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Precision medicine aims to tailor healthcare strategies to individual differences in genetic, clinical, 
and environmental factors. However, identifying subgroup-specific causal relationships in complex 
biomedical data remains a major challenge, especially when standard causal inference methods 
average over population heterogeneity. We introduce DeepDiff-SHAP, a novel framework that 
combines regression-based and deep learning-based differential causal inference to detect changes 
in causal relationships across patient subgroups. DeepDiff-SHAP integrates conditional SHapley 
Additive exPlanations (SHAP) to estimate conditional dependencies and perform nonlinear 
differential causal inference in a principled, interpretable manner. Applying DeepDiff-SHAP to 
two population-scale datasets, the CDC Diabetes Health Indicators Dataset and a UK Biobank 
sepsis cohort stratified by hypertension status, we identified clinically meaningful and subgroup-
specific causal changes in relationships between features across the datasets including age, general 
health, alkaline phosphatase, and cholesterol. Our results reinforce the idea that deep learning 
enhances sensitivity to complex interaction patterns overlooked by linear models, providing new 
biological insights into disease progression and comorbidity-specific risk mechanisms. DeepDiff-
SHAP offers a scalable and interpretable solution to uncover individualized causal pathways, 
advancing the goal of truly personalized medicine. 

Keywords: Differential Causal Inference; Deep Learning; Precision Medicine; Shapley Additive 
exPlanations (SHAP). 

1. Introduction

Precision medicine is transforming biomedical research and clinical care by shifting the focus from 
one-size-fits-all treatments to strategies tailored to individual differences in genetic, environmental, 
and lifestyle factors. As precision medicine continues to gain traction, there is a growing need for 
analytical methods that can identify subgroup-specific risk factors that either influence disease risk 
or therapeutic responses differently across distinct populations, or differently across multiple states 
within the same population. Examples include genetic variants such as rs11673407 in the 
fucosyltransferase 3 gene (FUT3) elevating cardiovascular risk in men but not in women1, or nine 
potentially protective and 25 harmful metabolic biomarkers predicting future incidence of type 2 
diabetes2. Traditional causal inference frameworks, however, typically estimate average treatment 
or exposure effects across a global population grouping3-5. As an example, CausalMGM is a well-
established mixed graphical model method for inferring causal relationships from observational data 
that may include multiple data types6. However, since it runs on a single aggregated cohort, it can 
obscure possible nuanced, group-specific mechanisms and lead to ineffective or even harmful 
interventions in underrepresented subgroups within the larger data group. 
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Recently, a method proposed by Belyaeva et al. called Differential Causal Inference (DCI), 
established a principled approach to detect differences in causal effects across groups by directly 
comparing the strength of variable-outcome relationships in one subgroup versus another7. DCI is 
methodologically distinct from simply performing causal inference separately in two groups and 
comparing the results. In a standard two-group approach, causal models are estimated independently 
for each group (e.g., diseased and healthy), and differences in effect estimates are compared post 
hoc. However, this approach does not account for estimation variance or the statistical significance 
of the differences, potentially leading to spurious findings or uncertainty in drawing conclusions. In 
contrast, DCI directly models and tests the difference in causal effects between groups as the 
primary quantity of interest within a unified framework that allows for more robust inference. This 
enables the identification of subgroup-specific causal mechanisms while controlling for variability 
and potential biases. Furthermore, the naive approach of fitting models separately in subgroups, 
especially in high-dimensional settings, can lead to unstable estimates due to small sample sizes or 
overfitting. DCI’s framework borrows strength across groups through joint modeling or shared 
representations, improving estimation accuracy and interpretability. This enables researchers and 
clinicians to uncover risk factors that are uniquely relevant to particular population subgroups, such 
as non-responders to immunotherapy8 or patients with treatment-resistant depression9, and in turn 
advance the development of more precise and targeted interventions.  
 Despite its advantage as being the only current differential causal inference method, DCI is 
based on regression-based framework and thus limited in its ability to capture the sophisticated 
mechanisms underlying disease heterogeneity. Disease heterogeneity arises from complex, 
multilayered biological processes that involve nonlinear interactions among genetic, epigenetic, and 
environmental factors. Regression models, which rely on additive and linear assumptions, are 
insufficient in capturing these involved dependencies, potentially overlooking key disease-driving 
mechanisms.  

To model complex biological and clinical systems, which are governed by intricate, nonlinear 
interactions among molecular signals (e.g., gene expression, DNA methylation)10,11, environmental 

Figure 1. (A) Causal relationship from A to B to test for the difference based on the conditioning 
set expressed as 𝐶 = {𝐶1,… , 𝐶𝑠}. (B) Algorithm of DeepDiff-SHAP with the regression and the 
deep learning components.  

DeepDiff
-SHAP
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exposures (e.g., smoking, pollution)12,13, and clinical variables (e.g., comorbidities, treatment 
history)14,15, we will extend regression-based DCI using deep learning (DL). With its multilayered 
architecture and nonlinear activation functions, DL can effectively learn hierarchical feature 
representations that capture subtle, high-order dependencies between inputs. It has already 
demonstrated success in a variety of biomedical tasks including disease risk prediction16,17 and 
image-based diagnostics18,19. This makes deep learning particularly well-suited for extending DCI  
for contexts in which causal effects are likely to vary not just in magnitude, but in functional form, 
across subgroups.  
 Specifically, for a framework outlining a causal association from input feature A to outcome B 
with conditioning on set 𝐶 (Fig. 1A), we will extend the established regression-based three step 
approach of DCI7 (Fig. 1B) by using DL architecture. While this approach evaluates model 
parameters for the conditional probability of each variable pair between conditions, performing 
these steps requires conditional probabilities, e.g., 𝑃(𝐴|𝐵, 𝐶), where 𝐶  is a set of conditioning 
nodes. In the regression setting, such conditional distributions have closed-form expressions based 
on covariances and are thus tractable. However, in DL settings, these conditional distributions 
become complex and high-dimensional. To address this, we propose a novel deep learning 
framework, DeepDiff-SHAP, that incorporates advanced SHapley Additive exPlanations (SHAP)20 
to quantify differential conditional dependence between variables (Fig. 1C). SHAP has been 
adapted to estimate conditional expectations in supervised learning21, but its use for computing 
conditional dependencies between input variables, as required for formal causal inference, remains 
limited and underexplored. By adapting SHAP to contrast feature contributions of certain variables, 
while conditioning on the shared, high-dimensional covariate space that exists in most biomedical 
data, our method enables robust and interpretable identification of variables whose causal effects 
differ across groups. This approach directly targets the core objective of DCI and offers a scalable, 
principled solution for uncovering subgroup-specific causal mechanisms in complex biomedical 
data. Below, we will first formalize the three-step workflow of DeepDiff-SHAP: (1) screen for 
causal edges that change between two states by contrasting precision matrices; (2) prune edges that 
may appear variant but do not actually differ, using a SHAP-based test of whether one variable’s 
influence on another still differs after conditioning on nearby variables; and (3) orient the remaining 
edges by checking which putative parent sets keep prediction residuals stable across states using 
lightweight neural networks. We apply DeepDiff-SHAP to two case studies: (1) CDC Diabetes 
survey data, and (2) a UK Biobank cohort of sepsis patients stratified by hypertension status, both 
representing disease groups with distinct etiologies and risk structures for which we discuss key 
empirical findings. Finally, we provide practical guidance on aligning comparison groups with the 
intended causal effect modifiers and conclude with a transparent discussion of limitations and 
planned methodological improvements. 
 
2.  Introduction 

We introduce DeepDiff-SHAP as a principled, statistically sound three-algorithm approach rooted 
in regression and DL frameworks for causal structure changes between two states (Fig. 1B). 
DeepDiff-SHAP works without having to fully reconstruct each underlying network in a dataset. 
Step 1 involves identifying candidate nodes and edges where the dependency structure differs 
between states, based on changes in the precision matrix; in this case, the precision matrix is the 
pseudoinverse of the empirical covariance matrix. Since structural changes in a causal graph often 
result in shifts in the precision matrix, this step ensures a stable, high recall starting point for further 
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evaluation and refinement. In Step 2, we test whether the strength of variable dependency 
relationships (i.e., how much one variable predicts another after conditioning on a third variable in 
the undirected graph) remains stable across the two states. If a relationship does not change, it is 
pruned from the candidate set, thus removing possible false positives identified by Step 1. Finally, 
in Step 3, we compute differences in residual (unexplained) variances calculated via deep neural 
networks (DNNs) to infer directionality between nodes; if there is statistical evidence of DNN 
residual invariance when conditioning on a set of nodes, it suggests that the node set contains the 
true causal parents related to the outcome.  
 
2.1.  Estimation of the difference undirected graph 

To identify pairwise changes in conditional dependence structure between two states, we begin by 
estimating a difference undirected graph (Δ-UG) that aims to identify statistically significant 
evidence of interactions that vary between the two state-separated data groups. Let 𝑋(") ∈ ℝ$!×& 
and 𝑋(') ∈ ℝ$"×& denote independent data groups from states 1 and 2, respectively. Each dataset is 
denoted by state-specific precision matrices Θ(") = Σ(")#!  and Θ(') = Σ(')#! , where Σ(()  is the 
covariance matrix of state 𝑘. 

We implement a constraint-based approach that computes an edge-specific test statistic for 
each pair of variables (𝑖, 𝑗) based on their estimated precision matrix entries. This step is adapted 
from the framework first formalized by Belyaeva et al22. Specifically, we estimate Θ#

(1) and Θ#
(2) 

using the Moore–Penrose pseudoinverse of the empirical covariance matrices computed from 𝑋(1) 
and 𝑋(2), respectively. The test statistic for each pair (𝑖, 𝑗) is defined as: 

 

𝑄# 𝑖𝑗≔
$Θ# 𝑖𝑗

(1)−Θ# 𝑖𝑗
(2)
%
2

&
Θ# 𝑖𝑖
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(2)+ (Θ# 𝑖𝑗
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This statistic quantifies the squared difference in partial correlations between the two states, 

scaled by their estimated variances. Under the null hypothesis 𝐻-: Θ./
(") = Θ./

(') , the statistic 𝑄:./ 
asymptotically follows a noncentral 𝐹-distribution23,24: 
 

𝑄:./ ∼ 𝐹(1, 𝜈), where 𝜈 = 𝑛" + 𝑛' − 2𝑝 + 2. 
 
We compute p-values from this distribution using the cumulative noncentral 𝐹  distribution 

function and define a significance threshold 𝛼 ∈ [0,1]. The difference undirected graph Δ is then 
constructed as: 

ℰ0≔ H{𝑖, 𝑗} L 𝑝./ ≤ 𝛼N, 
 
where 𝑝./ is the p-value corresponding to 𝑄:./. To reduce the downstream hypothesis testing burden 
in skeleton discovery and edge orientation, we define the set of conditioning nodes as: 
 

𝒞 ≔ {𝑖 | ∃𝑗 such that {𝑖, 𝑗} ∈ ℰ0}. 
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We limit the nodes included in the conditioning set to the nodes involved in the edges of the 
difference undirected graph, Δ-UG. We block the inclusion of any additional nodes (i.e. marginal 
or conditional distributions differing across states) leading to node inclusion in the conditioning set, 
ensuring a very strict and regulated edge inclusion step.  

2.2.  Skeleton discovery via SHAP-based conditional invariance testing 

In the second step of our method, we further prune the initial undirected difference graph by testing 
for conditional invariance of cross-state feature dependencies. Specifically, for each edge (𝑖, 𝑗) in 
the initial undirected difference graph, we assess whether the importance of feature 𝑖 for predicting 
feature 𝑗 remains invariant across states, and vice versa, after conditioning on subsets of features 
part of the conditioning set 𝑆. 

We model each feature 𝑖 as a function of its potential parent 𝑗 and a conditioning set 𝑆 ⊆ 𝒞{𝑖, 𝑗}, 
where 𝒞 denotes the set of conditioning nodes obtained from Step 1. For each direction, we train 
two multilayer perceptron regressors 𝑓.

(") and 𝑓.
(') on the two datasets 𝑋(") and 𝑋(') to predict 𝑋. 

using 𝑋/ and 𝑆. 
To assess the contribution of 𝑋/ to the prediction of 𝑋. in each state, we compute conditional 

SHAP values using KernelSHAP with a fixed background distribution that isolates the effect of 𝑋/ 
given 𝑆25.  Specifically, we calculate: 

 
𝜙𝑗∣𝑆
(𝑘) = SHAP (𝑋𝑗 ∣∣∣ 𝑆;𝑓𝑖

(𝑘), 𝑋(𝑘) *, 
 
where 𝑘 ∈ {1,2} and 𝜙/∣4

(() denotes the absolute SHAP values across test samples. These values are 
then compared between states using a normalized squared difference statistic: 
 

𝑇𝑖𝑗∣𝑆≔
(𝜇1 −𝜇2)

2

𝜎12
𝑛1 +

𝜎22
𝑛2

, 

 
where 𝜇( and 𝜎(' are the mean and variance of the SHAP values in state 𝑘, and 𝑛( is the number of 
SHAP samples. A two-sided 𝑝-value is derived from the noncentral 𝐹-distribution with degrees of 
freedom 𝜈 = 𝑛" + 𝑛' − 2 − 2|𝑆|. 

For each ordered pair (𝑖 ← 𝑗 and 𝑗 ← 𝑖) we test for SHAP heterogeneity across states conditional 
on the set of conditioning nodes. When 𝑝 > 𝛼, we fail to reject the null hypothesis of conditional 
invariance across states and remove the corresponding edge from the undirected difference graph. 
When 𝑝 < 𝛼, we reject the null hypothesis of conditional invariance, and we include the edge. This 
process is repeated across all conditioning sets up to a specified maximum size 𝑟max. The remaining 
edges after this pruning step make up the edge difference skeleton used in the subsequent direction-
orientation step for the leftover edges. 

This SHAP-based invariance testing allows for nonlinear, model-flexible detection of 
asymmetric changes in feature relationships, extending the regression-based conditional 
independence tests to deep neural network models with a more structurally sound framework.  
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2.3.  Edge orientation via invariance testing 

In step 3, we orient edges obtained in step 2 (the pruned edge difference skeleton) to end up with a 
directed graph that captures differences in functional dependencies across the two states. We assume 
that for any node 𝑗, if the conditional variance of 𝑋/ given a set of likely parents 𝑆 is invariant across 
states, then 𝑆 represents a valid set of parents for 𝑗. This principle is rooted in the theory that the 
functional form of the conditional distribution 𝑃]𝑋/ ∣∣ 𝑋4 _ should remain stable under invariance26. 

For each node 𝑗 in the graph, we test candidate parent sets 𝑆 ⊆ 𝒞{𝑗} of size 𝑘 = 1, where 𝒞 is 
the set of conditioning nodes identified from the pruned edge difference skeleton from algorithm 2. 
We train DNNs to regress 𝑋/ on 𝑋4 separately in each state using a two-layer multilayer perceptron 
(MLP). The residual variance is estimated as: 

𝜎̀/∣4' (()≔Var d𝑋/
(() − 𝑓/

(()e𝑋4
(()fg, 

where 𝑓/
(() denotes the fitted DNN regressor in state 𝑘 ∈ {1,2}, and 𝜎̀' is computed on the training 

data. To assess whether the conditional variance differs significantly between states, we compute a 
two-sided test statistic based on the ratio of residual variances: 
 

𝑇/∣4 ≔
𝜎̀/∣4' (")

𝜎̀/∣4' ('), 

 
with a 𝑝 -value computed using the noncentral 𝐹 -distribution with degrees of freedom 
(𝑛" − |𝑆|, 𝑛' − |𝑆|): 

𝑝 = 2 ⋅ min e𝐹cdf]𝑇/∣4_, 1 − 𝐹cdf]𝑇/∣4_f. 
 

If the 𝑝-value exceeds a specified threshold 𝛼, we fail to reject the null hypothesis and conclude 
that the conditional variance is invariant, therefore accepting 𝑆 as the parent set for 𝑗. The directed 
edges 𝑖 → 	𝑗 for all 𝑖 ∈ 𝑆 are added to the graph. We perform additional cycle and contradiction 
checks using transitive closure on the directed graph to prevent invalid orientations. 

For any edges that remain unoriented after this test, we apply graph traversal rules to resolve 
directionality wherever a consistent path structure allows. For example, for any set of nodes in which 
𝑖 → 𝑛𝑜𝑑𝑒" →	𝑛𝑜𝑑𝑒5 → 𝑗, we orient 𝑖 → 𝑗. This rationale is formalized by Meek and reviewed by 
Colombo et al27,28. The final output is a directed adjacency matrix, a log of all the orientation 
decisions, and the set of edges that could not be oriented by algorithm 3’s invariance testing.   

This DNN-based residual variance orientation strategy expands on the original DCI steps 
defined for regression-based models and leverages DL via a DNN framework to capture potentially 
nonlinear predictive structure, and tests whether this structure is preserved across states; this allows  
for stronger performance of causal inference in a model-independent way22. Our model eliminates 
the assumption of linear-Gaussian data by utilizing DNN-based predictions for variable 
dependencies.  
 For results mentioned in this paper, DeepDiff-SHAP was initialized with the following 
parameters: 𝛼67 = 0.005, 𝛼8(9:9;<$ = 0.3, 𝛼<=.9$; = 0.001 corresponding to the threshold levels 
for each of the three steps of the algorithm. Conditioning set size was set to 1 (maximum set size is 
2, range from 0 to 2; a higher conditioning set size leads to sparser causal network graphs).  
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2.4.  Computational feasibility of conditional-based SHAP 

While standard KernelSHAP is known to suffer from high computational cost, it is important to note 
that conditional SHAP can reduce computational cost significantly. In the cost calculation, 
computational expense in KernelSHAP scales as 2(&) model evaluations, where 𝑝 is the number of 
features. On the other hand, instead of evaluating all subsets of non-target features, conditional 
SHAP computes the contribution of a predictor 𝑗	given a limited conditioning set 𝑆, integrating over 
the distribution of the remaining features via 𝑝(𝑋4∖{/} ∣ 𝑋4). As a result, the model evaluation space 
collapses from size 2&to 2∣4∣ (the subsets of {𝑗} ∪ 𝑆). Since our algorithm restricts ∣ 𝑆 ∣≤ 𝑟max, we 
can significantly reduce the number of model evaluations. Reusing a shared conditional background 
distribution across all test instances further reduces per-sample computational load. 

3. Results 

3.1.  DeepDiff-SHAP reveals nonlinear subgroup-specific causal structures in diabetes 
populations  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To investigate changes in causal relationships associated with chronic disease, we ran the 
regression-based DCI and DL-based DeepDiff-SHAP on the 2014 Centers for Disease Control and 
Prevention (CDC) Diabetes Health Indicators Dataset29. This dataset includes health status, 
behavioral, and access-to-care survey data for 253,680 individuals, among whom 39,977 were  
diagnosed as diabetic or prediabetic and 213,703 were not diagnosed with diabetes. Using the 
regression-based module of DeepDiff-SHAP, which follows the original DCI framework, we 
detected 68 feature pairs with differential associations between the diabetic and non-diabetic groups.  
Many of these association changes involved well-known demographic confounders such as age and 
sex, which influence a wide range of lifestyle and health indicators. For instance, age was 
differentially associated with features like general health (labeled “GenHlth”), stroke, smoking 
status (labeled “Smoker”), and access to health care (labeled “AnyHealthcare”), while sex was 

 
Figure 2. DCI graph on the diabetes data as identified by (A) the regression-based and 
(B) deep-learning-based DeepDiff-SHAP. Gray lines represent the association changes 
that are not attributed as differential causal relationship and red lines represent the 
differential causal relationships.   
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associated with differences in income, smoking status, and BMI (Fig. 2A). 12 of the 68 differential 
associations (17.64%) were attributed to underlying causal relationship changes by the regression-
based model. Notably, among participants categorized as diabetic or prediabetic, worse general 
health exerted a stronger causal effect on obtaining a cholesterol check within 5 years (labeled 
“CholCheck”), and, in turn, the check had a causal link with individuals who had high-cholesterol 
(labeled “HighChol”) and high-blood pressure (HighBP); these relationships were not observed in 
the non-diabetic patient group. However, only 2 (16.66%) of the 12 findings involved age or sex as 
causal variables, despite their central role in shaping health outcomes. While it is clinically plausible 
that age impacts general health status differently in people with and without diabetes, this causal 
difference was not detected by the regression model. In contrast, the deep learning module of 
DeepDiff-SHAP (Fig. 2B) identified this expected causal difference30 from age to general health, 
as well as a differential causal effect of age on high cholesterol. Similarly, while the regression-
based model did not attribute any of the sex-related association changes, such as those from sex to 
heart disease or heart attack (labeled “HeartDiseaseAttack”), smoking status, and BMI, to changes 
in causal relationships, the DL-based approach successfully identified all these as differential causal 
effects between the diabetic/pre-diabetic and non-diabetic groups.  

We note the importance of these particular causal relationships in the DeepDiff-SHAP network 
graph, age to high cholesterol and sex to coronary heart disease or myocardial infarction, both which 
have been previously mentioned in the context of type 2 diabetes being associated with women 
having a greater risk of cardiovascular disease, as well as studies implicating earlier cardiovascular 
disease events in women with T2D compared to men31-33. These findings suggest that deep learning-
based causal inference can uncover subtle and nonlinear changes in causal structure that may be 
missed by linear models. Notably, the regression-based DCI model identified some relationships 
that appear potentially misleading. As an example, regression-based DCI attributed a directional 
causal difference in the relationship from stroke to difficulty walking, which is more plausibly 
explained in the reverse direction or mediated by baseline functional impairments in diabetic 
individuals. Altogether, these results both highlight the limitations of traditional regression-based 
causal inference in detecting meaningful shifts in causal mechanisms between disease 
subpopulations as well as showcase how our deep learning framework enables more nuanced 
detection of differential causal structures, supporting its utility in understanding the biological and 
behavioral heterogeneity of chronic diseases such as diabetes. 
 
3.2.  Uncovering comorbidity-specific mechanisms in sepsis through causal inference 

To investigate how chronic comorbidities modulate causal relationships in sepsis, we applied 
DeepDiff-SHAP (Fig. 1B) to a subset of the UK Biobank patient database comprising 3,181 
individuals diagnosed with sepsis, stratified by hypertension status (hypertension: n = 2,669; no 
hypertension: n = 512). Sepsis remains a leading cause of morbidity and mortality in adults and 
children, yet its clinical progression is strongly influenced by pre-existing conditions such as 
hypertension, a factor often overlooked in risk modeling34. We identified sepsis cases using ICD-10 
codes (e.g., A40, A41, B37.7, O85), capturing a range of septicemia and related conditions. From 
the UK Biobank, we selected 42 variables spanning domains of cardiometabolic health, renal and 
liver function, inflammation, hormones, blood pressure, and pulmonary status. Using DeepDiff-
SHAP’s regression-based module, we identified 18 associations that differed between hypertensive 
and non-hypertensive sepsis patients, of which 8 (44.44%) were attributed to shifts in causal 
relationships (Fig. 3A). Notably, these included altered causal links including from urate to SHBG  
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and apolipoprotein B, total bilirubin to triglycerides, calcium to total protein, apolipoprotein A1 to 
systolic blood pressure, and IGF-1 to age at hypertension diagnosis, suggesting distinct 
physiological pathways influenced by vascular stress. Importantly, the deep learning component of 
DeepDiff-SHAP uncovered an additional causal shift from alkaline phosphatase to total cholesterol 
that was not detectable via the regression-based model (Fig. 3B), highlighting the added value of 
incorporating nonlinear modeling. 

Together, these findings demonstrate that DeepDiff-SHAP enables a comprehensive discovery 
of subgroup-specific causal mechanisms in sepsis by building on regression-driven DCI with a deep 
learning framework.  
 
3.3.  Benchmarking DeepDiff-SHAP 

3.3.1. Benchmarking DeepDiff-SHAP against regression-based DCI: enhanced sensitivity to 
nonlinear causal differences 
  
To benchmark performance, we compared DeepDiff-SHAP against DCI, the only existing 
differential causal inference method currently available. Importantly, the regression-based 
component of DeepDiff-SHAP is mathematically equivalent to this original DCI method, as both 
frameworks follow the same three-step procedure: identifying structural differences, testing 
conditional invariance, and estimating directionality based on residual variance. Therefore, any 
observed differences in results between DeepDiff-SHAP's deep learning (DL) module and the 
regression-based DCI can be attributed to the modeling framework itself, rather than the procedural 
design. To assess relative sensitivity to causal structure changes, we compared the number of 
association differences that were ultimately attributed to changes in causal strength (i.e., differential 
causal degrees). Since the comparison holds the inference pipeline constant while varying only the 
functional form (linear vs. nonlinear approach), this metric offers a controlled and clear evaluation 
of how effectively each approach detects meaningful causal differences. Between the diabetes (pre-

 
Figure 3. Differential causal graphs on UK Biobank sepsis data as 
identified by (A) the regression-based and (B) deep-learning-based 
DeepDiff-SHAP. Gray lines represent the association changes that 
are not attributed as differential causal relationship and red lines 

represent the differential causal relationships.   
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diabetic and diabetic diagnosis) and healthy population groups in the CDC Diabetes dataset, the 
original DCI method identified 68 association changes, but only 12 (17.6%) were attributed to 
differences in causal degree. In contrast, DeepDiff-SHAP detected 19 association changes, with 9 
(47.3%) resolved as true causal degree differences, demonstrating a significantly higher sensitivity 
in uncovering meaningful causal changes (P-value = 0.02). A similar pattern emerged in the sepsis 
dataset: DeepDiff-SHAP resolved 1 causal degree difference out of 1 association change, whereas 
the original DCI resolved 8 out of 18 association changes (P-value = 0.2). Although the weaker 
significance in the sepsis dataset may reflect the presence of only a single nonlinear association 
difference, these findings nonetheless underscore the improved sensitivity of DeepDiff-SHAP, 
particularly for detecting complex, nonlinear causal relationships. 
 
3.3.2.  Benchmarking DeepDiff-SHAP against CausalMGM: comparing objectives and outputs with 
an existing causal inference method 
 

 
 
Figure 4. Differential causal graphs on CDC Diabetes data as identified by CausalMGM. (A) non-
diabetic group (B) diabetic and prediabetic group.  
 

We benchmarked DeepDiff-SHAP against CausalMGM6 by running CausalMGM separately on 
the diabetic/prediabetic and non-diabetic subgroups (Fig. 4). CausalMGM learns which features are 
associated via regression and then attempts to assign a causal direction to those associations using 
the Peter-Clark (PC) algorithm35. Importantly, PC does not determine causal directions when the 
data does not have enough empirical evidence to do so. In our CDC Diabetes dataset, neither 
subgroup produced any oriented edges, suggesting that PC as part of CausalMGM has limited power 
to infer causal directions in this context. By extension, it would be even more difficult to compare 
causal differences between the two groups using CausalMGM. Despite the absence of oriented 
edges, CausalMGM did recover several undirected associations. Many were shared across groups 
and likely reflect background co-variation rather than diabetes-specific biology (e.g., high blood 
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pressure and high cholesterol, labeled “HighBP” and HighChol”; history of stroke and lifetime 
cigarette consumption, labeled “Stroke” and “Smoker”; how many days in the last 30 days were an 
individual’s physical and mental health considered “not good”, respectively labeled “PhysHealth” 
and “MentHlth”). CausalMGM also reported group-specific patterns; in the diabetic and prediabetic 
subgroup, associations centered on having any kind of healthcare, labeled “AnyHealthcare”, with 
links to CholCheck, NoDocbcCost (doctor visit skipped due to high cost), and vegetable 
consumption once or more per day, labeled “Veggies”, whereas in the non-diabetes subgroup, 
associations primarily involved general health condition, labeled “GenHlth” (e.g., connections to 
CholCheck, Income, PhysHlth). These findings are suggestive but remain undirected under 
CausalMGM. DeepDiff-SHAP advances this framework in two ways. First, DeepDiff-SHAP could 
determine causal directions on two diabetes-specific edges that CausalMGM only flagged as 
undirected: CholCheck to Age and CholCheck to AnyHealthcare. The CholCheck to Age direction 
is not causally plausible (a test cannot cause age) and likely reflects latent confounding or reverse 
causation. However, CholCheck to AnyHealthcare is consistent with a plausible behavioral pathway 
(i.e. lipid screening may lead to more health-care engagement). In both cases, DeepDiff-SHAP 
provides specified causal directions that can serve as hypotheses for relevant further investigation 
and work. Additionally, DeepDiff-SHAP determined the causal direction of nonlinear associations, 
some of which are known to be associated with diabetes31,36. Altogether, these results (1) validate 
several DeepDiff-SHAP findings against an established graphical-model baseline, (2) demonstrate 
greater power to orient effects where CausalMGM remains agnostic, and (3) show enhanced 
interpretability through subgroup-specific direction estimates and detection of nonlinear structure 
relevant to diabetes biology. 

 
4. Discussion  

We introduce DeepDiff-SHAP as a method that builds on regression-based DCI with a deep 
learning-based differential causal inference framework (Fig. 1B). Our method’s modular design, 
split into three steps with flexible parameter initialization settings, allows researchers to 
systematically evaluate subgroup-specific differences in feature importance and directional 
relationships, creating a highly customizable approach to evaluating causal data structure. 
Additionally, the results observed from our comparative analysis across two unique patient datasets, 
the CDC Diabetes Health Indicators Dataset and a UK Biobank cohort of sepsis patients stratified 
by hypertension, demonstrate DeepDiff-SHAP’s ability to identify biologically meaningful and 
study-supported causal relationships that regression-only DCI may overlook.   
 DeepDiff-SHAP’s performance in the analysis of the CDC Diabetes dataset offers novel insights 
into the differential roles of classical foundational variables such as age and sex. These variables act 
as upstream regulators, often influencing many downstream pathways at once. They can moderate, 
mediate, or interact with other risks, rather than affecting only a single chain of events. DeepDiff-
SHAP models these nonlinear, interactive, and layered relationships through a unified DL-based 
framework. This framework helps uncover how different factors can influence multiple pathways 
at once, highlighting regulatory patterns that may vary across subgroups. By capturing these effects 
without having to specify every possible mediator or interaction in advance, it offers a practical way 
to study the complexity of chronic diseases like diabetes. Diabetes is a persistent metabolic disease 
that compounds over time; individuals with diabetes are more likely to experience a steeper 
deterioration in general health as they age, compared to individuals without diabetes. Additionally, 
aging itself brings about general decline in metabolic efficiency, immune function, and tissue repair, 
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all of which can be exacerbated by the presence of diabetes. By leveraging DL’s multilayer 
modeling capacities, we reveal a synergistic effect between age and diabetes, where the impact of 
aging on general health is causally differential. In contrast, individuals without diabetes may 
experience a more gradual, less pronounced decline in general health with aging. Similarly, 
regarding the unique causal difference result between sepsis patients with and without hypertension, 
several studies have made the link between serum alkaline phosphatase (ALP) and coronary artery 
disease, with hypertension recognized as a well-known contributor to the development of coronary 
artery disease37,38. Additional studies in humans and mice have linked ALP with elevated cholesterol 
levels, particularly in those with dyslipidemia, and observe that high ALP in dyslipidemia patients 
leads to hypertension and coronary heart disease39,40.  
 An important design consideration in DCI is deciding which variable defines the groups being 
compared. For the CDC diabetes dataset analysis, we looked at differences between individuals with 
and without diabetes, using diabetes status as the grouping variable. In this construct, the key 
question becomes whether the relationship between an exposure (X) and an outcome (Y) differs by 
diabetes status. If, instead, the question of interest centered around sex-specific differences, then the 
grouping variable would have to be defined as sex. Misspecification of the grouping variable with 
the intended modifier can lead to estimating a completely different causal relationship than 
originally intended and, in some cases, introduce collider bias if the outcome itself is used to define 
groups. For this reason, we recommend that the grouping variable of interest be specified a priori 
and that steps be taken to ensure balance across groups, such as through reweighting or matching. 
 In practice, DeepDiff-SHAP is designed to produce two outputs that are functionally relevant to 
clinical settings. First, it produces subgroup-specific causal networks that diagram how exposures 
influence outcomes differently across a chosen modifier. Second, it translates the identified 
subgroup-level effects into targeted risk predictions using SHAP-based effect size estimation. By 
structuring the analysis around the modifier of interest, but still reinforcing the defined disease as 
the outcome, this approach avoids common pitfalls like collider bias and ensures that causal results 
are in line with the question of interest. In conjunction, DeepDiff-SHAP’s outputs support clearer 
communication of subgroup-specific risks and help prioritize the most important risk factors for 
patient care.  
  Despite the promise of DeepDiff-SHAP in identifying subgroup-specific differences in causal 
structure, our current framework has some limitations. First, like other computational approaches 
to causal discovery, DeepDiff-SHAP faces fundamental limits, particularly when reverse causality 
or feedback loops are present. Most algorithms based on directed acyclic graphs (DAGs) assume 
acyclicity, faithfulness, and often causal sufficiency. These assumptions prevent them from 
representing feedback processes and make it challenging to orient causal directions when multiple 
graphs are observationally indistinguishable. In practice, claiming and assigning directionality to 
edges typically warrants additional sources of information, such as interventions, time ordering, or 
invariance across environments. However, our results remain vulnerable to hidden confounding, 
measurement error, or selection bias. Established methods such as the PC35 algorithm, the Fast 
Causal Inference (FCI)41 algorithm, and the Greedy Equivalence Search (GES)42,43 algorithm 
formalize some of this, but often lose rigor with higher dimensional data structures such as -omics 
data. Differential causal inference (DCI) methods that compare two conditions inherit these same 
identification constraints from their base graphs and can misattribute distributional shifts as causal 
edge differences when assumptions fail. Thus, reverse causality and hidden common causes 
remain crucial obstacles to solve concerning causal discovery from observational data. Second, the 
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computational efficiency of the SHAP-based conditional invariance testing step remains a major 
challenge. Specifically, estimating conditional SHAP values for each candidate variable pair 
across multiple conditioning subsets is computationally expensive, particularly for large-scale 
datasets with many variables and complex feature interactions. Third, our current approach uses an 
ad hoc restriction on the conditioning set to reduce complexity: we limit candidate conditioning 
variables to those involved in edges identified in the difference undirected graph (Δ-UG). While 
this helps avoid an exponential increase in the number of SHAP computations, it may miss subtler 
or higher-order conditional dependencies. This limitation can inherently bias results towards more 
prominent signal changes while underestimating other nuanced shifts in conditional structure. To 
address this, future iterations of DeepDiff-SHAP could benefit from dimensionality reduction 
techniques such as variable screening, supervised embedding, or attention-based feature selection 
before applying conditional SHAP. Finally, we will also investigate adaptive strategies for 
selecting conditioning sets that leverage measures such as mutual information or latent feature 
representations. The goal is to balance out computational feasibility and the capacity to capture 
potentially hidden dependencies. Methods such as autoencoder-based dimensionality reduction, 
graph neural network–derived embeddings, or Bayesian network–informed priors may help us 
develop principled ways to limit the conditioning set space while still retaining the most relevant 
differential dependency structures in data sources of interest.  

As medicine increasingly moves toward personalized interventions, understanding how risk 
factors or biological pathways operate differently across patient subpopulations, such as those with 
or without comorbidities like diabetes or hypertension, is essential to avoid generalized solutions 
that can be ineffective or even harmful. Traditional regression-based methods average over 
heterogeneity, preventing subtle but important biological differences from being uncovered. Our 
approach, which integrates the theoretical rigor of differential causal inference with the interpretable 
power of deep learning and SHAP, allows researchers to discover changes in causal structure that 
vary with disease state, comorbidity, or population subgroup. These insights can directly inform the 
design of more precise diagnostic criteria, risk prediction tools, and treatment strategies, ultimately 
improving clinical outcomes by ensuring the appropriate interventions are delivered to the 
appropriate patients. 
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6. Code and Data Availability 

DeepDiff-SHAP code and examples can be accessed at: https://github.com/ads303/DeepDiff-
SHAP. UK Biobank data is not permitted for public dispensing. CDC Diabetes survey data can be 
accessed at: https://archive.ics.uci.edu/dataset/891/ for immediate download. 
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