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We propose a novel strategy for provenance tracing in random walk-based network diffusion
algorithms, a problem that has been surprisingly overlooked in spite of the widespread use
of diffusion algorithms in biological applications. Our path-based approach enables ranking
paths by the magnitude of their contribution to each node’s score, offering insight into how
information propagates through a network. Building on this capability, we introduce two
quantitative measures: (i) path-based effective diffusion, which evaluates how well a diffusion
algorithm leverages the full topology of a network, and (ii) diffusion betweenness, which
quantifies a node’s importance in propagating scores. We applied our framework to SARS-
CoV-2 protein interactors and human PPI networks. Provenance tracing of the Regularized
Laplacian and Random Walk with Restart algorithms revealed that a substantial amount of
a node’s score is contributed via multi-edge paths, demonstrating that diffusion algorithms
exploit the non-local structure of the network. Analysis of diffusion betweenness identified
proteins playing a critical role in score propagation; proteins with high diffusion betweenness
are enriched with essential human genes and interactors of other viruses, supporting the
biological interpretability of the metric. Finally, in a signaling network composed of causal
interactions between human proteins, the top contributing paths showed strong overlap with
COVID-19-related pathways. These results suggest that our path-based framework offers
valuable insight into diffusion algorithms and can serve as a powerful tool for interpreting
diffusion scores in a biologically meaningful context, complementing existing module- or
node-centric approaches in systems biology. The code is publicly available at https://
github.com/n-tasnina/provenance-tracing.git/under the GNU General Public License
v3.0.
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1. Introduction

Protein-protein interaction networks? have emerged as invaluable resources for studying the
complex workings of living cells.>* Within such a network, each node represents a protein,
while each edge corresponds to an interaction between two proteins, e.g., physical or genetic.
Diffusion algorithms are widely used to analyze such networks, enabling a variety of applica-
tions such as protein function prediction,®% disease module discovery,” disease characteriza-
tion,®? and drug target prediction.'® In recent years, they have also driven momentum in n
silico drug repositioning!''2. The principle underlying these algorithms is that proteins with
similar functions tend to interact with each other.!** Typical network diffusion algorithms
assign specific scores or labels to a set of experimentally determined nodes or seed nodes, e.g.,
proteins known to perform a particular function, and iteratively propagate this information
through the network’s edges to nearby nodes. This process continues for a fixed number of
steps or until convergence. The final score of each node, which reflects its proximity to seed
nodes, can be used as a surrogate for the node’s association with the function of interest.

a)
Other human proteins

Human proteins
that interact with
SARS-CoV-2
proteins

Fig. 1. TIllustration of provenance tracing. a) A pictorial depiction of diffusion of score in a
human protein-protein interaction network where nodes are the proteins and edges represent any
interaction between proteins. Here, circular nodes depict all human proteins except those with ex-
perimental evidence of interaction with SARS-CoV-2 proteins. The SARS-CoV-2 protein interactors
(seed nodes) are represented by square-shaped nodes. A network diffusion algorithm propagates
scores from the seed nodes to all other human proteins in the network. The green hue of the nodes
corresponds to the computed likelihood (score) of interaction with SARS-CoV-2, with a higher inten-
sity indicating a greater likelihood. b) Node based algorithms of provenance tracing allow computing
the contribution from each of the five seed nodes to the final score of the node v. ¢) Path-based
algorithms of provenance tracing compute contributions coming along individual paths from seed
nodes to other nodes, e.g., u to node v.

The last 10 years of research in AI has emphasized the importance of interpretability,
explainability, and transparency of predictions independent of the specific prediction method-
ology used.' This is particularly important in scientific or medical application of network
diffusion. In this context, “provenance” is defined as a trace from a predicted activity associ-
ated with a node (e.g., protein) to the factual (experimentally determined) evidence associated
with seed nodes that were most informative in computing the predicted score.'® Provenance
tracing is the process of determining the origin of a predicted score back to the seed nodes.
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While network diffusion algorithms have been deployed for more than 20 years, the question
of provenance tracing is understudied.'® Law et al.!” explored a node-oriented method for
provenance tracing in the important context of random walk based diffusion algorithms. For
every node v, Law et al. computed how much each seed node contributed to the score of v. They
defined “node-based effective diffusion” (NED) as the fraction of a node’s score contributed
by seed nodes that are not direct neighbors. Using SARS-CoV-2 interactors of humans as seed
nodes,'® they found that for each top-ranking prediction (i.e., a node with a high score), the
largest contribution came from a seed node that was a direct neighbor. They also varied the
algorithm’s parameters to allow the random walker to travel longer paths in the network, with
the expectation that this change would diffuse high scores beyond the direct neighborhood
of the seed nodes. However, the outcome of these experiments only confirmed their earlier
findings. This observation prompted us to delve deeper into the widely accepted belief that
diffusion algorithms utilize the non-local neighborhood of the network.'4

We developed a novel path-based strategy for provenance tracing in random walk-based
algorithms by leveraging our ability to compute the magnitude of the contribution made
to a node’s score by each path starting at a seed node and ending at the corresponding
node (Section [2.3)). In this work, we focused on two well-known network diffusion algorithms:
Regularized Laplacian (RL)'Y and Random Walk with Restart (RWR).?° In these algorithms,
the predicted score s, of a node v is the linear sum of the ‘contribution” made by each seed
node to s, (Section . In our path-based approach, we show for every u—v path (where u is
a seed node and v is a node), how to compute its contribution to s, (Section [2.3). We further
proposed two new measures: 1) path-based effective diffusion (PED) (Section and 2)
diffusion betweenness (Section [2.3.3). PED measures the fraction of a node’s score contributed
by multi-edge paths. Diffusion betweenness measures a node’s importance in score propagation
by quantifying the total contribution transmitted along paths passing through that node.

We implemented RL and RWR on human protein-protein interaction (PPI)!? networks
with SARS-CoV-2 human protein interactors as seed nodes.'® Analysis of PED demonstrated
that a substantial amount of a node’s score was contributed via paths with more than one
edge. Moreover, the vast majority of the nodes in the network were involved in paths carrying
non-zero contributions to the top-scoring nodes. We concluded that diffusion algorithms do
exploit the non-local structure of a network. Our analysis of diffusion betweenness further
revealed the biological relevance of the proteins playing a critical role in score propagation
across the network, as they were enriched with essential human genes and interactors of other
viruses. Finally, as a case study, we applied our path-based approach to a signaling network
containing causal interactions between human proteins.2! We observed that the edges in the
paths that contributed most to the scores of top-scoring nodes had a high degree of overlap
with COVID-19-related pathways. Our new path-based analysis may produce novel insights
in systems biology.

2. Methods

In this section, we provided a detailed description of two network diffusion algorithms: Regu-
larized Laplacian (RL) and Random Walk with Restart (RWR). Next, we outlined both the
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node-based and path-based approaches to provenance tracing. Finally, we defined the diffusion
betweenness score and presented the formula used for its computation.

2.1. Network diffusion algorithms

Let G = (V,E,w) be a weighted network where each node v € V is a human protein, and
each edge (u,v) € E represents either an interaction between proteins v and v when G is an
undirected PPI network or causal effect of u on v when G is a directed signaling network, and
wyy specifies the weight of edge (u,v). Given G and a set P C V of seed nodes, e.g., human
proteins that interact with SARS-CoV-2 proteins, we seek to compute a score s, for each node
v indicating our confidence that it either physically interacts with or is functionally linked to
the virus. In this avenue, we employ RL and RWR algorithm on the undirected PPI networks
and RWR on the directed signaling network.

Regularized Laplacian (RL).

(1) Define a label vector i over the nodes in G where y, = 1 if node v € P and y, = 0,
otherwise.
(2) Define W € R™*" as the adjacency matrix of G with edge weights, i.e., W,,, the entry in
row v and column u of W equals wy,, if (u,v) is an edge in G and 0, otherwise.
(3) Define D as a diagonal matrix with Dy, = d, = >, Wy Here, D contains the degree of
every node u in G.
(4) Compute W = D~'/2WD~/2 which denotes the normalized network.
(5) Compute the Laplacian of G as L = D — W, where we define D to be a diagonal matrix
with Dy, = > Wo.
(6) Given a parameter a > 0 and the goal to minimize the loss function:
D su—wu)ta D> Woulsu —s0)° (1)
ucV (u,v)eE

where s, is the computed score of node v, we obtain the score vector from the unique,
global optimization of Equation as follows:

=(I+al)'y (2)
Here, L is symmetric and positive semidefinite. Hence, (I 4+ L) is symmetric, positive definite,
and invertible.
Random walk with restart (RWR).

(1) Define g, W, D as defined in RL.

(2) Compute the normalized network matrix W = WD,

(3) Given a parameter 0 < a < 1, where « is the restart probability, and the goal to minimize
the loss function:

L DR o Ww< _Z)2 (3)

ueV (u,v)eE
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we obtain the score vector from the unique, global optimization of Equation as follows:

§= (I (1-a)W) g (4)

Here, W is column-stochastic (every column sums to 1 and all entries are nonnegative). By

the Perron-Frobenius theorem, every eigenvalue for (I — (1 — a)W) is strictly positive, making
(I — (1 — a)W) invertible.

We chose a value of a in RL (and RWR) such that it balances out the two terms in the
quadratic loss function in Equation (1)) (and Equation (3)). We did a binary search to find
out the exact value for which the two loss terms are equal. For RL, « ranged between 0.94

and 1.33 and for RWR, a was 0.49 across all networks.

2.2. Node-based provenance tracing

For RL, let K denote the matrix (I +aﬂ)*1. According to Equation , sy 18 the sum of K, over
all nodes u € P (i.e., seed nodes); s, = > wep Kou- Hence, K, denotes the contribution of seed
node u to node v’s score s,. For RWR, let K denote the matrix a/|P|(I — (1 —a)W)~! (Equa-

tion ()

Node-based effective diffusion (NED). Law et al.!” summarized node-based provenance
tracing with a score, namely, node-based effective diffusion (NED) where NED(v) is defined as
the fraction of v’s score contributed from seed nodes that are not direct neighbors. Following
is the corresponding formula:

ZuEPﬂN(v) Kou

Sv

NED(v) =1 - , N(v) is the set of neighbors of node v.

2.3. Path-based provenance tracing

In this section, we show how to express the score s, of node v as the sum of weighted ‘contri-
butions’ along paths that start at some seed node and end at v. First, we describe a matrix
M that captures the contribution along an edge. Then we extend the formula to compute the
contribution along longer paths.

M for RL. We consider diffusion by the RL algorithm as a fluid flow model where no node
contains any fluid initially and then a hypothetical fluid is pumped into every seed node at
a constant rate of 1.22 The fluid diffuses from one node to another at a first-order rate of
aD and fluid leaves the network at a first-order rate of 1. Mj; is the rate of incoming flow at
node j from node ¢ via edge (7, 7). Applying the fluid flow model we formulated M as follows:
M =aW(I + aﬁ)_l

M for RWR. For RWR, Mj; denotes the probability that a random walker moves from
node i to node j in a single time step. Hence, we formulated M as follows: M = (1 — a)W
Having established how to compute the contribution along a single edge using M, we now

extend this to longer paths involving multiple edges. Given a v and any node v in V|, for a

759



Pacific Symposium on Biocomputing 2026

u—v path in G, the contribution made by this path to s, is the product of the edge weights
along the path, where the edge weights are from M. For instance, via a path u -t -z — v
containing three edges: (u,t), (¢,z), (x,v), u’s contribution to s, is My, M, M,,. More generally,
M, is the contribution from a u to a node v via all paths of length n.

2.3.1. Path-based effective diffusion

We define path-based effective diffusion (PED) of a node v as the fraction of its score, s,
contributed by paths that start at some seed node, end at v, and contain more than one edge.
We formulate PED(v) as follows:

PED(v)=1- c(v) D uep Mvu7

Sv

where 3 _p M,, denotes the incoming contribution to s, along paths with one edge from any
seed node and ¢(v) denotes a weight. For RL, ¢(v) = (1 + aD,,)~" while for RWR, ¢(v) = Gl is
a constant. Note that M,, = 0 if u is not a neighbor of v.

2.3.2. Find top m contributing paths

The path-based provenance tracing, more precisely the derived matrix M provided us with
the ability to compute contribution coming along any path starting at a seed node to any
node in the network. Though there can be infinite paths between a seed node and any other
node (considering paths with cycles in them), the most interesting paths are the ones that
carry substantial contributions to nodes’ scores. In this avenue, from all the paths starting at
any seed node carrying contribution to any of the top & (in this experiment k = |P|) predicted
nodes, we find m most contributing paths.

Suppose, M’ is the weighted adjacency matrix of a graph where M}, = —log;o(M;;). In
this graph, the m-shortest paths from a seed node u to a node v are the most contributing
m paths from u to s,. To compute the m-shortest paths between any seed node and the top-
k predicted proteins (based on their scores), we augmented the network with two dummy
nodes: (1) a super-source, connected to all seed nodes, and (2) a super-sink, connected from
the top-k predicted nodes. We then computed the m-shortest paths from the super-source to
the super-sink using Eppstein’s k-shortest paths algorithm that considers looped paths.

2.3.3. Computing diffusion betweenness

The diffusion betweenness score of a node aims to capture the total amount of score propa-
gating along paths on which the corresponding node lies. For a node ¢, we define its diffusion
betweenness score b(t) as the sum of the contribution made to s, along all w,;, paths in which
u ranges over all seed nodes, t is an internal node, and v ranges over all nodes in V.

In practice, while computing diffusion betweenness, we use a heuristic where we consider
only paths with at most four edges, since a negligible fraction of the score propagates via
paths with more edges.?>?* To formulate b(t), we introduce another matrix @ where Q,; is the
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contribution from any seed node to s, along all paths (length < 4) ending at v having ¢ as an
intermediate node. We formulate b(t) as follows: b(t) = > oy c(v)Qut

Computation of Q. We define X'™ where X!7* holds the contribution to s, along all paths
of length (I +m) with ¢ being the ith intermediate node. We compute Que = 314 m)<4 Xlm.

Computation of X!'™. Let us divide any 7, ¢, path into two segments: (1) from the seed
node to the intermediate node, i.e., u—t, and (2) from the intermediate node to the endpoint,
i.e., t—v. As the contribution along a path is only the product of the edge weights (from M)
along that path, the contribution of 7 to s, equals the product of: (1) contribution along u—t,
(2) contribution along t—v. We can extend this two-component-product concept to compute
X!m as follows:

Xoft = M. (M),

Here, (M%), is the sum of the contribution to s; along all u—t paths of length [ and M} is the
sum of the contribution to s, along all t—v paths of length m.

3. Datasets
3.1. Experimentally determined nodes

We considered 332 human proteins that interact with SARS-CoV-2'® as seed nodes. We in-
cluded the ACE2 receptor in this set.

3.2. Human protein-protein interaction networks

We considered three human protein-protein interaction (PPI) networks: STRING,! BioGRID-
Phy,? and BioGRID-Y2H.? In STRING, an edge may represent physical binding or indi-
rect functional interaction. While BioGRID-Y2H contains direct physical interactions only,
BioGRID-Phy can additionally contain interactions denoted by the co-existence of two pro-
teins in a stable complex. After mapping the proteins in a PPI network to their correspond-
ing UniProt IDs and considering only the largest connected component, STRING contained
16,315 nodes and 246,086 edges whereas BioGRID-Phy had 17,758 nodes and 723,772 edges,
and BioGRID-Y2H had 13,185 nodes and 94,427 edges.

3.3. Causal interaction network for human

We considered a directed signaling network from SIGNOR 3.0%! database that contains manu-
ally curated causal interactions between biological entities such as proteins, protein complexes,
and chemicals. The causal interaction denotes an up or down-regulation effect with a mecha-
nism such as binding, phosphorylation, and transcriptional activation associated with it. After
removing chemical and protein complexes and mapping the proteins to their corresponding
UniProt, we retained 4,853 nodes and 11,866 edges.
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3.4. SARS-CoV-2 hallmark pathways and COVID-19 causal network

We extracted causal interaction data organized in nine network modules or pathways, i.e., the
hallmark pathways, representing the impact of SARS-CoV-2 proteins on cellular functions?!
of humans. To address the lack of evidence regarding SARS-CoV-2, these hallmark pathways
contain manually annotated and validated causal interactions with SARS-CoV-2 as well as
SARS-CoV-1, Middle East Respiratory Syndrome (MERS) proteins, and the human host from
the literature.?> We also considered a single network combining these nine hallmark pathways,
i.e., COVID-19 causal network, available in SIGNOR 3.0.2!

3.5. Essential genes

We extracted the essential genes for humans from the Database of Essential Genes.?¢ It con-
tained 2,452 essential genes for humans from Liao et al.?” and Georgei et al.,?® where Georgei
et al. considered human orthologs of mouse essential genes as putative essential genes for hu-
mans. This database also contained human essential proteins from exome sequencing-based
experiments. We retained 4,807 essential genes after mapping them to their UniProt IDs.

3.6. Vaural interactors

We compiled a set of viral interactors, i.e., human proteins that physically interact with
viruses from three databases of host-pathogen interactions.?* 3! After mapping these human
proteins to their corresponding UniProt IDs and removing the SARS-CoV-2 interactors the
final dataset contained 7,808 proteins.

4. Results

In this section, first, we described how the path-based approach to provenance tracing con-
firmed that random walk based diffusion algorithms utilize the non-local network structure to
propagate scores from seed nodes (Section . Next, we demonstrated that nodes with high
diffusion betweenness scores are biologically significant (Section[4.2)). Finally, by extending our
analysis to directed networks, we showed that the paths with high contributions to top-scoring
nodes (Section often contain biologically relevant causal edges (Section .

For the first two experiments, using human interactors of SARS-CoV-2!® as seed nodes,
we ran both RL and RWR on three undirected human PPI networks, namely, STRING,!
BioGRID-Physical,? and BioGRID-Y2H.? STRING consists of edges representing physical
binding or indirect functional interaction. While BioGRID-Y2H contains only direct physi-
cal interactions, BioGRID-Phy also includes indirect interactions defined by the presence of
two proteins in a stable complex. For our final analysis, we ran RWR on directed network
SIGNOR?! that contains directed causal interaction between proteins in human.

4.1. Path-based provenance tracing confirms the ability of diffusion
algorithms to capture non-local network structure

We ran each diffusion algorithm to predict the score of each node in a network. We ranked the
nodes that were not seed nodes based on their scores. We computed the path-based effective
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diffusion (PED) and node-based effective diffusion (NED) scores for each of the top k proteins
in this ranked list, setting & to be the number of seed nodes in the network.
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Fig. 2. Path-based approach for provenance tracing. a) Comparison of node-based and path-
based effective diffusion. Effective diffusion score for top k predictions for three PPI networks:
STRING, BioGRID-Phy, BioGRID-Y2H. Here, k is equal to the number of seed nodes in the net-
work. b) Contribution along paths of different lengths. The z-axis shows the maximum allowed path
length (e.g., < 2, < 3), and the y-axis shows the fraction of the score contributed by paths whose
maximum length falls within that range.

We observed that for RL and RWR on all three PPI networks, a substantial amount of
a node’s score was contributed via paths with multiple edges (Figure ) For example, for
RL in the STRING network, we observed that the median PED was 0.2, i.e., paths of length
more than one contributed at least 20% of the score for at least half the nodes (Figure 2h). We
also noted that PED was significantly higher than NED (Figure [2h, p-values < 8.08 x 1071,
one-sided Mann Whitney U test) across all the algorithm-network pairs. Note that PED
considers any contribution from the seed nodes as long as it arises from paths of length > 1
(irrespective of whether the seed node is a direct neighbor or not), whereas NED disregards
any contributions from direct neighboring seed nodes. The larger values of PED in comparison
to NED scores highlight that diffusion from even a direct neighbor can and does traverse paths
of length > 1, leveraging the non-local neighborhood of the network. To further investigate the
algorithms’ ability to leverage the network’s topology, we computed the precise contribution
coming along paths of length < 2, < 3, and < 4. We observed that a substantial fraction of
the diffusion scores arose from paths with more than two edges (Figure 2b).

We computed the diffusion betweenness score for each node to evaluate whether the diffu-
sion algorithm is confined to interactions between seed nodes and top-scoring nodes or engages
other nodes in score propagation. We observed that 73% to 99% of the nodes are intermediate
nodes in paths carrying non-zero contributions to top-scoring k£ nodes with 17%—42% nodes
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lying on paths carrying at least 0.1% of the score of any top-scoring node.

In summary, node-based effective diffusion collapsed contributions from all paths between
two nodes into a single quantity, creating a misleading impression that network diffusion
algorithms are “local” in practice. In contrast, path-based effective diffusion in combination
with diffusion betweenness provided a better way to capture the diffusion algorithms’ ability
to exploit the non-local structure of a network.

4.2. Proteins with high diffusion betweenness are enriched with viral
interactors and essential genes

We sought to investigate the biological relevance of the nodes that are critical for score propa-
gation in diffusion algorithms, i.e., the nodes with high diffusion betweenness scores. Accord-
ingly, we analyzed the overlap between these nodes and two specific categories: known human
interactors of viral proteins and essential genes.

Overlap with viral interactors. Viruses from diverse families exploit shared molecular
mechanisms in their interactions with host cells throughout key stages of their life cycles.??
Hence, we investigated whether nodes with high diffusion betweenness are enriched in human
proteins interacting with other viruses. To this end, we computed the overlap between viral
interactors (Section and the k£ (k € {200, 400, 600, 800, 1,000, 2,000, 5,000, 10,000}) pro-
teins with the highest diffusion betweenness scores (excluding seed nodes and top predictions).
Using SARS-CoV-2 interactors as seed nodes, we observed statistically significant overlaps for
both RL and RWR across all values of £ in STRING and BioGRID networks (adjusted p-
value < 0.01, one-sided Fisher’s exact test with Benjamini-Hochberg correction for multiple
hypothesis testing, Figure |3p). For instance, in the STRING network, 76% and 69% of the
top 200 proteins (ranked by diffusion betweenness) were viral interactors for RL and RWR,
respectively, compared to only 38% across the entire network.

To test whether these findings depended on the specific choice of seed nodes, we repeated
the analysis with a set of random seed nodes of the same size as the set of SARS-CoV-2
interactors. We generated random seeds in two ways: (i) preserving the degree sequence of
the original seed nodes (i.e., SARS-CoV-2 interactors),'” and (ii) selecting nodes uniformly
at random from the entire network. In both cases, the overlap between viral interactors and
proteins with high diffusion betweenness remained statistically significant (adjusted p-value
< 0.01). We interpreted this result to suggest that viral interactors were important in mediating
diffusion even from randomly-selected seed nodes.

Overlap with essential genes. Essential genes govern the fundamental functions necessary
for cell survival.3® We hypothesized that essential genes critical for disseminating biological
information in a cell might also be crucial to network diffusion algorithms in propagating
scores. To test our hypothesis, we computed the overlap between the k (k € {200, 400, 600,
800, 1,000, 2,000, 5,000, 10,000}) proteins with the highest diffusion betweenness scores (ex-
cluding seed nodes and top predicted proteins) and essential human genes (Section . using
SARS-CoV-2 interactors as seed nodes, we observed statistically significant overlap (adjusted
p-value < 0.01, one-sided Fisher’s exact test with Benjamini-Hochberg correction for multiple
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Fig. 3. Overlap between proteins with high diffusion betweenness and the proteins of
interest (i.e., viral interactors and essential genes). Each column corresponds to a network
and each row corresponds to k, protein rank based on diffusion betweenness. a) Each cell in the
heatmap indicates the fraction of viral interactors in top-ranked k proteins. The row ‘all’ contains
the fraction of viral interactors among all nodes in the corresponding network. b) Each cell in the
heatmap indicates the fraction of essential genes in humans in the top-ranked k proteins. The
row ‘all’ contains the fraction of essential genes among all nodes in the corresponding network.

hypothesis testing, Figure ) for each algorithm-network pair. For instance, in the STRING
network, 45% and 37% of the top 200 proteins (ranked by diffusion betweenness) were essen-
tial genes for RL and RWR, respectively, compared to only 27% across the entire network.
Repeating this analysis with random seed sets yielded a similar pattern of significant overlaps
(adjusted p-value < 0.01), further highlighting the seed-node—agnostic importance of essential
genes in network diffusion.

4.3. Top contributing paths show significant overlap with COVID causal
network and hallmark SARS-CoV pathways

To demonstrate an application of our path-based approach in identifying biologically rele-
vant pathways, we extended our analysis to a directed signaling network containing causal
interactions between pairs of human proteins.?! We considered all the paths in this network
that started at a seed node and ended at any one of the top-k proteins (based on prediction
score). We applied Eppstein’s k-shortest paths algorithm to compute paths with the m highest
contributions in this set (Section [2.3.2).

For m = 1,000, we found a significantly high overlap (Fisher’s exact test p-value = 1.76 x
10~23) between the edges in the m most contributing paths and edges appearing in the COVID-
19 casual network® (Section . We concluded that the RWR algorithm propagates scores
from known SARS-CoV-2 interactors to other proteins in the network using causal interactions
that are known to be modulated by viral infection.
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Fig. 4. Top contributing paths assigned to hallmark SARS-CoV-2 pathways. Each block
here is for one SARS-CoV-2 causal pathway containing the top contributing paths assigned to it
where we assigned a path to the pathway with the most overlap. A green diamond denotes a seed
node (i.e., known SARS-CoV-2 interactors) and a blue triangle indicates protein appearing in top k
predictions. Yellow rectangles denote the rest of the proteins. A blue edge indicates an edge common
between a top contributing path and the corresponding SARS-CoV-2 pathway and a red edge denotes
otherwise. An edge with a triangular arrow and tee denote up-regulation and down-regulation effect,
respectively.

Next, we analyzed each of the top contributing paths separately. Among the m = 1,000
most contributing paths, we considered those with at least two edges and at most one edge
missing from the COVID-19 causal network. These criteria yielded 55 paths with two to
five edges. To discern the specific SARS-CoV-2 hallmark pathways?!?® in which the top-
contributing paths were involved, we assigned each path to the pathway with the most over-
lapping edges. We discovered that these paths appeared (either entirely or with one non-
overlapping edge) in seven hallmark pathways (Section , namely, apoptosis, attachment
and entry, stress granules, innate response to dsRNA, ER stress, MAPK-pathway, and fibrosis.

We further investigated the non-overlapping causal interactions. There were seven such
edges across all the paths assigned to the apoptosis pathway. The source nodes in all these
edges were experimentally determined SARS-CoV-2 interactors'® with evidence of a regu-
latory effect on apoptosis: NPTX1,* AATF 3> HMOX1,6 and GHITM.3" Additionally, the

non-overlapping causal interaction (ATE1, HSPA5) in the ER stress pathway is crucial to the

766



Pacific Symposium on Biocomputing 2026

human stress response. ATE] facilitates the degradation of damaged proteins through arginy-
lation,?® while HSPA prevents apoptosis by assisting in the proper folding of nascent proteins
and the refolding of misfolded protein under stress conditions.?® Another missing signaling
edge (G3BP1, DDX58) in the stress granule contains G3BP1, a known SARS-CoV-2 interac-
tor'® with evidence of involvement in the corresponding pathway.*® From these observations,
we concluded that non-overlapping interactions in top-contributing paths may result from
incomplete annotation of COVID-19 causal pathways. These interactions could potentially be
experimentally validated as being exploited by SARS-CoV-2 during viral infection.

5. Computational Setup and Runtime

We multiplied (dense) matrices using the matmul function in the NumPy package. We in-
verted matrices using SciPy’s 1linalg.inv function, which computes the exact inverse up to
floating-point precision. Both operations have a time complexity of O(n?). We conducted all
experiments on a server equipped with an Intel 13th Gen Core 19-13900K CPU (24 cores, 32
threads, base frequency 3.0 GHz, turbo frequency up to 5.8 GHz). We observed the highest
matrix multiplication runtime of 39 seconds and matrix inversion runtime of 24 seconds for
BioGRID-Phy, which has the largest number of nodes among the three networks.
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