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Recent advances in protein generative models have created new opportunities for protein
engineering. However, a significant challenge remains in effectively steering these models to
generate sequences with specific, desired functionalities, especially when these properties are
defined by “black-box” or non-differentiable fitness functions. To address this, we present
ProVADA+, a model-agnostic framework that guides pretrained generative models at test-
time without costly retraining. Our approach introduces a reinforcement learning-based
adaptive masking technique (MADA-DUCB) that significantly accelerates convergence. We
demonstrate this framework on the challenging task of designing novel Adeno-Associated
Virus 2 (AAV2) capsids. By coupling a ProteinMPNN generative prior with a fine-tuned
A AV viability oracle, our method successfully navigates the rugged fitness landscape where
unguided random mutagenesis is ineffective—with prior experiments showing as few as 0.3%
of variants with six or more mutations are viable. In its final iterations, ProVADA generated
a pool of novel candidates with a mean viral selection score of 2.72, consistently scoring
highly viable variants while maintaining a diverse range of sequence similarity to the wild-
type sequence. Our results show that ProVADA provides a powerful and efficient framework
for accelerating the design of proteins with complex, user-defined properties.

Keywords: Protein Engineering, Conditional Adaptation, Generative Guidance, Test-time
Steering, Adeno-Associated Virus

1. Introduction

Protein engineering is the process of developing useful or novel proteins by modifying the
amino acid sequences to improve existing structural and functional properties or confer new
activities. Traditionally, one of the primary techniques available to researchers is directed
evolution, an iterative laboratory process in which large libraries of protein variants are
generated—typically through random mutagenesis of wild-type sequences—and then screened
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distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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using functional assays.! While this approach has demonstrated success in many applications,?

it remains a resource-intensive and time-consuming process, particularly when dealing with
intricate sequence-fitness landscapes or when mechanistic insights into protein function are
limited.?

In the past several years, advances in machine learning have led to the development of pow-
erful new approaches that demonstrate significant potential to accelerate protein engineering
methodology. Structure prediction and downstream inverse-folding models have enabled a new
way to condition sequence generation that preserves target structural folds in the final pro-
tein.* % Large-scale protein language models (pLMs) trained on billions of biological sequences
using simple pretraining objectives enable state-of-the-art performance on protein property
prediction tasks.”® Together, these tools accelerate candidate prioritization and substantially
reduce the need for exhaustive experimental screening.

Researchers are increasingly looking to use a combination of these models to condition-
ally guide the generative process toward variants with desired functional properties. Most
techniques revolve around classifier-guided plug-and-play approaches to steer sequence gener-
ation by backpropagating through a differentiable surrogate objective.? ! During generation,
gradients from this reward bias a pretrained generative model toward specific properties.
However, these methods depend on differentiable surrogate models and are thus incompati-
ble with non-differentiable scoring functions. In contrast, fine-tuning and preference-learning
approaches, such as classifier-free guidance'? or reinforcement-learning-based fine-tuning,'?
adapt the model parameters directly to optimize for downstream rewards. While often effec-
tive, these techniques typically demand significant computational resources and large labeled
datasets.

To address these limitations, we recently introduced ProVADA, a model-agnostic frame-
work that steers any generative model using black-box fitness oracles without requiring costly
retraining or gradients.' At the core of this framework is Mixture-Adaptation Directed An-
nealing (MADA), a novel sampling algorithm designed to efficiently navigate high-dimensional
sequence landscapes. In this work, we propose several key enhancements to the ProVADA
framework (ProVADA+) that substantially improve its biological relevance and algorithmic
efficiency. Our primary contribution is an informed and adaptive mutation site selection strat-
egy that employs reinforcement learning (MADA-DUCB) to accelerate convergence by intelli-
gently identifying optimal mutation positions (Figure . Additionally, we introduce sequence
constraints, including the ability to preserve specific residue positions crucial for protein func-
tion, and incorporate a biologically-informed distance metric based on the BLOSUMG62 sub-
stitution matrix. This metric penalizes biochemically unfavorable mutations while permitting
conservative substitutions, thereby generating variants with enhanced biological plausibility.

We demonstrate the power of this enhanced framework by applying it to a challenging
protein design task: conditionally engineering Adeno-Associated Virus 2 (AAV2) capsids for
improved viability. Our in silico results demonstrate that ProVADA+ effectively navigates the
rugged fitness landscape to generate a diverse pool of novel candidates with high predicted
viral selection scores, substantially outperforming unguided in silico selection from random
mutagenesis approaches which fail to efficiently identify viable variants.
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1.1. AAV Capsid Design

AAVs are small, non-pathogenic, single-stranded DNA viruses that rely on co-infection with
helper viruses, typically adenoviruses, for replication.'® Due to their favorable biological prop-
erties, engineered AAV capsids have become a leading platform for next-generation in vivo
gene therapy vector development.!® For example, the 13 commonly studied AAV serotypes
exhibit distinct tissue tropisms, enabling selective transduction of specific cell types. This
cell-type specificity is a major objective in vector engineering, as it can significantly reduce
off-target effects from delivered therapeutic payloads.'6

Within the full 60-mer capsid protein complex, sequence and structural variations found
in small surfaced exposed hyper-variable regions have been shown to have out-sized impact
on capsid functional properties.'™!® For these reasons, AAV genetic modification in vector en-
gineering research has commonly focused on the screening and directed evolution of these re-
gions.'®?Y In this work, we explore utilizing ProVADA+ to engineer novel AAV capsid proteins
for in silico predicted capsid viability, which characterizes whether a particular capsid is able
to form. Moving forward, such predictive sampling could be combined with high-throughput
experimental screens to guide selection for desirable functional traits beyond viability, such as
transduction efficiency, low immunogenicity, and tissue tropism.

2. Methods

2.1. ProVADA: Gradient-Free Guidance for Conditional Protein
Adaptation at Test-Time

We begin with a brief overview of the ProVADA framework for gradient-free steering of pro-
tein generation at test time. ProVADA comprises two core components: a fitness oracle to
provide targeted guidance, and the Mixture-Adaptation Directed Annealing (MADA) sam-
pler to efficiently navigate the intricate topology of sequence-fitness landscapes. To formalize
our framework, we first define the key notations and definitions for the problem setup.

Let ¢ € N be the fixed sequence length, which defines the discrete sequence space
X ={1,...,20}*. Our objective is to engineer a given wild-type reference sequence, z,; € X, to
improve its functional properties, which are quantified by a fitness oracle F : X — [0, 1], where
higher values indicate superior fitness. Additionally, we require a generative model capable of
proposing mutations through efficient in-painting of masked sequence regions, thereby produc-
ing complete sequences that preserve fundamental properties such as structural integrity. The
implicit sampling distribution of this generative model with parameters ¢—whether autore-
gressive, diffusion-based, or alternative architectures—is denoted p, and henceforth referred to
as the generative prior. Let C be an amino acid substitution matrix, where C(xz;, x;) represents
the score of substituting amino acid z; with amino acid z;.

Biochemically-Informed Sequence Divergence Penalty

To maintain proximity to the reference sequence and thus facilitate conditional engineering
rather than de novo generation, we employ a composite fitness objective. This objective penal-
izes deviations from the wild-type sequence, x,,;, using a biologically-informed distance metric
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d(x,z:) that respects amino acid properties while penalizing excessive substitutions. This
metric is consisted of two terms: First, a Hamming distance (dg), which penalizes the total
number of mutations regardless of their biochemical properties. Second, we also include a sub-
stitution cost (dc), which employs a penalty based on the BLOSUMG62 substitution matrix.?!
Widely utilized in sequence alignment tools such as BLAST,??2 BLOSUM62 provides log-odds
scores that reflect the evolutionary likelihood of amino acid substitutions. Positive scores indi-
cate conservative substitutions that frequently occur in nature, while negative scores suggest
less favorable, potentially deleterious changes. Under this framework, substitutions with posi-
tive BLOSUMG62 scores incur no penalty, yielding a more informative and better evolutionarily
aligned metric than the Hamming distance alone.

Ensemble-guided Composite Fitness Objective

The composite objective function, Hy(z), balances fitness enhancement with sequence conser-
vation through tunable coefficients (A = (Ag, A¢)):

¢
dp(z, Tyt) = 1/521{@;&(@“01}7 do(z, Twt) = Z C(xs, (xwe)i) € [0,1],

i=1 0T A (Bt )i
Hy(z) = F(z) — (Aada(z, zuw) + Aede (2, Twr) ),
Hamming Subst‘i;ution
penalty cost

where Ay, A\c > 0 are tunable regularization parameters that control the strength of the di-
vergence penalties. To this end, we construct an ensemble target distribution proportional
to the generative prior exponentially tilted by the tempered composite fitness 7y g -(z) o<
pg(x) exp(Hy(z)/7), where 7 is a temperature parameter that governs how sharply sampling
concentrates on high-fitness regions. As 7 decreases, the sampler becomes increasingly con-
centrated on top-scoring sequences, whereas higher 7 values encourage broader exploration of
the sequence space.

2.2. Constructing the Fitness Oracle

ProVADA employs a user-defined black-box fitness oracle to guide its generative process. This
oracle, trained on experimentally characterized protein sequences, predicts a numerical score
quantifying the desired properties for each input sequence. The implementation of such an
oracle is flexible, ranging from simple biophysical calculators to complex machine learning
architectures. A particularly effective approach for creating high-performance oracles involves
fine-tuning large, pre-trained protein language models (pLMs). Typically, this is achieved by
appending a regression head, such as a multi-layer perceptron (MLP), to the pLM’s final layer.
The resulting model is then trained on task-specific datasets to accurately predict properties of
interest from the model’s sequence embeddings. In our experiments, we construct an oracle to
predict AAV viability based on the ESM-Cambrian model; we provide more details in Section
3.2
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Fig. 1. Schematic overview of the Mixture-Adaptation Directed Annealing (MADA) sampling work-
flow. This iterative process integrates Sequential Monte Carlo population dynamics with adaptive
simulated annealing to efficiently explore the protein sequence-fitness landscape.

2.3. Mixture-Adaptation Directed Annealing with Informed Position
Masking (MADA-DUCB)

To simultaneously navigate the complex fitness landscapes and high-dimensional protein se-
quence space, ProVADA employs Mixture-Adaptation Directed Annealing (MADA). This
novel sampling algorithm integrates Sequential Monte Carlo population dynamics with adap-
tive simulated annealing, iterating through cycles of selection, mutation, and stabilization. At
each iteration, MADA maintains a diverse ensemble of promising candidate sequences, thereby
balancing population diversity with focused exploration. Subsequently, offspring are gener-
ated through annealed importance sampling and partial rejection control, then refined using
Metropolis-Hastings steps with fitness-guided local generative mutation kernels. Throughout
the iterations, a gradually decaying temperature schedule transitions the sampler from broad
exploration in the early stages to targeted exploitation as the search progresses. This adap-
tive approach enables MADA to efficiently traverse the vast protein sequence space while
concentrating computational efforts on promising regions.

We introduce additional notation required for the MADA sequence manipulation proce-
dure. Let T > 1 denote the number of iterations for which MADA is executed. Recall that the
sequence length is ¢, and define I = {1,2,...,¢} as the set of all sequence positions. We denote
by Iiea C I the subset of positions that remain fixed throughout the optimization process,
with cardinality |Ifiyeq| = lixea- The corresponding set of all viable positions for mutation is
then defined as It = I'\ Ifixeq- The masking rate pg € (0, 1] controls the proportion of variable
positions that are masked at each iteration. Let N denote the population size maintained
throughout the sampling process.

Starting from the wild-type sequence x,;, MADA proceeds through the following itera-
tive procedure. At each iteration, we stochastically determine the number of positions M to
mask by sampling M = max {1, Binomial (| Iyt |, ps) }, where the maximum operation ensures

at least one position is masked. Building upon the work of Lu et al., who select mask locations
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uniformly at random from the entire sequence (as the authors do not consider hard-fix con-
straints), we propose MADA-DUCB, which extends MADA with informed and adaptive posi-
tion selection using reinforcement learning.'* This approach, detailed in Section enhances
the mutation strategy by introducing targeted position selection. For the current discussion,
we assume a set of mask positions S C I+ has been identified for mutation.

Mutation and Stabilization

Let the current iteration be t € {1,...,T}. Given a pool of N candidate sequences, which
contains duplicates, we generate a set of M unique mask positions S C I, for each unique
candidate. For these identified unique sequences, we employ a generative prior to propose
mutations at the masked sites, effectively filling these positions with new amino acids. Notably,
this operation leaves the hard-fix positions Ifceq and the unmasked positions unchanged. Our
transition kernel from the sequence before mutation z to the sequence after mutation z’
is g(z' | ) = p(S | x)pg(aly | xse), where xzg. represents the unmasked residues. However,
not all mutations will necessarily enhance fitness. Thus, we perform a single Metropolis-
Hastings step to stabilize the transition from x to z/. The acceptance ratio for this move is

given by a(z,r’) = min (1, };((?\:i )) - ‘;’;‘;((If{i(é/))//%)), where we accept the proposed sequence z’ if

U ~ Uniform[0, 1] < a(z,2'); otherwise, we retain the original sequence x. This process results
in an updated pool of N sequences, each having undergone mutation and stabilization.

Selection and Annealed Importance Resampling

After mutation and stabilization, we apply an MH rejuvenation kernel that leaves 7y g -, invari-
ant and then transition the population to my ., via annealed importance resampling. The

annealed importance weight for each sequence is given by w£t+1) X exp ((%+1 — T%) H ,\(xz-)).
To focus the particle population on high-potential candidates and amortize the cost of
generative prior calls, we employ a two-phase resampling strategy where a small set of K
prototypes is selected and then used to regenerate the full population. First, we select a subset
of K representative sequences, denoted as {z} K |, from the original N candidates {z;}Y.

j:17
t+1
D reflect

This selection process uses weighted sampling with replacement, where weights wg
each sequence’s importance. Then from these K prototypes, we reconstruct a full ensemble of
N sequences, {@(t“) N |, through uniform random sampling with replacement. The ensemble
encapsulates < K distinct sequence prototypes primed for the subsequent mutation phase.
Alternatively, instead of stochastic resampling, particles can be selected greedily by their
importance weights. Although this top-K selection procedure introduces a small bias through
the permanent elimination of low-weight particles, empirically, it often results in accelerated

convergence to high-fitness regions.

2.4. Informed Mutation Strategy via Reinforcement Learning-Based
Adaptive Mask Selection

In this section, we introduce a novel strategy to construct an informed proposal distribution for
selecting mutation sites based on reinforcement learning. This adaptive approach enhances the

443



Pacific Symposium on Biocomputing 2026

efficacy of the mutation process within the MADA sampling procedure. We frame the selection
of mask positions as a sequential decision problem aimed at maximizing cumulative reward.
This framework embodies the classic exploration-exploitation dilemma: balancing the selection
of positions that have historically yielded beneficial mutations against exploring positions that
may reveal unexpected improvements.

At each mutation step t,, = 1,...,T),, where T}, = K x T, the action involves choosing a
mask set Sy C Iyt of size M. This is equivalent to simultaneously pulling M arms in a multi-
armed bandit setting, constituting a combinatorial bandit problem. Following a mutation
based on mask S, , proposed by the generative prior py(-) and subjected to the Metropolis-
Hastings step, we observe a reward r; = (H)(z') — Hx(z))/M. We employ a key simplifying
heuristic by attributing the observed reward equally to each of the M chosen positions within
the mask S;, = {Stm7j}§\i1. This approach assesses the impact of individual positions, even
though they are selected and mutated in combination. Over many diverse trials, it allows the
estimated value of a single mutation site to approximate its current marginal contribution
across various contexts. Although this simplification does not capture interaction effects, it
provides a computationally tractable approach to an otherwise intractable search space of
(=) possible mask configurations.

For additional computational efficiency, our bandit algorithm is context-free, meaning we do
not provide the sequence context when making decisions. This makes our masking probability

identical for all particles, i.e., p(S | ) = p(S | 2/) for all z,2’. Consequently, the acceptance

exp(Ha(z')/7¢)
» exp(Hx(z)/7¢)

the MADA procedure, this creates a non-stationary reward distribution with the underlying
reward for each position constantly shifting as the sequence context changes. To address the
non-stationarity inherent in this setting, we employ the discounted Upper-Confidence Bound
(D-UCB) algorithm.?® This approach utilizes a discounted empirical average,

ratio simplifies to a(z,z’) = min (1 ) As our particle population evolves through

tm—1 tm—1 _t,,—1—0

2aomt VT rolyjes,y

N',tm (7) = /ytm_l_o]l €S, } ﬂ',tm = = - )
’ ; esd Njt,.(7)

where v € (0,1) is the discount factor. The choice of v creates a bias-variance trade-off: v — 1
yields low bias but slow adaptation to changes, while v — 0 offers fast adaptation but high
variance in estimates. In practice, we use v ~ 0.95 to balance adaptation speed with estimation
stability. The upper-confidence bound is then updated as

log 32521 Nig,, ()
UCBjs,, =  fljr, +a =l o
! L Njt,(7)

exploration

exploitation

where o > 0 is the exploration constant, balancing exploitation of known high-reward positions
with exploration of less certain options. We implement these discounted summations using a
recursive update scheme. Subsequently, we select the M positions with the highest upper-
confidence bounds to form our mask set for the current iteration.
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3. Experiments
3.1. Dataset

To evaluate the effectiveness of ProVADA+ in AAV capsid design, we leveraged a large-scale
publicly available dataset of experimentally characterized AAV2 variants originally reported
by Bryant et al.? The dataset comprises 293,574 variants derived through targeted random
mutagenesis of a 28-residue hyper-variable region in the VP3 capsid protein (positions 359-
387) found to play a critical role in capsid assembly, heparin binding, and immune recognition.
Its functional importance has made it a focal point for previous protein engineering efforts.?*

To quantify capsid viability, each variant in the dataset was evaluated using a high-
throughput production assay that measures the efficiency with which it assembles into a
capsid and encapsidates a viral genome. This was operationalized by comparing the relative
abundance of each variant in two distinct experimental libraries: a plasmid DNA input library
representing the initial pool of designed sequences, and a viral library composed of genomes
extracted from successfully assembled capsids.

For a given variant i, the viability was summarized by a “viral selection score,” defined
as the log-ratio between its normalized read count in the viral library (n;yira) and the cor-
responding count in the DNA library (n;pna), score; = log (%) This score serves as a
quantitative proxy for packaging fitness: Higher values indicate that a variant is preferen-
tially enriched in the viral output pool relative to its starting frequency, reflecting successful
capsid assembly and genome packaging. Notably, this enrichment-based metric captures both
structural integrity and functional assembly capacity of the AAV2 capsid, and was validated
through replicate experiments showing high reproducibility.?

Prior to use, we applied several preprocessing steps to the original dataset to ensure consis-
tency and validity. All variants containing premature stop codons or non-finite viral selection
scores were excluded. To resolve conflicting measurements, we removed duplicate sequences
that had inconsistent viral selection values across records. In addition, each sequence in the
dataset was annotated with its corresponding full-length VP1, VP2, and VP3 isoform se-
quences. After cleaning, our final dataset comprised 289,736 variants, with a distribution of
viral selection scores shown in Figure [2, We include a link to the processed version of this
dataset in Section [6l

3.2. AAV Viability Oracle

To support generative steering with a black-box oracle, we trained a predictive model to
estimate viral selection scores directly from AAV2 hyper-variable region sequences. As our
base architecture, we used ESM-Cambrian (ESMC), a 600-million parameter transformer from
the ESM family optimized for protein representation learning and sequence-level prediction
tasks.?> A five-layer MLP regression head was added on top of the final layer, which takes
the mean-pooled token embeddings to produce a final continuous score prediction. The model
was fine-tuned using mean squared error (MSE) loss on the processed dataset, which was
randomly split into three parts: training (60%), validation (20%), and test (20%) sets. On
the held-out test set, the model achieved strong performance, with an MSE of 1.4262, root
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mean squared error (RMSE) of 1.1942, mean absolute error (MAE) of 0.8761, and coefficient
of determination (R?) of 0.8738. We refer to this fine-tuned model as the ESMC oracle, and
use it in all subsequent experiments to both guide sequence generation and evaluate generated
sequences through in silico viability score prediction.

3.3. Structure-Conditioned AAV2 Capsid Design with ProVADA +

To generate novel AAV2 capsid variants with high predicted viability, we implemented an
AAV2-focused version of ProVADA+ that integrates a structure-based generative model with
our black-box viability oracle. This approach allows us to enforce a structural prior on the
generated sequences while simultaneously steering the design process toward our desired func-
tional objective.

We used ProteinMPNN-—an inverse folding model that designs amino acid sequences con-
ditioned on a fixed protein structure—as our generative prior. Given a backbone with masked
residues, ProteinMPNN proposes plausible amino acid substitutions. As a starting point, we
first predicted the structure of the wild-type AAV2 VP3 protein using Boltz-2.?> This predicted
structure was then used as a fixed backbone scaffold for ProteinMPNN throughout all sub-
sequent generations. For the fitness oracle (F(z)), we utilize the ESMC oracle (Section
to provide the predicted viral selection score for any given sequence variant. The search was
guided by the composite objective (H,(z)) defined in Section [2.1} which balances the predicted
viability score with a BLOSUMG62-based sequence similarity penalty to maintain proximity to
the wild-type sequence. The design process focused on the 28-residue hyper-variable region
(positions 359-387). All positions outside this region were held constant, and only positions
within the hyper-variable region were masked for redesign. We ran the design trajectories with
three different seeds for both the MADA and MADA-DUCB sampling variants.

4. Results
4.1. Baseline Analysis: In Silico Selection of Random Mutagenesis

To establish a performance baseline and contextualize the difficulty of the AAV2 capsid design
task, we first evaluated a “generate-and-filter” strategy. This approach is analogous to the
‘model-selected’ approach used in Bryant et al., where a machine learning model is used
to screen a large pool of randomly generated sequences,® and corresponds to the rejection
sampling baseline presented in Lu et al.'* A workflow without ProVADA+ could similarly use
our ESMC oracle to rank random mutants and select the highest-scoring candidates in silico.
We generated 30,000 random variants at each mutational distance (k) for k = 1,3,5,7 from the
wild-type AAV2 hyper-variable sequence and used the ESMC oracle to obtain predicted viral
selection scores. We then selected the top 2% (600 variants) from each mutational distance.
(Note: for k = 1, there are only 19 x 28 = 532 possible variants, so all were included).

The results, summarized in Figure A, demonstrate that this undirected random muta-
genesis approach is an inefficient strategy for improving capsid viability. As the number of
mutations increases, the distribution of predicted scores shifts progressively toward lower,
more deleterious values. Notably, while some variants with three mutations (k = 3) achieve
high predicted scores, the population exhibits very little sequence diversity, clustering tightly
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near the wild-type sequence. This in silico finding directly corroborates the experimental re-
sults of Bryant et al., who reported that only 10% of randomly chosen variants with 2 to 10
mutations were viable—a figure that plummeted to just 0.3% for variants with six or more
mutations.> Our baseline analysis similarly underscores the ruggedness of the AAV2 fitness
landscape and confirms that a naive, undirected search is highly unlikely to yield improved
variants. This motivates the need for more sophisticated, oracle-guided generation strategies

like ProVADA +.
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Fig. 3. Joint distributions of predicted viral selection score and similarity to wild-type of the se-
quences generated through A) In silico selected variants from random mutagenesis; B) ProVADA-
guided design. Variants generated via ProVADA+ consistently exhibit high viral selection scores
while maintaining adequate diversity.
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4.2. MADA and MADA-DUCB Convergence

To assess the impact of our informed mutation strategy, we compared the convergence perfor-
mance of the standard Mixture-Adaptation Directed Annealing (MADA) algorithm against
our enhanced variant, MADA-DUCB, which employs a reinforcement learning approach for
adaptive mask selection. We tracked the average combined fitness objective, Hy(x), for the
population of sequences over 200 design iterations. The experiment was conducted using three
independent seeds for each method to ensure the robustness of our findings.

The results are summarized in Figure [} Both sampling methods successfully guide the
design process toward sequences with significantly improved fitness scores, demonstrating
the overall effectiveness of the ProVADA framework. However, the MADA-DUCB variant
exhibits superior sampling efficiency. As shown by the steeper initial slope of its convergence
curve, MADA-DUCB achieves higher fitness values much earlier in the trajectory compared
to the standard MADA sampler, which relies on uniform random masking. This accelerated
convergence highlights the benefit of intelligently targeting mutation sites that are more likely
to yield high-reward outcomes. While both methods eventually approach a similar fitness
plateau, the adaptive strategy of MADA-DUCB enables a more rapid and efficient exploration
of the high-dimensional sequence landscape to identify optimal candidates.
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Fig. 4. A) Schematic overview of the informed mutation position selection procedure (D-UCB).
B) Comparison of trajectory plots between MADA and MADA-DUCB. The plot shows the mean
composite fitness objective H)(x) with error bands over 200 design iterations. Lines represent the
mean across three independent runs for both sampling methods.

4.3. ProVADA+ Steers Generation Towards High- Viability Sequences

To better understand the trajectory of the guided design process, we plot the sequence pop-
ulations at four different stages throughout a MADA-DUCB sampler run. Figure shows
the joint distribution of predicted viral selection score and sequence similarity (BLOSUMG62-
informed Hamming distance divided by the hyper-variable region length) to the wild-type at
different stages of the design trajectory. The process begins with a broad exploration phase
(Iterations 0-49), where the sampler generates a diverse set of sequences centered around the
wild-type reference. In this initial stage, most variants have low predicted viral selection scores,
many of which are predicted to be less viable than the wild-type. As the trajectory progresses
(Iterations 50-150), the population distribution systematically shifts toward the right, indicat-
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ing a steady increase in predicted viability scores. In the final iterations (151-200), the sampler
converges on a concentrated population of high-quality sequences. These final candidates ex-
hibit significantly improved predicted viral selection scores, while maintaining an adequately
diverse range of sequence similarity (0.8-0.95) to the wild-type.

5. Discussion

In this work, we introduce ProVADA+, an enhanced framework that provides substantial im-
provements in flexibility, biological relevance, and algorithmic efficiency to ProVADA. First,
we incorporate fixed residue constraints to preserve important functional sites and augment
the original Hamming distance with a biologically-informed BLOSUMG62-based sequence di-
vergence penalty, thereby generating variants with improved biochemical plausibility. Second,
we propose an informed and adaptive strategy for selecting which residue positions to mu-
tate. This approach leverages the discounted Upper-Confidence Bound (D-UCB) algorithm
to facilitate a more efficient and targeted exploration of the sequence space. Collectively,
these methodological advances yield a more powerful and flexible framework for generating
optimized protein sequences, with the potential to accelerate the rational design of novel pro-
teins for biotechnological and therapeutic applications. We demonstrate the superiority of
ProVADA+ on in silico adaptation of AAV capsids for viability over the widely-used targeted
random mutagenesis.

This work opens several directions for future investigation. For example, alternative algo-
rithms could be employed to identify high-viability reference sequences that differ substantially
from the wild-type AAV sequence, serving as improved initialization points for the MADA al-
gorithm to explore more distant regions of the sequence space. Furthermore, the modularity of
the ProVADA+ framework is particularly well-suited for multi-objective optimization through
composable guidance. The composite objective function, Hy(x), could be readily extended to
incorporate a weighted combination of multiple, independent fitness oracles. Each oracle could
be trained on data from a distinct experimental assay, representing a different desired func-
tional property—such as transduction efficiency, tissue tropism, or low immunogenicity. For
instance, in AAV engineering, one could simultaneously steer the generative process with the
current viability oracle, a second oracle trained on an in vivo screen for heart-specific tropism,
and a third designed to minimize predicted T-cell epitopes. In future work, we plan to inte-
grate additional stability-related scoring functions and incorporate uncertainty metrics into
oracle predictions to prioritize variants for wet laboratory validation to enable more complex
designs. This approach would allow researchers to create a bespoke fitness landscape tailored
to a complex set of design criteria and thus enable the generation of highly specialized variants
that jointly satisfy multiple functional constraints.

6. Code and Data Availability

The implementation of ProVADA+ is publicly available at the following GitHub repository: €
https://github.com/SUwonglab/ProVADA.| In addition, the preprocessed version of the AAV2
capsid viability fitness dataset, originally reported in Bryant et al.,? is available at the following
Hugging Face link: & https://huggingface.co/datasets/bviggiano/aav2_capsid_viability.
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