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Coronary microvascular disease (CMVD) is an underdiagnosed but significant contributor to the
burden of ischemic heart disease, characterized by angina and myocardial infarction. The
development of risk prediction models such as polygenic risk scores (PRS) for CMVD has been
limited by a lack of large-scale genome-wide association studies (GWAS). However, there is
significant overlap between CMVD and enrollment criteria for coronary artery disease (CAD)
GWAS. In this study, we developed CMVD PRS models by selecting variants identified in a CMVD
GWAS and applying weights from an external CAD GWAS, using CMVD-associated loci as proxies
for the genetic risk. We integrated plasma proteomics, clinical measures from perfusion PET
imaging, and PRS to evaluate their contributions to CMVD risk prediction in comprehensive
machine and deep learning models. We then developed a novel unsupervised endotyping framework
for CMVD from perfusion PET-derived myocardial blood flow data, revealing distinct patient
subgroups beyond traditional case-control definitions. This imaging-based stratification substantially
improved classification performance alongside plasma proteomics and PRS, achieving AUROCs
between 0.65 and 0.73 per class, significantly outperforming binary classifiers and existing clinical
models, highlighting the potential of this stratification approach to enable more precise and
personalized diagnosis by capturing the underlying heterogeneity of CMVD. This work represents
the first application of imaging-based endotyping and the integration of genetic and proteomic data
for CMVD risk prediction, establishing a framework for multimodal modeling in complex diseases.

Keywords: Cardiovascular Disease; Multi-omics; Proteomics; Polygenic Risk Scores, Risk
Prediction, Endotyping

1. Introduction

1.1.  CMVD contributes to the large burden of ischemic heart disease.

Coronary microvascular disease (CMVD) is increasingly recognized as a major contributor to the
global burden of ischemic heart disease (IHD)!=. Unlike obstructive coronary artery disease (CAD),
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which involves large-vessel atherosclerosis, CMVD affects the smaller vessels of the heart and can
present clinically in patients as angina, ischemia, myocardial infarction with no obstructed coronary
arteries, or increased major adverse cardiovascular events®. Studies estimate that CMVD may
account for 30—50% of cases of angina in patients without obstructive CAD, underscoring its critical
role in IHD'3. CMVD is often undetected through standard cardiac imaging methods, leading to
underdiagnosis; advanced techniques such as perfusion positron emission tomography (PET)
currently represent the non-invasive gold standard for diagnosis®. Despite its high prevalence, no
targeted therapies for CMVD currently exist, and its diagnosis relies on specialized testing that limits
routine clinical use>S. The diagnostic challenges and lack of targeted treatment for CMVD reflect a
limited understanding of its pathophysiology’. CMVD involves both structural and functional
changes to microvasculature, driven by cardiovascular comorbidities'>. The genetic and molecular
underpinnings of the condition remain poorly understood, resulting in underdiagnosis and
insufficient treatment. Improved molecular characterization incorporating advanced imaging,
genetics, and proteomics holds promise for better risk stratification, improved diagnostic
approaches, and eventual therapeutic development for this condition.

1.2.  Pathophysiological variation in CMVD supports the presence of endotypes.

CMVD is a highly heterogeneous disease with variable clinical presentation’. Existing clinical
studies rely on measurements of coronary microvascular function, using invasive and non-invasive
imaging tools to measure myocardial blood flow and flow reserve (MBFR). Reduced MBFR
suggests impaired microvascular function and has been associated with increased mortality?®.
Clinical studies using cardiac perfusion PET imaging have shown that impaired MBFR can result
from either increased resting flow or blunting of stress flow, indicating that multiple
pathophysiologic pathways may exist, reflecting biologically distinct disease subtypes®’. These
disparate clinical mechanisms suggest the presence of different endotypes of CMVD manifesting
with distinct flow patterns. A one-size-fits-all approach to modeling CMVD is insufficient for
precise diagnosis and management. We stratified patients into endotypes in this study based on
image-derived flow parameters. This approach enables more nuanced modeling of intermediate and
heterogeneous cases, laying the groundwork for precision medicine in CMVD.

1.3.  Existing early risk prediction methods for CMVD are limited.

Current diagnostic approaches for CMVD rely on clinical measurements derived from perfusion
PET imaging, alongside tracking of clinical risk factors like cholesterol levels and comorbidities
such as diabetes as they emerge. As a result, the condition is often underdiagnosed, and patients can
be misclassified. Biomarker-based risk prediction incorporating genetic and proteomic features
could provide an alternative for identifying individuals at risk for CMVD prior to the emergence of
clinical risk factors. However, the development of predictive models for CMVD has been limited
by the lack of large-scale genome-wide association studies (GWAS), and to date, no polygenic risk
scores (PRS) have been developed for the disease. The clinical model developed by Prescott et al.
is the only existing risk prediction model for CMVD. This prior study incorporated integrated
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proteomics and achieved relatively strong performance (AUROC = 0.61-0.66) but still relies on lab
measurements and clinical variables that develop over time, such as diabetes and hypertension'?.

CAD GWAS have historically enrolled heterogeneous IHD populations that include both
obstructive CAD and CMVD, making CAD GWAS effectively ITHD GWAS3. Despite their clinical
differences, CMVD and obstructive CAD may arise from overlapping genetic mechanisms,
including those involved in inflammation and microvascular remodeling®. While many CAD-
associated loci are relevant to CMVD, our previous work has shown that CMVD also involves
distinct loci not captured by CAD studies'!. This overlap and divergence indicate that CMVD shares
components of the broader IHD genetic architecture while maintaining unique molecular
underpinnings>%!'!, In this study, we evaluate the utility of an externally derived PRS for coronary
artery disease (CAD), a related phenotype with overlapping enrollment criteria, to assess the
potential for cross-phenotype genetic risk modeling. We present the first machine learning
framework for CMVD risk prediction that integrates genomic and proteomic data without the need
for clinical input. By incorporating endotype-based stratification from imaging, we also demonstrate
improved classification performance. We demonstrate the ability to predict risk earlier than clinical
features emerge across traditional and intermediate groups, thereby greatly enhancing the clinical
utility of the model for patient prioritization and potential for new diagnostic approaches.

2. Methods
2.1. PennMedicine BioBank Study Population

The Penn Medicine BioBank (PMBB) represents a diverse population of 57,170 participants who
have been genotyped and imputed using the TOPMed reference panel (Version r2 2020)!%!3, Each
participant’s genetic data is linked with their Electronic Health Record (EHR), which includes
perfusion PET stress testing data. We identified 4,007 patients who underwent Rubidium-82
perfusion PET stress testing at the Hospital of the University of Pennsylvania as part of routine

Table 1. Demographic and clinical information for the study population. P-values calculated using
Pearson’s Chi-Squared Test (Sex, Ancestry) and Welch’s T-Test (Age, Imaging)

Variable Cases (n = 428) Controls (n = 401) P-Value
Sex ' ' ©0.0056
Male 183 (43%) 211 (53%)
Female 245 (57%) 190 (47%)
Ancestry 0.0178
African (AFR) 218 (50.9%) 249 (62.1%)
Admixed American (AMR) 1 (0.2%) 1 (0.2%)
European (EUR) 208 (48.7%) 149 (37.2%)
South Asian (SAS) 1 (0.2%) 1 (0.2%)
NA 0 (0%) 1(0.2%)
Enrollment Age 59.1+£12 563 +11.5 0.0037
Flow Reserve 1.5+03 26%05 <0.001
Stress Flow 1.7+ 0.6 23+£0.7 <0.001
Rest Flow 1.1+03 09+03 <0.001
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clinical care and enrolled in PMBB. As shown in Table 1, 829 of these participants had high-quality
perfusion PET imaging, genetic, and proteomics data (92 proteins from OLINK Cardiovascular II
panel) available and were included in the final analysis. This comprises one of the largest multi-
omics datasets for CMVD, with integrated imaging, genetics, and proteomics data.

All patients received dipyridamole or regadenoson for coronary vasodilation, and the imaging
data was analyzed using Siemens Syngo MBF or Invia Corridor 4DM. Patients with incomplete or
poor-quality myocardial blood flow reserve (MBFR) or proteomic data were excluded from the
analysis during quality control, resulting in the final cohort size of 829 participants. The proteomics
data for these patients were normalized using intensity normalization and subsequently log
transformed. CMVD case-control status was defined by MBFR, with cases exhibiting MBFR < 2,
indicative of impaired coronary microvascular function, and controls having MBFR > 2, indicative
of normal function®. Demographic covariates of age, sex, and principal components (PCs)
accounting for population stratification based on genetic ancestry (determined in Verma et al.'?)
were selected based on statistical significance to CMVD case-control status (Table 1).

2.2.  Polygenic Risk Score Calculation

To investigate the genetic contribution to CMVD risk, we calculated external PRS using the --score
function in PLINK, based on previously published GWAS summary statistics from Aragam ef al.,
a large-scale study of CAD conducted on 1,165,690 participants!#'6. This PRS aggregates the
effects of genetic variants associated with CAD risk and applies them to our samples to estimate
each individual’s inherited predisposition to vascular disease!®!”. The variants identified in CAD
GWAS, particularly those relevant to CMVD, provide a biologically informed basis for constructing
PRS to assess shared susceptibility.

We constructed 3 PRS models: 1) CAD PRS: using 235 genome-wide significant SNPs
identified in the CAD GWAS that also had genotypes in our PMBB participants, 2) CMVD Targeted
PRS: 15 SNPs previously reported as significantly associated with CMVD in a targeted association
study from CAD GWAS summary statistics!! and 3) CMVD Targeted + GWAS PRS: combining
the 15 SNPs with 5 SNPs, rs6700366, rs115240131, rs11573191, rs1969348, and rs839696,
identified as significant in prior CMVD-focused GWAS, fine-mapping, and TWAS analyses'!. The
list of SNPs included in each PRS is presented in Supplemental Table S1. This modeling approach
compared the predictive utility of broad CAD-related SNPs in creating CMVD-focused genetic risk
profiles in our cohort. The PRS was fitted with a LASSO regression, using case/control status after
splitting the dataset into a 80% training and 20% testing split across 100 random iterations, balanced
by the case/control ratio'®2°. Model performance was evaluated across metrics, including the area
under the receiving operator characteristic (AUROC), precision-recall curve (AUPRC), F1-score,
balanced accuracy (BA), and R? calculated using the Matthews Correlation Coefficient (MCC)?!22,

2.3. CMVD Disease State Endotyping

We applied unsupervised k-means clustering to an independent cohort of 3,130 PMBB individuals
with recorded global reserve, rest, and stress myocardial blood flow values to identify distinct
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physiological endotypes associated with CMVD?32?3, The distribution of these imaging
measurements is shown in Supplemental Figure S1. Prior to clustering, all variables were
standardized and outliers removed to ensure comparability. The optimal number of clusters was
determined using the silhouette score and the elbow method?*. After defining CMVD endotypes in
this cohort, we projected our independent cohort of 829 individuals with OLINK proteomics data
onto the identified clusters by calculating the Euclidean distance between each proteomics
individual’s reserve, rest, and stress values and the centroids of the defined clusters, assigning each
individual to the closest endotype®?4.

2.4.  Risk Modeling

2.4.1. Model Architectures and Feature Sets

To investigate the predictive value of genetic and proteomic data for CMVD risk prediction, we
developed several machine learning models across a range of feature inputs. We trained 4 distinct
linear and nonlinear model types using Scikit-learn and Pytorch: logistic regression with elastic net
regularization (EN), eXtreme gradient boosting (XGBoost), deep autoencoders, and fully connected
feedforward neural networks (FNN)?>26, All modeling approaches were applied to a standardized

set of 8 input feature sets (Table 2), to systematically assess performance and interpretability.
Table 2. Model feature inputs and total number of features.

Feature Set Feature Inputs Total Number of Features
I 1 Iage, sex 2
2 age, sex, PCs 1-5 7
3 proteomics (92) 92
4 age, sex, PCs 1-5, proteomics (92) 99
5 age, sex, PCs 1-5, CAD PRS 8
6 age, sex, PCs 1-5, CMVD Targeted PRS 8
7 age, sex, PCs 1-5, CMVD Targeted + GWAS PRS 8
8 age, sex, PCs 1-5, Best PRS, proteomics (92) 100

Feature set 1 used only age at enrollment and biological sex extracted from EHR as demographic
features. Set 2 accounted for population structure by including the top 5 PCs as well as age and sex.
Sets 3 and 4 incorporated 92 plasma proteins, resulting in 92 and 99 features, respectively. Feature
sets 5-7 incorporated the 3 different PRS, each using 8 features with age, sex, and PCs 1-5. Feature
set 8 combined the best-performing PRS with proteomics (100 features) and was extended to a
multiclass prediction task based on CMVD subtype clustering results. All models underwent
hyperparameter tuning and top feature were assessed. We employed this modeling design to assess
model performance and biologically-informed feature contributions comprehensively.

2.4.2. Elastic-Net Logistic Regression (EN)

To classify CMVD risk status, we implemented a logistic regression model with Elastic Net
regularization (EN) to handle high-dimensional and potentially correlated input features?’. After
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separating the data into 80% training and 20% test splits, the EN model was trained with nested
cross-validation for hyperparameter tuning. We tested a range of inverse regularization strengths
(Cs=10) across multiple parameters (L1 ratios from 0.1 to 1.0), using 5-fold cross-validation and
AUROC as the optimization metric?’. To ensure robustness, the entire training and evaluation
process was repeated across 100 stratified and Z-score normalized training and testing splits. Models
were evaluated using AUROC, AUPRC, Fl-score, BA, precision, recall, and Brier score®®%.
Feature importance was assessed using SHapley Additive exPlanations (SHAP) values for local
additive explanations of the model output from a LinearExplainer?°.

2.4.3. eXtreme Gradient Boosted Trees (XGBoost)

To capture nonlinear interactions among the features, we implemented a gradient boosting
framework using XGBoost for binary classification of CMVD status®!. For each of 10 independent
iterations, the data were stratified by CMVD status and split into training (80%) and test (20%) sets,
with a further 20% validation set split from the training data. Hyperparameter tuning was performed
on the validation set using Optuna with 10 trials per iteration, leveraging a tree-structured Parzen
estimator (TPE) sampler®?. Tuned parameters included tree depth, learning rate, subsample, and
column sampling ratios, L1/L2 regularization (alpha, lambda), minimum loss reduction (gamma),
and scaled positive weight for class imbalance. Each model was trained with the binary logistic
objective and early stopping based on validation AUROC, with a patience of 20 rounds®*34. The
best model per iteration was selected and evaluated on the held-out test set. Model performance was
assessed across metrics including AUROC, AUPRC, Fl-score, precision, recall, BA, and Brier
score?®?%, Feature importance was evaluated SHAP values from TreeExplainer for the best-
performing model to interpret the contributions of top features?®-.

2.4.4. Autoencoder

A deep autoencoder architecture was also employed to attempt to analyze the high-dimensional
protein expression profiles for CMVD detection®®. In each iteration, the dataset was randomly
divided into training and testing sets with an 80% and 20% split, stratified by CMVD. The training
set was further split into 20% validation subsets for nested hyperparameter optimization. The
encoder consists of multiple fully connected layers, with the number of layers and the number of
units per layer optimized via hyperparameter tuning. Each encoder layer applied a linear
transformation followed by batch normalization, ReLU activation, and dropout to prevent
overfitting®’. The decoder then reconstructed the original input from the compressed latent
representation. A classification head was attached to the final layer to predict CMVD using a
sigmoid activation function®’. This architecture enabled simultaneous learning of a compressed
representation and a classification output from the same latent features. The autoencoder was trained
using the Adam optimizer, with the learning rate selected from a log-uniform distribution between
1E-04 and 1E-0238,

The model minimized a combined loss comprising mean squared error (MSE) for input
reconstruction and binary cross-entropy (BCE) for classification, ensuring the encoded features
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were representative of the protein profiles and predictive of CMVD status®®. We employed early
stopping with a patience of 5 epochs, based on the combined validation loss, and monitored it over
a maximum of 300 epochs?®. A batch size of 64 was used and poorly performing trials were pruned
during hyperparameter tuning. Model performance was assessed through repeated stratified splits
and evaluation over 10 iterations. Performance metrics were calculated on the independent test sets
and averaged across iterations to ensure robustness. Metrics included the AUROC, AUPRC,
precision, recall, F1-score, BA, and Brier score. SHAP values were computed using DeepExplainer
on the best model to interpret feature contributions to the CMVD classification°.

2.4.5. Feedforward Neural Network (FNN)

A feedforward neural network (FNN) was developed to model binary classification for CMVD
risk*’. In each iteration, the dataset was randomly divided into training and testing sets with an 80%
and 20% split, stratified by CMVD status to maintain class balance. The training set was further
split into 20% validation subsets for hyperparameter optimization. Input features were standardized
using z-score normalization. The network architecture consisted of 2 or 3 fully connected hidden
layers, selected based on hyperparameter tuning per iteration, followed by batch normalization,
ReLU activation, and dropout regularization to enhance convergence stability and reduce
overfitting. The size of each layer, dropout rates, and learning rate were also optimized using Optuna
with a randomized search*!. The final output layer used a single sigmoid-activation function,
producing probabilistic outputs for CMVD risk. BCE was used as the loss function, and training
was performed with the Adam optimizer. Early stopping was applied based on validation loss with
a fixed patience threshold of 5 epochs to minimize overfitting®34°.

To ensure robustness and generalizability, the training pipeline was repeated across 10 random
stratified splits. For each iteration, the model was retrained using the best hyperparameters identified
via nested optimization. Performance metrics—including AUROC, AUPRC, Fl-score, BA,
precision, recall, and Brier score—were calculated on held-out test data and summarized using
means and standard deviations. Model explainability was assessed using SHAP, applied to the best-
performing iteration to identify the most influential features driving CMVD risk prediction. SHAP
values were computed using KernelExplainer on a reduced background set, and results were
visualized through summary plots and ranked feature importance?’.

2.4.6. Multi-Class Classification

To predict CMVD endotypes identified through unsupervised clustering of perfusion PET imaging
data, we implemented a supervised multiclass classification framework using both XGBoost and
multinomial logistic regression (MLR)*. The input data consisted of integrated transcriptomic and
proteomic features, with clustering-derived labels representing distinct CMVD endotypes. For
model training and evaluation, the dataset was randomly split into 80% training and 20% testing
subsets in each iteration, with stratification by endotype label to preserve class distributions. The
training set was further divided into 80% training and 20% validation subsets.

We performed 10 independent iterations of model training for both XGBoost and MLR to
evaluate performance stability across data splits. For XGBoost, Optuna optimization was employed
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within each iteration to tune hyperparameters over 10 trials, aiming to minimize multiclass log-loss
on the validation set. Parameters included tree depth, learning rate, number of estimators, L1/L.2
regularization, and feature and sample subsampling rates®!. For MLR, we optimized regularization
strength, penalty type, solver, maximum iterations, tolerance, and L1 ratio (for EN)?’. Final models
in each iteration were trained with early stopping and evaluated on the held-out test set. Metrics
collected per iteration included macro-averaged precision, recall, F1-score, AUROC, AUPRC (one-
vs-rest), and BA. Model interpretability was assessed using SHAP values from TreeExplainer to
identify the most influential features contributing to each endotype classification®.

3. Results

3.1.  PRS Performance

PRS models were evaluated for their ability to predict binary CMVD case-control status using
different sets of SNPs, as seen in Table 3. Across all SNP sets, model performance improved with
the inclusion of age, sex, and genetic ancestry covariates (PCs 1-5), as reflected in higher AUROC,
AUPRC, and R? values. The CMVD-targeted PRS, using 15 CMVD-related SNPs, demonstrated
improved predictive performance compared to the CAD PRS. Incorporating the additional 5 SNPs
from CMVD GWAS also showed improvement over the CAD PRS, achieving similar performance
to the targeted approach. When combined with covariates, the CMVD-targeted SNP models

Table 3: PRS model performance in CMVD risk prediction. Metrics reported as mean (standard deviation).

PRS Model . Feature Inputs . AUROC . AUPRC . BA . F1-Score . R? .

CAD PRS 0.569 (0.033) 0.590 (0.040) 0.543 (0.030) 0.544 (0.068) 0.086 (0.060)

CAD PRS, age, sex, PCs 0.587 (0.031) 0.595 (0.040) 0.554 (0.027) 0.552 (0.035) 0.108 (0.054)

CMVD Targeted PRS 0.572 (0.029) 0.570 (0.035) 0.546 (0.025) 0.624 (0.035) 0.106 (0.058)
CMVD Targeted PRS, age, sex, PCs  0.601 (0.028) 0.598 (0.036) 0.571 (0.024) 0.569 (0.031) 0.142 (0.048)
CMVD Targeted + GWAS PRS 0.543 (0.025) 0.555(0.035) 0.521 (0.021) 0.540 (0.033) 0.042 (0.033)

CMVD Targeted + GWAS PRS, age, sex, PCs  0.595 (0.028) 0.597 (0.035) 0.570 (0.025) 0.588 (0.032) 0.141 (0.050)

achieved the highest AUROC (0.601) and R? (0.142), indicating that focusing on CMVD-relevant
genetic variants when using weights from a related phenotype enhances performance. These
findings highlight the utility of targeted PRS approaches in improving genetic risk prediction.

3.2.  Binary Risk Prediction Model Performance

We evaluated the performance of 8 predictive models incorporating demographic variables (age,
sex), genetic ancestry (PCs), PRS, and plasma proteomics using multiple performance metrics,
including the AUROC, AUPRC, BA, and Fl-score. Figure 1 summarizes the comparative
performance across models. Full results across all metrics are provided in Supplemental Table S2.
EN and XGBoost consistently outperformed other models across evaluation metrics, particularly
when proteomic features were included alongside demographic and genetic variables. With only
age and sex as inputs, model discrimination was modest (AUROC = 0.57), but when proteomics
data were added in Feature sets 3, 4, and 8, AUROC values rose substantially. The EN improved
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Fig. 1. Model performance (AUROC, AUPRC, BA, F1-score) across all
feature sets for EN, XGBoost, Autoencoder, and FNN models.

from 0.577 to 0.675 in Set 3,
and XGBoost from 0.573 to
0.659. These trends held when
including PCs and PRS, further
reinforcing ~ the  additive
predictive value of proteomic
data. EN achieved the best
overall performance across
AUROC (0.676), AUPRC
(0.683), and Brier Score
(0.229) when using the feature
set of age, sex, proteomics, and
PCs (Feature set 4). XGBoost

excelled in recall, reaching a high of 0.966 with the CMVD Targeted PRS and 0.907 with the full
proteomic panel, indicating that it is particularly effective in identifying true positives. While the
autoencoder and feedforward neural network (FNN) models performed more modestly, they still
benefited from proteomic inclusion, demonstrating significant increases in performance. SHAP
feature importances for all models are reported in Supplemental Table S3 and SHAP summary
plots for the top models (Feature sets 3, 4, and 8) are available in Supplemental Figures S2-4.
Overall, these results underscore the added value of proteomics in capturing biological signals
relevant to CMVD and highlight the strengths of EN and XGBoost in classification performance.

3.3.

CMVD Endotype Clustering and Multiclass Prediction

The k-means clustering analysis identified distinct endotypes based on global reserve, rest, and
stress values, with an overall inertia of 1035.87, indicating meaningful separation between clusters.

The elbow plot for determining the
optimal number of clusters is shown in
Supplemental Figure S5; the data are
best represented by 4 clusters, as
shown in Figure 2%, Class 0 (n = 290)
represented the classic CMVD cases,
characterized by reduced flow reserve
and low stress flow values, consistent
with impaired microvascular function.
In contrast, Class 2 (n 110)
comprised the classic control group,
with the highest reserve values. Class
I (n = 233) and Class 3 (n = 192)
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Fig. 2. CMVD endotype clustering by flow stress, rest, and reserve.
A) Unsupervised clustering of PMBB individuals not in OLINK. B)
Projection of 829 OLINK individuals onto defined clusters.
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Together, these clusters define a spectrum of microvascular phenotypes ranging from healthy
controls to individuals with CMVD and intermediate physiological profiles®.

To further characterize these endotypes, we trained XGBoost and MLR multiclass classifiers
using PRS and proteomics, with model interpretation performed using SHAP analysis. The
XGBoost multiclass model showed substantial improvement in performance relative to the binary

classification approaches, as shown in Table 4.
Table 4: Performance metrics for multiclass model (mean, standard deviation) reported for each class and overall

performance.
Class AUROC AUPRC Precision Recall BA F1-Score Brier Score
Class0  0.723 (0.036) 0.584 (0.065) 0.491 (0.033) 0.712(0.053) 0.580 (0.030) 0.656 (0.030) 0.197 (0.009)
Class 1 0.648 (0.048) 0.434 (0.056) 0.419 (0.067) 0.389 (0.072) 0.402 (0.063) 0.587 (0.042) 0.192 (0.006)
Class2  0.721 (0.054) 0.345 (0.084) 0.389 (0.173) 0.145(0.067) 0.206 (0.094) 0.553 (0.038) 0.107 (0.005)
Class3  0.669 (0.028) 0.389 (0.047) 0.394 (0.045) 0.295(0.094) 0.333 (0.075) 0.580 (0.037) 0.168 (0.005)
All Classes 0.690 (0.024) 0.438 (0.030) 0.434 (0.041) 0.447 (0.031) 0.422 (0.039) 0.447 (0.031) 0.166 (0.004)

While the binary models achieved AUROCSs around 0.66, comparable with previously published
studies, the multiclass framework reached a macro- averaged AUROC of 0.690, with balanced
accuracies for individual classes approaching or exceeding the binary models. The strongest
performance was observed for Class 0 (AUROC = 0.723, BA = 0.580), the classic case presentation
of CMVD. For Class 2, the classic control group, the model performed similarly (AUROC = 0.721),
indicating that the model strongly predicted classical case/control presentations. Performance
remained robust in less prevalent classes, despite expected class imbalance and reduced sample
sizes. Class 1 and Class 3, which represent smaller subsets of the cohort, achieved AUROCs of
0.648 and 0.669, respectively, demonstrating that the model was able to generalize its predictive
capacity beyond dominant classes. Multiclass models consistently yielded lower (better) Brier
scores than binary models. Results for the MLR model are reported in Supplemental Table S4.
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phenotype. Class 1 and Class 3 remained relatively stable across PRS tertiles. These patterns
underscore how integrating endotyping with genetic risk stratification can reveal nuanced and
biologically grounded subphenotypes that would be obscured in binary classifications. Based on
SHAP analysis, shown in Figure 3B, each endotype displayed unique proteomic drivers as key
features. Class 0, representing the traditional CMVD case phenotype, was distinguished by proteins
PAR-1, REN, BOC, and BNP, among others. In Class 2, representing the traditional control group,
REN, BNP, and IL1RL2 contributed the most to the classification. Both cases and controls included
the PRS as an essential feature, consistent with Figure 3A. Class 1 and Class 3 represented the
intermediate groups but prioritized different features. Class 1 prioritized FGF-23 and TIE2 and
included enrollment age as a key feature. Class 3, in contrast, had biological sex as the most
important SHAP feature, followed by SLAMF7, CEACAMS, THBS2, IL-27, and other proteins.

4. Discussion
4.1. Information Gain from Imaging and Proteomics Data

This study represents a novel and comprehensive effort to predict CMVD using multi-modal
imaging, proteomics, and genetic data, integrated through machine learning approaches. Unlike
existing clinical models, our models were specifically designed to predict risk in earlier, potentially
asymptomatic stages'?. This shift toward earlier identification is critical for a condition like CMVD,
which often goes undetected until significant vascular damage has occurred®’. By excluding
disease-driven clinical comorbidities, we demonstrated that genetic and proteomic features can drive
predictive accuracy. Our models, particularly EN and XGBoost, achieved strong performance across
all metrics when incorporating proteomics, surpassing demographic and genetic models alone, and
existing clinical models. These improvements are especially meaningful for risk stratification in
clinical populations where overt signs of disease have not yet emerged, offering the potential for
earlier intervention and monitoring. The relatively poorer performance of the autoencoders and
FNNs likely reflects the limited feature space and relatively small sample size in this dataset®5+!.
Parameter complexity of these models is relatively high; the limited data available may have been
insufficient to fully train them. As sample sizes increase, performance of these methods may
improve; however, our results underscore the robustness of linear and tree-based methods for
proteomics-guided risk prediction in CMVD.

In addition to predictive gains in modeling, our findings provide biological insights into CMVD
pathogenesis. Previously known markers of cardiac stress such as age, BNP, and REN were top
contributors to model performance, in line with the previous model in Prescott et al. ACE2, another
mediator art of the renin-angiotensin-aldosterone system (RAAS), not seen in other clinical models,
was significant in our models!®*46, These findings support expert consensus that targeting RAAS
may be helpful for CMVD, despite not being fully captured by prior risk models. Additional
proteomic signals of interest from top models included ADM, THBS2, and PTX3, among others.
ADM is a vasodilatory peptide that helps maintain vascular integrity, while THBS2 and PTX3 have
been implicated in vascular inflammation*’~#°. These findings suggest that proteomic profiling may
enhance risk stratification and improve our understanding of CMVD pathophysiology.
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4.2.  Image-Derived Endotyping Significantly Improves Risk Prediction

CMVD is a multifactorial disease with several underlying mechanisms. While a MBFR threshold
of 2 for PET is often used for binary classifications clinically, this may obscure important
heterogeneity in pathophysiology and patient trajectory. By applying multiclass modeling and
endotyping approaches, we demonstrate that stratifying patients into biologically-informed
subgroups improves risk prediction and reveals distinct associations with genetic and proteomic
features. Our results identified four major endotypes, each with unique proteomic signatures and
potential clinical implications. The PRS demonstrated stronger risk stratification capabilities across
the standard case/control classes, with weaker resolution in the intermediate classes. Class 0
represents the classic CMVD case group, characterized by severely impaired flow and a strong
signal of vascular injury and remodeling. Top SHAP features for this group included PAR-1, BNP,
BOC, REN, ACE2, and SOD, all of which are implicated in endothelial dysfunction, neurohormonal
activation, and oxidative stress**#6%51  These findings are consistent with known
pathophysiological mechanisms of microvascular ischemia and validate Class 0 as the most
prototypical disease phenotype:®!!. In contrast, Class 2 represents the classic control group,
characterized by preserved MBFR and a biomarker profile indicative of vascular homeostasis.
Essential proteins in this group included REN, BNP, PGF, ILIRL2, PAR-1, and THBS2, which,
despite some overlap with Class 0, appear with inverse directionality. This group likely reflects a
more regulated state, with expression patterns consistent with effective vascular signaling and less
inflammation*464%:30-52 Class 1 is an intermediate phenotype with largely preserved flow but early
indications of vascular stress. The top features in this group, FGF-23, TIE2, IL-27, and PRSS27, are
linked to dysregulation in vascular tone, angiogenesis, and immune signaling>*~>°, These patients
may be at higher risk of progression and warrant closer monitoring. Class 3 presented with notable
sex-specific influences, with sex emerging as a top SHAP feature and showing a wide, polarized
distribution, indicating strong and variable effects. This is consistent with findings of sex-specific
modulation in stress and rest flow®>’. The key proteins driving this endotype included SLAMF7,
CEACAMS, and SERPINA12, suggesting an immunomodulatory signature potentially influenced
by sex hormones or variations in the immune system®°. These patients may represent a CMVD
phenotype that is not easily captured by traditional perfusion metrics.

This multiclass endotyping framework outperformed binary models in uncovering distinct
biological patterns and enhancing associations with both PRS and proteomic profiles. The AUROC
scores across all classes were high, suggesting that the model effectively distinguished between
patients at varying levels of CMVD risk. Class 0 and Class 2 achieved AUROCs of 0.723 and 0.721,
respectively, while the overall multiclass AUROC reached 0.690, indicating robust ranking
capability. However, metrics such as precision and recall were generally lower, particularly for
minority classes (Class 2 had a recall of 0.145), largely due to class imbalance introduced by the
clustering strategy. Importantly, F1-scores remained relatively high and Brier scores remained low
across all classes (0.107-0.197 per class, 0.166 overall), suggesting that while exact class predictions
may have been imperfect, predicted probabilities were well-calibrated®!-*2, The results underscore
the value of redefining disease states using clinical data and machine learning tools. This approach

623



Pacific Symposium on Biocomputing 2026

enables a more nuanced and interpretable understanding of CMVD heterogeneity, with potential
implications for risk stratification, biomarker discovery, and therapeutic targeting.

4.3.  Future Approaches and Limitations

This study has some limitations and opportunities for improvement. The patient cohort was drawn
from a single center, the Hospital of the University of Pennsylvania, and includes only patients
referred for perfusion PET imaging as part of routine clinical care. This population thus represents
a higher-risk clinical group, which may not be generalizable to the broader population. However,
this enrichment for disease enhances the ability to detect biological signals associated with CMVD.
Additionally, the proteomic analysis was restricted to angiogenesis-related proteins from the
OLINK Cardiovascular II panel, which may not capture other potential mechanisms, such as
immune or metabolic pathways. The effect sizes for the PRS were derived from a CAD GWAS,
rather than a CMVD-specific GWAS. This was necessary due to the lack of sufficiently powered
GWAS on CMVD, but the genetic risk captured may not fully represent the genetic architecture
unique to microvascular dysfunction. Future availability of large-scale CMVD GWAS will be
critical to improve PRS relevance and specificity for this condition.

This is the first study integrating imaging-derived measurements with genetics and proteomics
to characterize risk and define CMVD endotypes in an unsupervised manner. Furthermore, our use
of a multiclass classifier and SHAP-based interpretation provides novel insights into the clinical and
molecular distinctions across CMVD subtypes. Future work will expand proteomic coverage and
incorporate additional clinical data, such as comorbidities and laboratory measurements to improve
prediction. We will assess if genetic and proteomic predictors perform consistently across different
ancestral backgrounds. Another key direction is further investigation of biological sex differences
within CMVD endotypes, particularly in the intermediate group (Class 3), which exhibits early
vascular signaling patterns that may present differently across sexes. Overall, this work highlights
the potential of integrating multi-omics and endotyping approaches to advance personalized risk
assessment and enable earlier diagnosis and targeted prevention for CMVD.
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https://github.com/rvenkatesh99/Proteomics_Modeling

624


https://github.com/rvenkatesh99/Proteomics_Modeling

Pacific Symposium on Biocomputing 2026

References

1. Crea, F., Camici, P. G. & Bairey Merz, C. N. Coronary microvascular dysfunction: an update.
European Heart Journal 35, 1101-1111 (2014).

2. Duncker, D. J., Koller, A., Merkus, D. & Canty, J. M. Regulation of Coronary Blood Flow in
Health and Ischemic Heart Disease. Progress in Cardiovascular Diseases 57, 409—422 (2015).

3. Wayne, N. et al. Genetic Insights Into Coronary Microvascular Disease. Microcirculation 32,
e12896 (2025).

4. Ischemia and No Obstructive Coronary Artery Disease (INOCA) | Circulation.
https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.116.024534.

5. Tonet, E. et al. Coronary Microvascular Dysfunction: PET, CMR and CT Assessment. J Clin
Med 10, 1848 (2021).

6. Masi, S. et al. Assessment and pathophysiology of microvascular disease: recent progress and
clinical implications. European Heart Journal 42, 2590-2604 (2021).

7. Spione, F., Arevalos, V., Gabani, R., Sabaté¢, M. & Brugaletta, S. Coronary Microvascular
Angina: A State-of-the-Art Review. Front. Cardiovasc. Med. 9, (2022).

8. Guerraty, M. A. et al. The role of resting myocardial blood flow and myocardial blood flow
reserve as a predictor of major adverse cardiovascular outcomes. PLOS ONE 15, 0228931
(2020).

9. van de Wouw, J. et al. Perturbations in myocardial perfusion and oxygen balance in swine with
multiple risk factors: a novel model of ischemia and no obstructive coronary artery disease.
Basic Res Cardiol 115, 21 (2020).

10. Prescott, E. ef al. Biomarkers and Coronary Microvascular Dysfunction in Women With
Angina and No Obstructive Coronary Artery Disease. JACC: Advances 2, 100264 (2023).

11. Venkatesh, R. et al. Genome-Wide Association Study of Coronary Microvascular Disease
assessed by cardiac perfusion Positron Emission Tomography converges on NF-kB pathway.
medRxiv (2025) doi:10.1101/2025.03.20.25324357.

12. Verma, A. et al. The Penn Medicine BioBank: Towards a Genomics-Enabled Learning
Healthcare System to Accelerate Precision Medicine in a Diverse Population. Journal of
Personalized Medicine 12, 1974 (2022).

13. Das, S. et al. Next-generation genotype imputation service and methods. Nat Genet 48, 1284—
1287 (2016).

14. Aragam, K. G. et al. Discovery and systematic characterization of risk variants and genes for
coronary artery disease in over a million participants. Nat Genet 54, 1803—1815 (2022).

15. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer
datasets. GigaScience 4, s13742-015-0047-8 (2015).

16. Choi, S. W., Mak, T. S.-H. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk
score analyses. Nat Protoc 15, 2759-2772 (2020).

17. Dudbridge, F. Power and Predictive Accuracy of Polygenic Risk Scores. PLOS Genetics 9,
€1003348 (2013).

18. Pain, O. et al. Evaluation of polygenic prediction methodology within a reference-standardized
framework. PLOS Genetics 17, €1009021 (2021).

19. Jayasinghe, D., Eshetie, S., Beckmann, K., Benyamin, B. & Lee, S. H. Advancements and
limitations in polygenic risk score methods for genomic prediction: a scoping review. Hum.
Genet. 143, 1401-1431 (2024).

625



Pacific Symposium on Biocomputing 2026

20. Zhao, Z. et al. Optimizing and benchmarking polygenic risk scores with GWAS summary
statistics. Genome Biol 25, 260 (2024).

21. Chicco, D. & Jurman, G. The Matthews correlation coefficient (MCC) should replace the
ROC AUC as the standard metric for assessing binary classification. BioData Mining 16, 4
(2023).

22. Powers, D. M. W. Evaluation: from precision, recall and F-measure to ROC, informedness,
markedness and correlation. Preprint at https://doi.org/10.48550/arXiv.2010.16061 (2020).

23. Sinaga, K. P. & Yang, M.-S. Unsupervised K-Means Clustering Algorithm. /EEE Access 8,
8071680727 (2020).

24. Saputra, D. M., Saputra, D. & Oswari, L. D. Effect of Distance Metrics in Determining K-
Value in K-Means Clustering Using Elbow and Silhouette Method. in 341-346 (Atlantis Press,
2020). doi:10.2991/aisr.k.200424.051.

25. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
Preprint at https://doi.org/10.48550/arXiv.1912.01703 (2019).

26. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research 12, 2825-2830 (2011).

27. Park, H. & Konishi, S. Robust logistic regression modelling via the elastic net-type
regularization and tuning parameter selection. Journal of Statistical Computation and
Simulation (2016).

28. Steyerberg, E. W. ef al. Assessing the performance of prediction models: a framework for
some traditional and novel measures. Epidemiology 21, 128—138 (2010).

29. Gerds, T. A., Cai, T. & Schumacher, M. The Performance of Risk Prediction Models.
Biometrical Journal 50, 457—479 (2008).

30. Lundberg, S. M. & Lee, S.-1. A Unified Approach to Interpreting Model Predictions. in
Advances in Neural Information Processing Systems vol. 30 (Curran Associates, Inc., 2017).

31. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785—
794 (ACM, San Francisco California USA, 2016). d0i:10.1145/2939672.2939785.

32. Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: A Next-generation
Hyperparameter Optimization Framework. in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining 2623-2631 (Association for
Computing Machinery, New York, NY, USA, 2019). doi:10.1145/3292500.3330701.

33. Efendi, A., Fitri, I. & Nurcahyo, G. W. Improvement of Machine Learning Algorithms with
Hyperparameter Tuning on Various Datasets. in 2024 International Conference on Future
Technologies for Smart Society (ICFTSS) 75-79 (2024).
doi:10.1109/ICFTSS61109.2024.10691354.

34. Dalal, S., Onyema, E. M. & Malik, A. Hybrid XGBoost model with hyperparameter tuning for
prediction of liver disease with better accuracy. World J Gastroenterol 28, 6551-6563 (2022).

35. Lundberg, S. M., Erion, G. G. & Lee, S.-I. Consistent Individualized Feature Attribution for
Tree Ensembles. Preprint at https://doi.org/10.48550/arXiv.1802.03888 (2019).

36.Li, P., Pei, Y. & Li, J. A comprehensive survey on design and application of autoencoder in
deep learning. Applied Soft Computing 138, 110176 (2023).

37. Tomescu, V.-1., Czibula, G. & Nitica, S. A study on using deep autoencoders for imbalanced
binary classification. Procedia Computer Science 192, 119-128 (2021).

626



Pacific Symposium on Biocomputing 2026

38. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. Preprint at
https://doi.org/10.48550/arXiv.1412.6980 (2017).

39. Hira, M. T. et al. Integrated multi-omics analysis of ovarian cancer using variational
autoencoders. Sci Rep 11, 6265 (2021).

40. Geetha, R. ef al. Analysing Osteoporosis Detection: A Comparative Study of CNN and FNN.
in 2024 7th International Conference on Signal Processing and Information Security (ICSPIS)
1-6 (2024). doi:10.1109/ICSPIS63676.2024.10812652.

41. Xu, C., Coen-Pirani, P. & Jiang, X. Empirical Study of Overfitting in Deep FNN Prediction
Models for Breast Cancer Metastasis. Preprint at https://doi.org/10.48550/arXiv.2208.02150
(2022).

42. Otieno, J. A., Hiaggstrom, J., Darehed, D. & Eriksson, M. Developing machine learning
models to predict multi-class functional outcomes and death three months after stroke in
Sweden. PLOS ONE 19, 0303287 (2024).

43. Lundberg, S. M. et al. From local explanations to global understanding with explainable Al for
trees. Nat Mach Intell 2, 5667 (2020).

44. Hirakawa, K. et al. Correlation between microvascular dysfunction and B-type natriuretic
peptide levels in non-ischemic heart failure patients with cardiac fibrosis. International Journal
of Cardiology 228, 881-885 (2017).

45. Heusch, G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic
Res Cardiol 114, 45 (2019).

46. Wu, C.-H. ef al. Renin-Angiotensin System and Cardiovascular Functions. Arteriosclerosis,
Thrombosis, and Vascular Biology 38, €e108—e116 (2018).

47. Terata, K., Miura, H., Liu, Y., Loberiza, F. & Gutterman, D. D. Human coronary arteriolar
dilation to adrenomedullin: role of nitric oxide and K+ channels. American Journal of
Physiology-Heart and Circulatory Physiology 279, H2620-H2626 (2000).

48. Presta, M., Camozzi, M., Salvatori, G. & Rusnati, M. Role of the soluble pattern recognition
receptor PTX3 in vascular biology. Journal of Cellular and Molecular Medicine 11, 723738
(2007).

49. Zhang, X.-J. et al. Association between single nucleotide polymorphisms in thrombospondins
genes and coronary artery disease: A meta-analysis. Thrombosis Research 136, 45-51 (2015).

50. Bae, J.-S., Kim, Y., Park, M.-K. & Rezaie, A. R. Concentration dependent dual effect of
thrombin in endothelial cells via Par-1 and Pi3 Kinase. Journal of Cellular Physiology 219,
744-751 (2009).

51. Dubois-Deruy, E., Peugnet, V., Turkieh, A. & Pinet, F. Oxidative Stress in Cardiovascular
Diseases. Antioxidants 9, 864 (2020).

52. Mazidi, M. et al. Plasma Proteomics to Identify Drug Targets for Ischemic Heart Disease.
JACC 82, 1906-1920 (2023).

53. Higgins, S. J. et al. Tie2 protects the vasculature against thrombus formation in systemic
inflammation. J Clin Invest 128, 1471-1484 (2018).

54. Fitzpatrick, E. A., Han, X., Xiao, Z. & Quarles, L. D. Role of Fibroblast Growth Factor-23 in
Innate Immune Responses. Front. Endocrinol. 9, (2018).

55. Zhang, B. et al. The cross talk between cervical carcinoma cells and vascular endothelial cells
mediated by IL-27 restrains angiogenesis. American Journal of Reproductive Immunology 78,
e12706 (2017).

627



Pacific Symposium on Biocomputing 2026

56. Plaza-Florido, A., Rodriguez-Ayllon, M., Altmée, S., Ortega, F. B. & Esteban-Cornejo, 1.
Cardiorespiratory fitness and targeted proteomics involved in brain and cardiovascular health in
children with overweight/obesity. European Journal of Sport Science 23, 20762085 (2023).

57. Murthy, V. L. et al. Effects of Sex on Coronary Microvascular Dysfunction and Cardiac
Outcomes. Circulation 129, 2518-2527 (2014).

58. Zhang, Z., Zhang, Y., Chen, Z. & Xia, L. Emerging roles of SLAMF7 in immune cells and
related diseases. Innate Immun 31, 17534259251326700 (2025).

59. Singer, B. B. et al. Soluble CEACAMS Interacts with CEACAMI Inhibiting TLR2-Triggered
Immune Responses. PLOS ONE 9, €94106 (2014).

60. Heiker, J. T. Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. Journal of
Peptide Science 20, 299-306 (2014).

61. Redelmeier, D. A., Bloch, D. A. & Hickam, D. H. Assessing predictive accuracy: How to
compare brier scores. Journal of Clinical Epidemiology 44, 1141-1146 (1991).

62. Alakus, T. B. & Turkoglu, I. Comparison of deep learning approaches to predict COVID-19
infection. Chaos, Solitons & Fractals 140, 110120 (2020).

628





