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Coronary microvascular disease (CMVD) is an underdiagnosed but significant contributor to the 
burden of ischemic heart disease, characterized by angina and myocardial infarction. The 
development of risk prediction models such as polygenic risk scores (PRS) for CMVD has been 
limited by a lack of large-scale genome-wide association studies (GWAS). However, there is 
significant overlap between CMVD and enrollment criteria for coronary artery disease (CAD) 
GWAS. In this study, we developed CMVD PRS models by selecting variants identified in a CMVD 
GWAS and applying weights from an external CAD GWAS, using CMVD-associated loci as proxies 
for the genetic risk. We integrated plasma proteomics, clinical measures from perfusion PET 
imaging, and PRS to evaluate their contributions to CMVD risk prediction in comprehensive 
machine and deep learning models. We then developed a novel unsupervised endotyping framework 
for CMVD from perfusion PET-derived myocardial blood flow data, revealing distinct patient 
subgroups beyond traditional case-control definitions. This imaging-based stratification substantially 
improved classification performance alongside plasma proteomics and PRS, achieving AUROCs 
between 0.65 and 0.73 per class, significantly outperforming binary classifiers and existing clinical 
models, highlighting the potential of this stratification approach to enable more precise and 
personalized diagnosis by capturing the underlying heterogeneity of CMVD. This work represents 
the first application of imaging-based endotyping and the integration of genetic and proteomic data 
for CMVD risk prediction, establishing a framework for multimodal modeling in complex diseases. 

Keywords: Cardiovascular Disease; Multi-omics; Proteomics; Polygenic Risk Scores, Risk 
Prediction, Endotyping 

1.   Introduction 

1.1.   CMVD contributes to the large burden of ischemic heart disease. 

Coronary microvascular disease (CMVD) is increasingly recognized as a major contributor to the 
global burden of ischemic heart disease (IHD)1–3. Unlike obstructive coronary artery disease (CAD), 
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which involves large-vessel atherosclerosis, CMVD affects the smaller vessels of the heart and can 
present clinically in patients as angina, ischemia, myocardial infarction with no obstructed coronary 
arteries, or increased major adverse cardiovascular events4. Studies estimate that CMVD may 
account for 30–50% of cases of angina in patients without obstructive CAD, underscoring its critical 
role in IHD1,3. CMVD is often undetected through standard cardiac imaging methods, leading to 
underdiagnosis; advanced techniques such as perfusion positron emission tomography (PET) 
currently represent the non-invasive gold standard for diagnosis5. Despite its high prevalence, no 
targeted therapies for CMVD currently exist, and its diagnosis relies on specialized testing that limits 
routine clinical use5,6. The diagnostic challenges and lack of targeted treatment for CMVD reflect a 
limited understanding of its pathophysiology7. CMVD involves both structural and functional 
changes to microvasculature, driven by cardiovascular comorbidities1,5. The genetic and molecular 
underpinnings of the condition remain poorly understood, resulting in underdiagnosis and 
insufficient treatment. Improved molecular characterization incorporating advanced imaging, 
genetics, and proteomics holds promise for better risk stratification, improved diagnostic 
approaches, and eventual therapeutic development for this condition. 

1.2.   Pathophysiological variation in CMVD supports the presence of endotypes. 

CMVD is a highly heterogeneous disease with variable clinical presentation7. Existing clinical 
studies rely on measurements of coronary microvascular function, using invasive and non-invasive 
imaging tools to measure myocardial blood flow and flow reserve (MBFR). Reduced MBFR 
suggests impaired microvascular function and has been associated with increased mortality2,8. 
Clinical studies using cardiac perfusion PET imaging have shown that impaired MBFR can result 
from either increased resting flow or blunting of stress flow, indicating that multiple 
pathophysiologic pathways may exist, reflecting biologically distinct disease subtypes8,9. These 
disparate clinical mechanisms suggest the presence of different endotypes of CMVD manifesting 
with distinct flow patterns. A one-size-fits-all approach to modeling CMVD is insufficient for 
precise diagnosis and management. We stratified patients into endotypes in this study based on 
image-derived flow parameters. This approach enables more nuanced modeling of intermediate and 
heterogeneous cases, laying the groundwork for precision medicine in CMVD. 

1.3.   Existing early risk prediction methods for CMVD are limited.  

Current diagnostic approaches for CMVD rely on clinical measurements derived from perfusion 
PET imaging, alongside tracking of clinical risk factors like cholesterol levels and comorbidities 
such as diabetes as they emerge. As a result, the condition is often underdiagnosed, and patients can 
be misclassified. Biomarker-based risk prediction incorporating genetic and proteomic features 
could provide an alternative for identifying individuals at risk for CMVD prior to the emergence of 
clinical risk factors. However, the development of predictive models for CMVD has been limited 
by the lack of large-scale genome-wide association studies (GWAS), and to date, no polygenic risk 
scores (PRS) have been developed for the disease. The clinical model developed by Prescott et al. 
is the only existing risk prediction model for CMVD. This prior study incorporated integrated 
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proteomics and achieved relatively strong performance (AUROC = 0.61-0.66) but still relies on lab 
measurements and clinical variables that develop over time, such as diabetes and hypertension10.  

CAD GWAS have historically enrolled heterogeneous IHD populations that include both 
obstructive CAD and CMVD, making CAD GWAS effectively IHD GWAS3. Despite their clinical 
differences, CMVD and obstructive CAD may arise from overlapping genetic mechanisms, 
including those involved in inflammation and microvascular remodeling3. While many CAD-
associated loci are relevant to CMVD, our previous work has shown that CMVD also involves 
distinct loci not captured by CAD studies11. This overlap and divergence indicate that CMVD shares 
components of the broader IHD genetic architecture while maintaining unique molecular 
underpinnings3,6,11. In this study, we evaluate the utility of an externally derived PRS for coronary 
artery disease (CAD), a related phenotype with overlapping enrollment criteria, to assess the 
potential for cross-phenotype genetic risk modeling. We present the first machine learning 
framework for CMVD risk prediction that integrates genomic and proteomic data without the need 
for clinical input. By incorporating endotype-based stratification from imaging, we also demonstrate 
improved classification performance. We demonstrate the ability to predict risk earlier than clinical 
features emerge across traditional and intermediate groups, thereby greatly enhancing the clinical 
utility of the model for patient prioritization and potential for new diagnostic approaches.  

2.   Methods 

2.1.   PennMedicine BioBank Study Population 

The Penn Medicine BioBank (PMBB) represents a diverse population of 57,170 participants who 
have been genotyped and imputed using the TOPMed reference panel (Version r2 2020)12,13. Each 
participant’s genetic data is linked with their Electronic Health Record (EHR), which includes 
perfusion PET stress testing data. We identified 4,007 patients who underwent Rubidium-82 
perfusion PET stress testing at the Hospital of the University of Pennsylvania as part of routine 

Table 1. Demographic and clinical information for the study population. P-values calculated using  
Pearson’s Chi-Squared Test (Sex, Ancestry) and Welch’s T-Test (Age, Imaging) 

Variable Cases (n = 428) Controls (n = 401) P-Value 
Sex   0.0056 

Male 183 (43%) 211 (53%)  
Female 245 (57%) 190 (47%)  

Ancestry   0.0178 
African (AFR) 218 (50.9%) 249 (62.1%)  

Admixed American (AMR) 1 (0.2%) 1 (0.2%)  
European (EUR) 208 (48.7%) 149 (37.2%)  

South Asian (SAS) 1 (0.2%) 1 (0.2%)  
NA 0 (0%) 1 (0.2%)  

Enrollment Age 59.1 ± 12 56.3 ± 11.5 0.0037 
Flow Reserve 1.5 ± 0.3 2.6 ± 0.5 < 0.001 
Stress Flow 1.7 ± 0.6 2.3 ± 0.7 < 0.001 
Rest Flow 1.1 ± 0.3 0.9 ± 0.3 < 0.001 
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clinical care and enrolled in PMBB. As shown in Table 1, 829 of these participants had high-quality 
perfusion PET imaging, genetic, and proteomics data (92 proteins from OLINK Cardiovascular II 
panel) available and were included in the final analysis. This comprises one of the largest multi-
omics datasets for CMVD, with integrated imaging, genetics, and proteomics data.  

All patients received dipyridamole or regadenoson for coronary vasodilation, and the imaging 
data was analyzed using Siemens Syngo MBF or Invia Corridor 4DM. Patients with incomplete or 
poor-quality myocardial blood flow reserve (MBFR) or proteomic data were excluded from the 
analysis during quality control, resulting in the final cohort size of 829 participants. The proteomics 
data for these patients were normalized using intensity normalization and subsequently log2 
transformed. CMVD case-control status was defined by MBFR, with cases exhibiting MBFR < 2, 
indicative of impaired coronary microvascular function, and controls having MBFR ≥ 2, indicative 
of normal function8. Demographic covariates of age, sex, and principal components (PCs) 
accounting for population stratification based on genetic ancestry (determined in Verma et al.12) 
were selected based on statistical significance to CMVD  case-control status (Table 1).  

2.2.   Polygenic Risk Score Calculation 

To investigate the genetic contribution to CMVD risk, we calculated external PRS using the --score 
function in PLINK, based on previously published GWAS summary statistics from Aragam et al., 
a large-scale study of CAD conducted on 1,165,690 participants14–16. This PRS aggregates the 
effects of genetic variants associated with CAD risk and applies them to our samples to estimate 
each individual’s inherited predisposition to vascular disease16,17. The variants identified in CAD 
GWAS, particularly those relevant to CMVD, provide a biologically informed basis for constructing 
PRS to assess shared susceptibility. 

We constructed 3 PRS models: 1) CAD PRS: using 235 genome-wide significant SNPs 
identified in the CAD GWAS that also had genotypes in our PMBB participants, 2) CMVD Targeted 
PRS: 15 SNPs previously reported as significantly associated with CMVD in a targeted association 
study from CAD GWAS summary statistics11  and 3) CMVD Targeted + GWAS PRS: combining 
the 15 SNPs with 5 SNPs, rs6700366, rs115240131, rs11573191, rs1969348, and rs839696, 
identified as significant in prior CMVD-focused GWAS, fine-mapping, and TWAS analyses11. The 
list of SNPs included in each PRS is presented in Supplemental Table S1. This modeling approach 
compared the predictive utility of broad CAD-related SNPs in creating CMVD-focused genetic risk 
profiles in our cohort. The PRS was fitted with a LASSO regression, using case/control status after 
splitting the dataset into a 80% training and 20% testing split across 100 random iterations, balanced 
by the case/control ratio18–20. Model performance was evaluated across metrics, including the area 
under the receiving operator characteristic (AUROC), precision-recall curve (AUPRC), F1-score, 
balanced accuracy (BA), and R2 calculated using the Matthews Correlation Coefficient (MCC)21,22. 

2.3.   CMVD Disease State Endotyping 

We applied unsupervised k-means clustering to an independent cohort of 3,130 PMBB individuals 
with recorded global reserve, rest, and stress myocardial blood flow values to identify distinct 
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physiological endotypes associated with CMVD8,23. The distribution of these imaging 
measurements is shown in Supplemental Figure S1. Prior to clustering, all variables were 
standardized and outliers removed to ensure comparability. The optimal number of clusters was 
determined using the silhouette score and the elbow method24. After defining CMVD endotypes in 
this cohort, we projected our independent cohort of 829 individuals with OLINK proteomics data 
onto the identified clusters by calculating the Euclidean distance between each proteomics 
individual’s reserve, rest, and stress values and the centroids of the defined clusters, assigning each 
individual to the closest endotype8,24. 

2.4.   Risk Modeling 

2.4.1.   Model Architectures and Feature Sets 

To investigate the predictive value of genetic and proteomic data for CMVD risk prediction, we 
developed several machine learning models across a range of feature inputs. We trained 4 distinct 
linear and nonlinear model types using Scikit-learn and Pytorch: logistic regression with elastic net 
regularization (EN), eXtreme gradient boosting (XGBoost), deep autoencoders, and fully connected 
feedforward neural networks (FNN)25,26. All modeling approaches were applied to a standardized 
set of 8 input feature sets (Table 2), to systematically assess performance and interpretability.  

Feature set 1 used only age at enrollment and biological sex extracted from EHR as demographic 
features. Set 2 accounted for population structure by including the top 5 PCs as well as age and sex. 
Sets 3 and 4 incorporated 92 plasma proteins, resulting in 92 and 99 features, respectively. Feature 
sets 5-7 incorporated the 3 different PRS, each using 8 features with age, sex, and PCs 1-5. Feature 
set 8 combined the best-performing PRS with proteomics (100 features) and was extended to a 
multiclass prediction task based on CMVD subtype clustering results. All models underwent 
hyperparameter tuning and top feature were assessed. We employed this modeling design to assess 
model performance and biologically-informed feature contributions comprehensively. 

2.4.2.   Elastic-Net Logistic Regression (EN) 

To classify CMVD risk status, we implemented a logistic regression model with Elastic Net 
regularization (EN) to handle high-dimensional and potentially correlated input features27. After 

                       Table 2.  Model feature inputs and total number of features. 
Feature Set Feature Inputs Total Number of Features 

1 age, sex 2 

2 age, sex, PCs 1-5 7 

3 proteomics (92) 92 

4 age, sex, PCs 1-5, proteomics (92) 99 

5 age, sex, PCs 1-5, CAD PRS 8 

6 age, sex, PCs 1-5, CMVD Targeted PRS 8 

7 age, sex, PCs 1-5, CMVD Targeted + GWAS PRS 8 
8 age, sex, PCs 1-5, Best PRS, proteomics (92) 100 
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separating the data into 80% training and 20% test splits, the EN model was trained with nested 
cross-validation for hyperparameter tuning. We tested a range of inverse regularization strengths 
(Cs=10) across multiple parameters (L1 ratios from 0.1 to 1.0), using 5-fold cross-validation and 
AUROC as the optimization metric27. To ensure robustness, the entire training and evaluation 
process was repeated across 100 stratified and Z-score normalized training and testing splits. Models 
were evaluated using AUROC, AUPRC, F1-score, BA, precision, recall, and Brier score28,29. 
Feature importance was assessed using SHapley Additive exPlanations (SHAP) values for local 
additive explanations of the model output from a LinearExplainer30. 

2.4.3.   eXtreme Gradient Boosted Trees (XGBoost) 

To capture nonlinear interactions among the features, we implemented a gradient boosting 
framework using XGBoost for binary classification of CMVD status31. For each of 10 independent 
iterations, the data were stratified by CMVD status and split into training (80%) and test (20%) sets, 
with a further 20% validation set split from the training data. Hyperparameter tuning was performed 
on the validation set using Optuna with 10 trials per iteration, leveraging a tree-structured Parzen 
estimator (TPE) sampler32. Tuned parameters included tree depth, learning rate, subsample, and 
column sampling ratios, L1/L2 regularization (alpha, lambda), minimum loss reduction (gamma), 
and scaled positive weight for class imbalance. Each model was trained with the binary logistic 
objective and early stopping based on validation AUROC, with a patience of 20 rounds33,34. The 
best model per iteration was selected and evaluated on the held-out test set. Model performance was 
assessed across metrics including AUROC, AUPRC, F1-score, precision, recall, BA, and Brier 
score28,29. Feature importance was evaluated SHAP values from TreeExplainer for the best-
performing model to interpret the contributions of top features30,35.  

2.4.4.   Autoencoder 

A deep autoencoder architecture was also employed to attempt to analyze the high-dimensional 
protein expression profiles for CMVD detection36. In each iteration, the dataset was randomly 
divided into training and testing sets with an 80% and 20% split, stratified by CMVD. The training 
set was further split into 20% validation subsets for nested hyperparameter optimization. The 
encoder consists of multiple fully connected layers, with the number of layers and the number of 
units per layer optimized via hyperparameter tuning. Each encoder layer applied a linear 
transformation followed by batch normalization, ReLU activation, and dropout to prevent 
overfitting37. The decoder then reconstructed the original input from the compressed latent 
representation. A classification head was attached to the final layer to predict CMVD using a 
sigmoid activation function37. This architecture enabled simultaneous learning of a compressed 
representation and a classification output from the same latent features. The autoencoder was trained 
using the Adam optimizer, with the learning rate selected from a log-uniform distribution between 
1E-04 and 1E-0238. 

The model minimized a combined loss comprising mean squared error (MSE) for input 
reconstruction and binary cross-entropy (BCE) for classification, ensuring the encoded features 
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were representative of the protein profiles and predictive of CMVD status39. We employed early 
stopping with a patience of 5 epochs, based on the combined validation loss, and monitored it over 
a maximum of 300 epochs36. A batch size of 64 was used and poorly performing trials were pruned 
during hyperparameter tuning. Model performance was assessed through repeated stratified splits 
and evaluation over 10 iterations. Performance metrics were calculated on the independent test sets 
and averaged across iterations to ensure robustness. Metrics included the AUROC, AUPRC, 
precision, recall, F1-score, BA, and Brier score. SHAP values were computed using DeepExplainer 
on the best model to interpret feature contributions to the CMVD classification30. 

2.4.5.   Feedforward Neural Network (FNN) 

A feedforward neural network (FNN) was developed to model binary classification for CMVD 
risk40. In each iteration, the dataset was randomly divided into training and testing sets with an 80% 
and 20% split, stratified by CMVD status to maintain class balance. The training set was further 
split into 20% validation subsets for hyperparameter optimization. Input features were standardized 
using z-score normalization. The network architecture consisted of 2 or 3 fully connected hidden 
layers, selected based on hyperparameter tuning per iteration, followed by batch normalization, 
ReLU activation, and dropout regularization to enhance convergence stability and reduce 
overfitting. The size of each layer, dropout rates, and learning rate were also optimized using Optuna 
with a randomized search41. The final output layer used a single sigmoid-activation function, 
producing probabilistic outputs for CMVD risk. BCE was used as the loss function, and training 
was performed with the Adam optimizer. Early stopping was applied based on validation loss with 
a fixed patience threshold of 5 epochs to minimize overfitting38,40. 

To ensure robustness and generalizability, the training pipeline was repeated across 10 random 
stratified splits. For each iteration, the model was retrained using the best hyperparameters identified 
via nested optimization. Performance metrics—including AUROC, AUPRC, F1-score, BA, 
precision, recall, and Brier score—were calculated on held-out test data and summarized using 
means and standard deviations. Model explainability was assessed using SHAP, applied to the best-
performing iteration to identify the most influential features driving CMVD risk prediction. SHAP 
values were computed using KernelExplainer on a reduced background set, and results were 
visualized through summary plots and ranked feature importance30.  

2.4.6.   Multi-Class Classification 

To predict CMVD endotypes identified through unsupervised clustering of perfusion PET imaging 
data, we implemented a supervised multiclass classification framework using both XGBoost and 
multinomial logistic regression (MLR)42. The input data consisted of integrated transcriptomic and 
proteomic features, with clustering-derived labels representing distinct CMVD endotypes. For 
model training and evaluation, the dataset was randomly split into 80% training and 20% testing 
subsets in each iteration, with stratification by endotype label to preserve class distributions. The 
training set was further divided into 80% training and 20% validation subsets. 

We performed 10 independent iterations of model training for both XGBoost and MLR to 
evaluate performance stability across data splits. For XGBoost, Optuna optimization was employed 
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within each iteration to tune hyperparameters over 10 trials, aiming to minimize multiclass log-loss 
on the validation set. Parameters included tree depth, learning rate, number of estimators, L1/L2 
regularization, and feature and sample subsampling rates31. For MLR, we optimized regularization 
strength, penalty type, solver, maximum iterations, tolerance, and L1 ratio (for EN)27. Final models 
in each iteration were trained with early stopping and evaluated on the held-out test set. Metrics 
collected per iteration included macro-averaged precision, recall, F1-score, AUROC, AUPRC (one-
vs-rest), and BA. Model interpretability was assessed using SHAP values from TreeExplainer to 
identify the most influential features contributing to each endotype classification43. 

3.   Results 

3.1.   PRS Performance  
PRS models were evaluated for their ability to predict binary CMVD case-control status using 
different sets of SNPs, as seen in Table 3. Across all SNP sets, model performance improved with 
the inclusion of age, sex, and genetic ancestry covariates (PCs 1–5), as reflected in higher AUROC, 
AUPRC, and R² values. The CMVD-targeted PRS, using 15 CMVD-related SNPs, demonstrated 
improved predictive performance compared to the CAD PRS. Incorporating the additional 5 SNPs 
from CMVD GWAS also showed improvement over the CAD PRS, achieving similar performance 
to the targeted approach. When combined with covariates, the CMVD-targeted SNP models 

achieved the highest AUROC (0.601) and R² (0.142), indicating that focusing on CMVD-relevant 
genetic variants when using weights from a related phenotype enhances performance. These 
findings highlight the utility of targeted PRS approaches in improving genetic risk prediction. 

3.2.   Binary Risk Prediction Model Performance 

We evaluated the performance of 8 predictive models incorporating demographic variables (age, 
sex), genetic ancestry (PCs), PRS, and plasma proteomics using multiple performance metrics, 
including the AUROC, AUPRC, BA, and F1-score. Figure 1 summarizes the comparative 
performance across models. Full results across all metrics are provided in Supplemental Table S2. 
EN and XGBoost consistently outperformed other models across evaluation metrics, particularly 
when proteomic features were included alongside demographic and genetic variables. With only 
age and sex as inputs, model discrimination was modest (AUROC = 0.57), but when proteomics 
data were added in Feature sets 3, 4, and 8, AUROC values rose substantially. The EN improved 

Table 3: PRS model performance in CMVD risk prediction. Metrics reported as mean (standard deviation). 
PRS Model Feature Inputs AUROC AUPRC BA F1-Score R2 

CAD PRS 0.569 (0.033) 0.590 (0.040) 0.543 (0.030) 0.544 (0.068) 0.086 (0.060) 
CAD PRS, age, sex, PCs 0.587 (0.031) 0.595 (0.040) 0.554 (0.027) 0.552 (0.035) 0.108 (0.054) 

CMVD Targeted PRS 0.572 (0.029) 0.570 (0.035) 0.546 (0.025) 0.624 (0.035) 0.106 (0.058) 
CMVD Targeted  PRS, age, sex, PCs 0.601 (0.028) 0.598 (0.036) 0.571 (0.024) 0.569 (0.031) 0.142 (0.048) 

CMVD Targeted + GWAS  PRS 0.543 (0.025) 0.555 (0.035) 0.521 (0.021) 0.540 (0.033) 0.042 (0.033) 
CMVD Targeted + GWAS  PRS, age, sex, PCs 0.595 (0.028) 0.597 (0.035) 0.570 (0.025) 0.588 (0.032) 0.141 (0.050) 
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from 0.577 to 0.675 in Set 3, 
and XGBoost from 0.573 to 
0.659. These trends held when 
including PCs and PRS, further 
reinforcing the additive 
predictive value of proteomic 
data. EN achieved the best 
overall performance across 
AUROC (0.676), AUPRC 
(0.683), and Brier Score 
(0.229) when using the feature 
set of age, sex, proteomics, and 
PCs (Feature set 4). XGBoost 

excelled in recall, reaching a high of 0.966 with the CMVD Targeted PRS and 0.907 with the full 
proteomic panel, indicating that it is particularly effective in identifying true positives. While the 
autoencoder and feedforward neural network (FNN) models performed more modestly, they still 
benefited from proteomic inclusion, demonstrating significant increases in performance. SHAP 
feature importances for all models are reported in Supplemental Table S3 and SHAP summary 
plots for the top models (Feature sets 3, 4, and 8) are available in Supplemental Figures S2-4. 
Overall, these results underscore the added value of proteomics in capturing biological signals 
relevant to CMVD and highlight the strengths of EN and XGBoost in classification performance. 

3.3.   CMVD Endotype Clustering and Multiclass Prediction 

The k-means clustering analysis identified distinct endotypes based on global reserve, rest, and 
stress values, with an overall inertia of 1035.87, indicating meaningful separation between clusters. 
The elbow plot for determining the 
optimal number of clusters is shown in 
Supplemental Figure S5; the data are 
best represented by 4 clusters, as 
shown in Figure 224. Class 0 (n = 290) 
represented the classic CMVD cases, 
characterized by reduced flow reserve 
and low stress flow values, consistent 
with impaired microvascular function. 
In contrast, Class 2 (n = 110) 
comprised the classic control group, 
with the highest reserve values. Class 
1 (n = 233) and Class 3 (n = 192) 
reflect intermediate groups, with Class 
3 characterized by low or borderline 
reserve due to elevated resting flow. 

 
Fig. 1. Model performance (AUROC, AUPRC, BA, F1-score) across all 

feature sets for EN, XGBoost, Autoencoder, and FNN models. 
 

   
Fig. 2. CMVD endotype clustering by flow stress, rest, and reserve. 
A) Unsupervised clustering of PMBB individuals not in OLINK. B) 

Projection of 829  OLINK individuals onto defined clusters. 
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Together, these clusters define a spectrum of microvascular phenotypes ranging from healthy 
controls to individuals with CMVD and intermediate physiological profiles8.  

To further characterize these endotypes, we trained XGBoost and MLR multiclass classifiers 
using PRS and proteomics, with model interpretation performed using SHAP analysis. The 
XGBoost multiclass model showed substantial improvement in performance relative to the binary 
classification approaches, as shown in Table 4.  

While the binary models achieved AUROCs around 0.66, comparable with previously published 
studies,  the multiclass framework reached a macro- averaged AUROC of 0.690, with balanced 
accuracies for individual classes approaching or exceeding the binary models. The strongest 
performance was observed for Class 0 (AUROC = 0.723, BA = 0.580), the classic case presentation 
of CMVD. For Class 2, the classic control group, the model performed similarly (AUROC = 0.721), 
indicating that the model strongly predicted classical case/control presentations. Performance 
remained robust in less prevalent classes, despite expected class imbalance and reduced sample 
sizes. Class 1 and Class 3, which represent smaller subsets of the cohort, achieved AUROCs of 
0.648 and 0.669, respectively, demonstrating that the model was able to generalize its predictive 
capacity beyond dominant classes. Multiclass models consistently yielded lower (better) Brier 
scores than binary models. Results for the MLR model are reported in Supplemental Table S4.  

Measuring the class 
proportions across stratified PRS 
risk tertiles, shown in Figure 3A, 
revealed patterns supporting the 
clinical relevance of the 
endotypes. Class 0 showed a 
clear positive association with 
high PRS, suggesting that 
individuals with higher genetic 
risk are more likely to have the 
most pathologically consistent 
endotype. In contrast, Class 2 
demonstrated a decline in 
frequency with higher PRS, 
consistent with its 
characterization as a low-risk 

Table 4: Performance metrics for multiclass model (mean, standard deviation) reported for each class and overall 
performance. 

Class AUROC AUPRC Precision Recall BA F1-Score Brier Score 
Class 0 0.723 (0.036) 0.584 (0.065) 0.491 (0.033) 0.712 (0.053) 0.580 (0.030) 0.656 (0.030) 0.197 (0.009) 
Class 1 0.648 (0.048) 0.434 (0.056) 0.419 (0.067) 0.389 (0.072) 0.402 (0.063) 0.587 (0.042) 0.192 (0.006) 
Class 2 0.721 (0.054) 0.345 (0.084) 0.389 (0.173) 0.145 (0.067) 0.206 (0.094) 0.553 (0.038) 0.107 (0.005) 
Class 3 0.669 (0.028) 0.389 (0.047) 0.394 (0.045) 0.295 (0.094) 0.333 (0.075) 0.580 (0.037) 0.168 (0.005) 

All Classes 0.690 (0.024) 0.438 (0.030) 0.434 (0.041) 0.447 (0.031) 0.422 (0.039) 0.447 (0.031) 0.166 (0.004) 
 

 
Fig. 3.  Multiclass model performance. A) Class stratification across PRS 

tertiles. B) SHAP multiclass feature importance. 

Pacific Symposium on Biocomputing 2026

621



 
 

 

 
 

phenotype. Class 1 and Class 3 remained relatively stable across PRS tertiles. These patterns 
underscore how integrating endotyping with genetic risk stratification can reveal nuanced and 
biologically grounded subphenotypes that would be obscured in binary classifications. Based on 
SHAP analysis, shown in Figure 3B, each endotype displayed unique proteomic drivers as key 
features. Class 0, representing the traditional CMVD case phenotype, was distinguished by proteins 
PAR-1, REN, BOC, and BNP, among others. In Class 2, representing the traditional control group, 
REN, BNP, and IL1RL2 contributed the most to the classification. Both cases and controls included 
the PRS as an essential feature, consistent with Figure 3A. Class 1 and Class 3 represented the 
intermediate groups but prioritized different features. Class 1 prioritized FGF-23 and TIE2 and 
included enrollment age as a key feature. Class 3, in contrast, had biological sex as the most 
important SHAP feature, followed by SLAMF7, CEACAM8, THBS2, IL-27, and other proteins. 

4.   Discussion 

4.1.   Information Gain from Imaging and Proteomics Data 

This study represents a novel and comprehensive effort to predict CMVD using multi-modal 
imaging, proteomics, and genetic data, integrated through machine learning approaches. Unlike 
existing clinical models, our models were specifically designed to predict risk in earlier, potentially 
asymptomatic stages10. This shift toward earlier identification is critical for a condition like CMVD, 
which often goes undetected until significant vascular damage has occurred5,7. By excluding 
disease-driven clinical comorbidities, we demonstrated that genetic and proteomic features can drive 
predictive accuracy. Our models, particularly EN and XGBoost, achieved strong performance across 
all metrics when incorporating proteomics, surpassing demographic and genetic models alone, and 
existing clinical models. These improvements are especially meaningful for risk stratification in 
clinical populations where overt signs of disease have not yet emerged, offering the potential for 
earlier intervention and monitoring. The relatively poorer performance of the autoencoders and 
FNNs likely reflects the limited feature space and relatively small sample size in this dataset36,41. 
Parameter complexity of these models is relatively high; the limited data available may have been 
insufficient to fully train them. As sample sizes increase, performance of these methods may 
improve; however, our results underscore the robustness of linear and tree-based methods for 
proteomics-guided risk prediction in CMVD. 

In addition to predictive gains in modeling, our findings provide biological insights into CMVD 
pathogenesis. Previously known markers of cardiac stress such as age, BNP, and REN were top 
contributors to model performance, in line with the previous model in Prescott et al. ACE2, another 
mediator art of the renin-angiotensin-aldosterone system (RAAS), not seen in other clinical models, 
was significant in our models10,44–46. These findings support expert consensus that targeting RAAS 
may be helpful for CMVD, despite not being fully captured by prior risk models. Additional 
proteomic signals of interest from top models included ADM, THBS2, and PTX3, among others. 
ADM is a vasodilatory peptide that helps maintain vascular integrity, while THBS2 and PTX3 have 
been implicated in vascular inflammation47–49. These findings suggest that proteomic profiling may 
enhance risk stratification and improve our understanding of CMVD pathophysiology. 
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4.2.   Image-Derived Endotyping Significantly Improves Risk Prediction 

CMVD is a multifactorial disease with several underlying mechanisms. While a MBFR threshold 
of 2 for PET is often used for binary classifications clinically, this may obscure important 
heterogeneity in pathophysiology and patient trajectory. By applying multiclass modeling and 
endotyping approaches, we demonstrate that stratifying patients into biologically-informed 
subgroups improves risk prediction and reveals distinct associations with genetic and proteomic 
features. Our results identified four major endotypes, each with unique proteomic signatures and 
potential clinical implications. The PRS demonstrated stronger risk stratification capabilities across 
the standard case/control classes, with weaker resolution in the intermediate classes. Class 0 
represents the classic CMVD case group, characterized by severely impaired flow and a strong 
signal of vascular injury and remodeling. Top SHAP features for this group included PAR-1, BNP, 
BOC, REN, ACE2, and SOD, all of which are implicated in endothelial dysfunction, neurohormonal 
activation, and oxidative stress44,46,50,51. These findings are consistent with known 
pathophysiological mechanisms of microvascular ischemia and validate Class 0 as the most 
prototypical disease phenotype1,8,11. In contrast, Class 2 represents the classic control group, 
characterized by preserved MBFR and a biomarker profile indicative of vascular homeostasis. 
Essential proteins in this group included REN, BNP, PGF, IL1RL2, PAR-1, and THBS2, which, 
despite some overlap with Class 0, appear with inverse directionality. This group likely reflects a 
more regulated state, with expression patterns consistent with effective vascular signaling and less 
inflammation44,46,49,50,52. Class 1 is an intermediate phenotype with largely preserved flow but early 
indications of vascular stress. The top features in this group, FGF-23, TIE2, IL-27, and PRSS27, are 
linked to dysregulation in vascular tone, angiogenesis, and immune signaling53–56. These patients 
may be at higher risk of progression and warrant closer monitoring. Class 3 presented with notable 
sex-specific influences, with sex emerging as a top SHAP feature and showing a wide, polarized 
distribution, indicating strong and variable effects. This is consistent with findings of sex-specific 
modulation in stress and rest flow8,57. The key proteins driving this endotype included SLAMF7, 
CEACAM8, and SERPINA12, suggesting an immunomodulatory signature potentially influenced 
by sex hormones or variations in the immune system58–60. These patients may represent a CMVD 
phenotype that is not easily captured by traditional perfusion metrics.  

This multiclass endotyping framework outperformed binary models in uncovering distinct 
biological patterns and enhancing associations with both PRS and proteomic profiles. The AUROC 
scores across all classes were high, suggesting that the model effectively distinguished between 
patients at varying levels of CMVD risk. Class 0 and Class 2 achieved AUROCs of 0.723 and 0.721, 
respectively, while the overall multiclass AUROC reached 0.690, indicating robust ranking 
capability. However, metrics such as precision and recall were generally lower, particularly for 
minority classes (Class 2 had a recall of 0.145), largely due to class imbalance introduced by the 
clustering strategy. Importantly, F1-scores remained relatively high and Brier scores remained low 
across all classes (0.107-0.197 per class, 0.166 overall), suggesting that while exact class predictions 
may have been imperfect, predicted probabilities were well-calibrated61,62. The results underscore 
the value of redefining disease states using clinical data and machine learning tools. This approach 
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enables a more nuanced and interpretable understanding of CMVD heterogeneity, with potential 
implications for risk stratification, biomarker discovery, and therapeutic targeting.  

4.3.   Future Approaches and Limitations 

This study has some limitations and opportunities for improvement. The patient cohort was drawn 
from a single center, the Hospital of the University of Pennsylvania, and includes only patients 
referred for perfusion PET imaging as part of routine clinical care. This population thus represents 
a higher-risk clinical group, which may not be generalizable to the broader population. However, 
this enrichment for disease enhances the ability to detect biological signals associated with CMVD. 
Additionally, the proteomic analysis was restricted to angiogenesis-related proteins from the 
OLINK Cardiovascular II panel, which may not capture other potential mechanisms, such as 
immune or metabolic pathways. The effect sizes for the PRS were derived from a CAD GWAS, 
rather than a CMVD-specific GWAS. This was necessary due to the lack of sufficiently powered 
GWAS on CMVD, but the genetic risk captured may not fully represent the genetic architecture 
unique to microvascular dysfunction. Future availability of large-scale CMVD GWAS will be 
critical to improve PRS relevance and specificity for this condition. 

This is the first study integrating imaging-derived measurements with genetics and proteomics 
to characterize risk and define CMVD endotypes in an unsupervised manner. Furthermore, our use 
of a multiclass classifier and SHAP-based interpretation provides novel insights into the clinical and 
molecular distinctions across CMVD subtypes. Future work will expand proteomic coverage and 
incorporate additional clinical data, such as comorbidities and laboratory measurements to improve 
prediction. We will assess if genetic and proteomic predictors perform consistently across different 
ancestral backgrounds. Another key direction is further investigation of biological sex differences 
within CMVD endotypes, particularly in the intermediate group (Class 3), which exhibits early 
vascular signaling patterns that may present differently across sexes. Overall, this work highlights 
the potential of integrating multi-omics and endotyping approaches to advance personalized risk 
assessment and enable earlier diagnosis and targeted prevention for CMVD. 
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