) and likely reflects latent confounding or reverse
causation. However, CholCheck to AnyHealthcare is consistent with a plausible behavioral pathway
(i.e. lipid screening may lead to more health-care engagement). In both cases, DeepDiff-SHAP
provides specified causal directions that can serve as hypotheses for relevant further investigation
and work. Additionally, DeepDiff-SHAP determined the causal direction of nonlinear associations,
some of which are known to be associated with diabetes’!*. Altogether, these results (1) validate
several DeepDiff-SHAP findings against an established graphical-model baseline, (2) demonstrate
greater power to orient effects where CausalMGM remains agnostic, and (3) show enhanced
interpretability through subgroup-specific direction estimates and detection of nonlinear structure
relevant to diabetes biology.

4. Discussion

We introduce DeepDiff-SHAP as a method that builds on regression-based DCI with a deep
learning-based differential causal inference framework (Fig. 1B). Our method’s modular design,
split into three steps with flexible parameter initialization settings, allows researchers to
systematically evaluate subgroup-specific differences in feature importance and directional
relationships, creating a highly customizable approach to evaluating causal data structure.
Additionally, the results observed from our comparative analysis across two unique patient datasets,
the CDC Diabetes Health Indicators Dataset and a UK Biobank cohort of sepsis patients stratified
by hypertension, demonstrate DeepDiff-SHAP’s ability to identify biologically meaningful and
study-supported causal relationships that regression-only DCI may overlook.

DeepDiff-SHAP’s performance in the analysis of the CDC Diabetes dataset offers novel insights
into the differential roles of classical foundational variables such as age and sex. These variables act
as upstream regulators, often influencing many downstream pathways at once. They can moderate,
mediate, or interact with other risks, rather than affecting only a single chain of events. DeepDift-
SHAP models these nonlinear, interactive, and layered relationships through a unified DL-based
framework. This framework helps uncover how different factors can influence multiple pathways
at once, highlighting regulatory patterns that may vary across subgroups. By capturing these effects
without having to specify every possible mediator or interaction in advance, it offers a practical way
to study the complexity of chronic diseases like diabetes. Diabetes is a persistent metabolic disease
that compounds over time; individuals with diabetes are more likely to experience a steeper
deterioration in general health as they age, compared to individuals without diabetes. Additionally,
aging itself brings about general decline in metabolic efficiency, immune function, and tissue repair,

732



Pacific Symposium on Biocomputing 2026

all of which can be exacerbated by the presence of diabetes. By leveraging DL’s multilayer
modeling capacities, we reveal a synergistic effect between age and diabetes, where the impact of
aging on general health is causally differential. In contrast, individuals without diabetes may
experience a more gradual, less pronounced decline in general health with aging. Similarly,
regarding the unique causal difference result between sepsis patients with and without hypertension,
several studies have made the link between serum alkaline phosphatase (ALP) and coronary artery
disease, with hypertension recognized as a well-known contributor to the development of coronary
artery disease®’-*%. Additional studies in humans and mice have linked ALP with elevated cholesterol
levels, particularly in those with dyslipidemia, and observe that high ALP in dyslipidemia patients
leads to hypertension and coronary heart disease®*+*°.

An important design consideration in DCI is deciding which variable defines the groups being
compared. For the CDC diabetes dataset analysis, we looked at differences between individuals with
and without diabetes, using diabetes status as the grouping variable. In this construct, the key
question becomes whether the relationship between an exposure (X) and an outcome (Y) differs by
diabetes status. If, instead, the question of interest centered around sex-specific differences, then the
grouping variable would have to be defined as sex. Misspecification of the grouping variable with
the intended modifier can lead to estimating a completely different causal relationship than
originally intended and, in some cases, introduce collider bias if the outcome itself is used to define
groups. For this reason, we recommend that the grouping variable of interest be specified a priori
and that steps be taken to ensure balance across groups, such as through reweighting or matching.

In practice, DeepDiff-SHAP is designed to produce two outputs that are functionally relevant to
clinical settings. First, it produces subgroup-specific causal networks that diagram how exposures
influence outcomes differently across a chosen modifier. Second, it translates the identified
subgroup-level effects into targeted risk predictions using SHAP-based effect size estimation. By
structuring the analysis around the modifier of interest, but still reinforcing the defined disease as
the outcome, this approach avoids common pitfalls like collider bias and ensures that causal results
are in line with the question of interest. In conjunction, DeepDiff-SHAP’s outputs support clearer
communication of subgroup-specific risks and help prioritize the most important risk factors for
patient care.

Despite the promise of DeepDiff-SHAP in identifying subgroup-specific differences in causal
structure, our current framework has some limitations. First, like other computational approaches
to causal discovery, DeepDiff-SHAP faces fundamental limits, particularly when reverse causality
or feedback loops are present. Most algorithms based on directed acyclic graphs (DAGs) assume
acyclicity, faithfulness, and often causal sufficiency. These assumptions prevent them from
representing feedback processes and make it challenging to orient causal directions when multiple
graphs are observationally indistinguishable. In practice, claiming and assigning directionality to
edges typically warrants additional sources of information, such as interventions, time ordering, or
invariance across environments. However, our results remain vulnerable to hidden confounding,
measurement error, or selection bias. Established methods such as the PC* algorithm, the Fast
Causal Inference (FCI)* algorithm, and the Greedy Equivalence Search (GES)** algorithm
formalize some of this, but often lose rigor with higher dimensional data structures such as -omics
data. Differential causal inference (DCI) methods that compare two conditions inherit these same
identification constraints from their base graphs and can misattribute distributional shifts as causal
edge differences when assumptions fail. Thus, reverse causality and hidden common causes
remain crucial obstacles to solve concerning causal discovery from observational data. Second, the
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computational efficiency of the SHAP-based conditional invariance testing step remains a major
challenge. Specifically, estimating conditional SHAP values for each candidate variable pair
across multiple conditioning subsets is computationally expensive, particularly for large-scale
datasets with many variables and complex feature interactions. Third, our current approach uses an
ad hoc restriction on the conditioning set to reduce complexity: we limit candidate conditioning
variables to those involved in edges identified in the difference undirected graph (A-UG). While
this helps avoid an exponential increase in the number of SHAP computations, it may miss subtler
or higher-order conditional dependencies. This limitation can inherently bias results towards more
prominent signal changes while underestimating other nuanced shifts in conditional structure. To
address this, future iterations of DeepDiff-SHAP could benefit from dimensionality reduction
techniques such as variable screening, supervised embedding, or attention-based feature selection
before applying conditional SHAP. Finally, we will also investigate adaptive strategies for
selecting conditioning sets that leverage measures such as mutual information or latent feature
representations. The goal is to balance out computational feasibility and the capacity to capture
potentially hidden dependencies. Methods such as autoencoder-based dimensionality reduction,
graph neural network—derived embeddings, or Bayesian network—informed priors may help us
develop principled ways to limit the conditioning set space while still retaining the most relevant
differential dependency structures in data sources of interest.

As medicine increasingly moves toward personalized interventions, understanding how risk
factors or biological pathways operate differently across patient subpopulations, such as those with
or without comorbidities like diabetes or hypertension, is essential to avoid generalized solutions
that can be ineffective or even harmful. Traditional regression-based methods average over
heterogeneity, preventing subtle but important biological differences from being uncovered. Our
approach, which integrates the theoretical rigor of differential causal inference with the interpretable
power of deep learning and SHAP, allows researchers to discover changes in causal structure that
vary with disease state, comorbidity, or population subgroup. These insights can directly inform the
design of more precise diagnostic criteria, risk prediction tools, and treatment strategies, ultimately
improving clinical outcomes by ensuring the appropriate interventions are delivered to the
appropriate patients.
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