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The gene set analysis (GSA) is a foundational approach for uncovering the molecular functions
associated with a group of genes. Recently, LLM-powered methods have emerged to annotate gene
sets with biological functions together with coherent explanatory insights. However, existing studies
primarily focus on proprietary models, which have been shown to outperform their open-source
counterparts despite concerns over cost and data privacy. Furthermore, no research has investigated
the application of advanced reasoning strategies to the GSA task. To address this gap, we introduce
Gene-R1, a data-augmented learning framework that equips lightweight and open-source LLMs with
step-by-step reasoning capabilities tailored to GSA. Experiments on 1,508 in-distribution gene sets
demonstrate that Gene-R1 achieves substantial performance gains, matching commercial LLMs. On
106 out-of-distribution gene sets, Gene-R1 performs comparably to both commercial and large-scale
LLMs, exhibiting robust generalizability across diverse gene sources.
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1. Introduction

Gene set analysis (GSA) is a foundational approach for revealing the molecular functions associated
with groups of genes involved in physiological processes, healthcare, and disease'-2. By identifying
the biological functions enriched in gene sets, GSA provides critical insights for elucidating disease
mechanisms and discovering therapeutic targets®>*. Such mechanistic insights would greatly advance
our understanding of functional genomics.

Over its development, GSA has progressed through two notable methodological paradigms:
classical functional enrichment analysis and emerging solutions based on large language models
(LLMs). The traditional methods®® typically compare gene sets against predefined categories in
manually curated databases such as Gene Ontology (GO)’ and Molecular Signatures Database
(MSigDB)?® to identify functions that are statistically significantly enriched. The LLM-powered
approaches aim to generate biological functional annotations and coherent explanatory narratives
for gene sets through instruction learning®® and language agents'”.

Recently, advanced LLMs incorporating reasoning processes have shown superior performance
across various tasks'"'?. However, most of these reasoning models are commercial and subscription-
based services. In addition to cost considerations, the handling of highly sensitive data such as pre-
clinical differentially expressed genes and private gene sequences raises concerns about uploading
to commercial platforms where users have limited control over data governance'?. Consequently, to
reduce the cost and address data privacy concerns, recent studies!*!> have turned to fine-tuning the
open-source LLMs using reinforcement learning policies like online direct preference optimization
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(DPO)'¢ and group relative policy optimization (GRPO)!”, so that these systems can be deployed
locally. Nevertheless, no studies have yet explored reasoning-based solutions specifically for the
GSA task. In addition, despite evidence that domain-specific knowledge is crucial for the effective
LLM fine-tuning'®!?, most of current fine-tuned LLMs is trained on general-domain data collected
from the internet, which limits their effectiveness in specialty applications such as biomedicine.

To address this shortcoming, we propose Gene-R1, a data-augmented fine-tuning framework
that endows lightweight, open-source LLMs with step-by-step reasoning capabilities tailored to the
GSA task, aiming to close the performance gap with commercial reasoning LLMs. As illustrated in
Fig.1, Gene-R1 comprises three modules: knowledge warm-up (KW), reasoning activation (RA),
and task alignment (TA). The KW module augments the backbone model with curated knowledge
via the pre-training strategy. Using this warmed-up model as the student model, the RA module
instills step-by-step inference capabilities by fine-tuning on supervised reasoning examples distilled
from the teacher model. Finally, the TA module employs GRPO as the reinforcement learning policy
to ensure robust performance in both accuracy and output preferences, with rewards reflecting soft
matching to gold-standard function names and strict alignment of outputs and reasoning processes.
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Fig. 1. The overall framework of Gene-R1, which consists of three modules designed to fine-tune lightweight Llama
models for the GSA task. These modules are knowledge warm-up, reasoning activation, and task alignment. These
modules play a systematic role for incorporating curated knowledge, enhancing reasoning capabilities, and refining the
output format of the fine-tuned model, respectively.

We evaluate Gene-R1 in two scenarios: on gene sets whose functional name distributions match
those of the fine-tuning data in the RA module (in-distribution); on gene sets drawn from different
distributions (out-of-distribution). In in-distribution evaluation, Gene-R1 outperforms all baselines,
demonstrating the effectiveness of the proposed training strategy in instilling step-by-step reasoning
capabilities into lightweight LLMs. Meanwhile, in out-of-distribution evaluation, Gene-R1 matches
the performance of both commercial LLMs and large-scale models, underscoring its robust
generalizability across diverse gene-set sources while requiring fewer computational resources.
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Overall, our contributions are summarized as follows: (1) We introduce Gene-R1, the first
attempt to empower lightweight LLMs with step-by-step reasoning capabilities for the gene set
analysis task through data-augmented fine-tuning, which closes the performance gap between open-
source and best-performing commercial LLMs. (2) We demonstrate the benefit of priming backbone
LLMs with curated domain-specific knowledge for gene set analysis. (3) We validate the robust
generalization of Gene-R1 by evaluating it on gene sets from multiple biological sources and across
different lightweight LLM variants.

2. Related Works

Our study primarily intersects gene set analysis and the fine-tuning of large language models.

Gene set analysis is a foundational computational approach in bioinformatics that interprets
gene expression data by identifying coordinated changes within the predefined groups of genes.
Classical methods, most notably Gene Set Enrichment Analysis (GSEA)®, compare the expression
levels of gene sets against curated biological functions documented in the specialized databases.
Various tools have been developed for GSEA: g:Profiler® performs functional profiling by mapping
genes to curated functional resources and detecting statistically significant enrichments, while
Enrichr?® provides a search engine and extensive libraries of annotated gene sets.

Recently, large language models have become valuable tools for GSA, owing to their powerful
ability to capture biological context and generate detailed explanations. Jin et al*! introduced
GeneGPT to tackle genomic-related question-answering tasks by augmenting LL.Ms with external
bioinformatics tools. Wu et al.?? presented AutoGen that allows users to build LLM applications
like genomic question-answering by composing multiple agents. Hu et al.? benchmarked five LLMs
using instruction and few-shot learning for GSA. Wang et al.!® developed the first-of-its-kind Al
agent for the same task, which employs multiple domain-specific databases to self-verify the raw
outputs of an LLM. Additionally, SPINDOCTOR? exploits the summarization capabilities of LLMs
to extract biologically plausible processes from gene-function narratives.

Fine-tuning LLMs has been a promising way to boost the performance of LLMs on specialized
tasks, overcoming the generalization limits of off-the-shelf models. Two efficient approaches are
widely used: supervised fine-tuning (SFT) and reinforcement learning (RL). In SFT, approaches
such as MedAlpaca®® show that modest amounts of curated biomedical question-answering pairs
can align general LLMs with domain-specific tasks, improving factual grounding and response
style. ClinicalCamel?* scales this paradigm to more than 1M instructions annotated by clinicians,
achieving competitive results on multiple biomedical question-answering datasets. Meanwhile, the
RL strategies can further refine LLMs by optimizing generation quality to match domain-expert
preferences. For instance, Med-PaLM 225 combines instruction tuning with physician-provided
reward models, surpassing 85% answer accuracy on USMLE-style exams. DeepSeek!! employs the
GRPO policy to finetune the LLMs and obtain the state-of-the-art performance across multiple
tasks. In the biomedical domain, UltraMedical?® collections facilitate the fine-tuning of several
advanced medical LLMs based on the Llama-3 series. Recently, cell-01?” trained a 7B-parameter
LLM for the CellPuzzles task by equipping the RL with batch-level rewards.
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3. Methodology

As illustrated in Fig. 1, Gene-R1 comprises three steps: knowledge warm-up, reasoning activation,
and task alignment. The components are designed to incorporate prior gene-relevant knowledge,
learn biological reasoning patterns, and align with format-specific output preferences, respectively.

The KW module aims to equip the model with a foundational understanding of gene symbols
and pre-defined biological terminology. Most existing open-source LLMs are fine-tuned on general-
domain corpora so that they are rarely exposed to domain-specific knowledge such as gene
annotations. As a result, without prior exposure or contextual grounding, gene symbols are typically
treated as meaningless strings by these LLMs and are likely to induce hallucination. In our study,
we hypothesize that LLMs can significantly benefit from early-stage exposure to gene-relevant
knowledge, and therefore, we collect gene summaries and their topological associations with other
biological terminology from several databases (e.g., CTD?®, UniProtKB?, etc.). These data are
consolidated into a gene-centric relational dataset {d;})_, as shown in Tab.1, enabling the model to
learn meaningful associations between gene symbols and their biological contexts.

Based on this dataset, we leverage pre-training to incorporate domain-specific knowledge.
Each instance d; is considered as a declarative sentence to optimize the parameter set of backbone
LLMs by minimizing the token-level likelihood probabilities. After pre-training, the model is better
able to recognize the gene symbol rather than hallucinating a factually incorrect definition. For
example, the base model (Llama-3) recognizes GHRHR as “a receptor that regulates the expression
of ERAD-related genes”, whereas the pre-trained model can correctly recall gene knowledges and
output “The gene GHRHR is involved in growth hormone signaling and growth regulation.”

Table 1. Statistics of data using for the Gene-R1 training.

# Source # Instance Description
KW via model pre- 3 244 754 Gene-centric relational data from GO, UniProtKB, CTD,
training ’ Reactome®”, Wikipathway?!, Panther’?, COURM??, and NCBI**
RA via model fine- 3 9.873 Gene sets with reasoning process generated by GPT-ol. These
tuning ’ gene sets are sampled from GO:BP, GO:MF, and GO:CC.
TA via reinforcement 5 13.327 Gene sets with ground-truth labels from source databases: GO,
learning ’ Omics analysis platform®’, PubMed, Reactome, and MSigDB

Building upon the pre-trained model, the RA module further enables the model to perform
reasoning with the step-by-step investigations for gene utilities and associations.

Due to the lack of existing reasoning annotations and the impracticality of manually curating
step-by-step reasoning processes for gene sets, we employ the ol model (GPT) to automatically
generate reasoning chains for gene sets derived from the three major branches of the GO database.
Specifically, we build a supervised reasoning corpus {q;,7;, f;}’, for model fine-tuning as shown
in Tab.1, where each instance includes a gene-set query (q), a step-by-step reasoning process (1),
and the biological function (f) generated from reasoning process. The prompt template used for
GPT-ol to generate such instances is provided in Tab.2. Importantly, to ensure high-quality
supervised data, we only retain those instances in which the generated function achieves a similar
score greater than 0.7 with the ground-truth label. The resulting dataset is then used to fine-tune the
pre-trained model, enabling it to learn biologically grounded reasoning patterns between gene sets
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and their corresponding biological functions. After fine-tuning the model on the supervised
reasoning corpus, the model could make biological inference steps for the input gene set such as
“the CRY2 gene functions in the regulation of gene expression in response to cellular stress, which
impacts the regulation of phosphate homeostasis.”

After fine-tuning, the model is capable of generating functional names for given gene sets based
on step-by-step reasoning. However, the generated names may differ significantly from expert-
curated ground-truth labels, and the reasoning process may also be presented in a fragmented or
disorganized manner. To address these limitations, we introduce the TA module, equipped with the
GRPO policy, with the goal of enhancing both prediction accuracy and output coherence.

Specifically, to improve prediction accuracy, we construct a benchmark dataset {g;, a;} |*,,
where each g; represents a gene set and a; denotes its ground-truth annotation, as shown in Tab.1.
This dataset is used to train a reinforcement learning algorithm that guides the function name
f(g;), generated by the fine-tuned model, toward the correct annotation a;. To capture nuanced
alignment between predicted and reference annotations, we defined a soft-match reward function-
within the GRPO framework, accounting for both similarity and lexical overlap between f(g;) and
a;. The soft-match function integrates the MedCPT?¢ score for semantic similarity and the longest
common subsequence (LSC)*7 score for lexical alignment. In parallel, to ensure the output adheres
to the expert-preference format that includes a “Process” identifier for the prominent biological
function and uses a “<think></think>" tag pair to separate different reasoning steps, we retain the
exact-match reward function used in the original GRPO framework. This dual-reward strategy can
be defined as follows, allowing the model to optimize both the semantic correctness and structural
compliance.

R_Score = a * medcpt(f (91, a;) + B * Isc(f (91, a;) + (P(f(g:)) + T(f (9:))
where aand [ are two hyperparameters controlling weights of the two rewards. P outputs 1 if the
model output contains the correct answer format, and T outputs 1 if the model output follows the
step-by-step reasoning format.

Table 2. The template for the GPT-o1 model to generate reasoning corpora for gene sets.

System: You are an efficient and insightful assistant to a molecular biologist.

User: Perform insightful reasoning for the interacting proteins and write a critical analysis of the biological
functions based on your reasoning.

Propose a brief name for the prominent biological functions performed by the system, such as biological process,
molecular function, cellular component, and so on.

The proposed name and critical analysis should:

Be concise; avoid unnecessary words.

Be textual; do not use format symbols such as , or other tokens.

Be specific; avoid overly general statements such as "the proteins are involved in various cellular processes."
Be factual; do not editorialize.

For each reasoning point and the critical analysis, describe the supporting information. They should:

Be comprehensive; collect various gene functions from different aspects, including gene summaries, enrichment
analysis, gene complexes, gene domains, pathway analysis, and more.

Be complete; ensure no necessary or helpful genes in the given gene set are missed.

Be convincing; do not generate ambiguous statements for any genes.

Be ample; provide long, high-quality, and credible evidence for the proposed process name.

Here is the gene set: {genes}

The analysis must include the following format:

1. Put the name at the top of the analysis as " Process: <name>"".

2. The reasoning process must be placed at the bottom of the analysis, starting with the message: "Reasoning: ".
3. Each reasoning step should be organized within the " <think></think>"" tags.

nikn o nn
, -
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4. Experiments

Our experiments are designed to answer the following questions:

Q1. How does the Gene-R1 perform compared with both the state-of-the-art open-source and
commercial LLMs?

Q2. How well does Gene-R1 generalize across different gene sets (in-distribution vs. out-of-
distribution evaluation)?

Q3. What are the contributions of each individual module within Gene-R1?

4.1. Datasets

For model evaluation, we curated five independent datasets from the GO database, proteomics
analysis, and a molecular function database repository. We made sure none of the test data was
previously used during the development phase of Gene-R1. As shown in Tab.3, all GO datasets are
employed for in-distribution evaluation, while the other two datasets are reserved for out-of-
distribution assessment.

Table 3. Statistics of data used for the Gene-R1 evaluation.

# Sets #Genes in a Set Avg. #Genes Source
GO:BP 1,000 3 to 456 48.3 Literature curation
GO:MF 340 1 to 5,973 78.2 Literature curation
GO:CC 168 2to 13,075 249.5 Literature curation
NeST 50 5t0323 2.2 Proteomics analysis
MsigDB 56 4 to 200 3.0 Molecular function

4.2. Experimental Setting

Task definition: Given a gene set (S = {g;|/_}), our goal is applying the fine-tuned LLM (£)
on § to generate the function (F) and explanatory context (C) through a step-by-step reasoning.

Evaluation metrics: To comprehensively evaluate Gene-R1, we employed two complementary
metrics: ROUGE (Recall-Oriented Understudy for Gisting Evaluation)’’ to measure the lexical
overlap and Similarity Score to quantify the semantic relevance. To mitigate potential bias inherent
to a single semantic encoder, we calculated semantic similarity using three biomedical encoders—
MedCPT?%, SentenceBERT?®, and SapBERT*—and reported the average scores.

Implementations: All training and evaluation are implemented with python 3.13.5 and torch
2.7.1 on the AWS (Amazon Web Services) services (8 GPU cards). Other required software
packages are transformers (4.53.2), trl (0.19.0), accelerate (1.8.1), deepspeed (0.17.2).

4.3. Backbone and comparison LLMs

After investigating criteria involving accessibility, fine-tuning cost, performance, and general
usability, we select the Meta Llama*® as the backbone LLMs for Gene-R1. Specifically, we use
Llama3.1 (8B parameters) and Llama3.2 (1B and 3B parameters) to demonstrate the flexibility of
proposed fine-tuning pipeline. Furthermore, we compare Gene-R1 with the aligned Llama models
and widely used commercial GPT models: GPT-4, GPT-40, o1, and 03-mini. All Llama models are
accessed from the hugging-face community, while the GPT models are provided by the Azure API.
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5. Results

5.1. In-distribution Evaluation

To address Q1 that is related to the accuracy of Gene-R1, we evaluate a range of LLMs on 1,508
gene sets whose label distributions matched those of the fine-tuning data used in the RA module.

Table 4. Performance of Gene-R1 on gene sets derived from three branches of the GO database (In-distribution
Evaluation). R.-(*) denotes the ROUGE score under different metrics. Score (avg.) represents the semantic similarity
score averaged across MedCPT, SentenceBERT, and SapBERT. The best results for each dataset are highlighted in
bold. A denotes the relative improvement calculated as (bold — x)/x * 100%. The improvements are significant (p-
value < 0.05) according to a two-tailed paired t-test at a 95% confidence interval.

Models R.-L A R.-1 A R.-2 A Score (avg.) A
Llama3-1B 0.107 158.9%  0.109 165.1%  0.049 122.4% 0.468 38.2%
Llama3-3B 0.083 233.7%  0.087 232.2% 0.011  890.9% 0.505 28.1%
Llama3-8B 0.133 108.3%  0.146 97.9% 0.025  336.0% 0.562 15.1%
Llama3-70B 0.196 41.3% 0.212 36.3% 0.062 75.8% 0.611 5.9%
~ GPT4 0.184 50.5% 0.201 43.8% 0.049  122.4% 0.614 5.4%
](3}1(3) GPT-40 0.184 50.5% 0.207 39.6% 0.036  202.8% 0.629 2.9%
ol 0.164 68.9% 0.178 62.4% 0.040 172.5% 0.626 3.4%
03-mini 0.154 79.9% 0.167 73.1% 0.033  230.3% 0.614 5.4%
Gene-R1(1B) 0.225 23.1% 0.232 24.6% 0.075 45.3% 0.617 4.9%
Gene-R1(3B) 0.229 21.0% 0.238 21.4% 0.080 36.3% 0.623 3.9%
Gene-R1(8B) 0.277 / 0.289 / 0.109 / 0.647 /
Llama3-1B 0.028 1057.1% 0.028 1067.9% 0.002 7900.0% 0.470 45.7%
Llama3-3B 0.095 241.1%  0.095 244.2% 0.022 627.3% 0.538 27.3%
Llama3-8B 0.099 2273%  0.102  220.6%  0.027  492.6% 0.564 21.5%
Llama3-70B 0.114 1842% 0.114 186.8%  0.024  566.7% 0.586 16.9%
GO: GPT-4 0.100 224.0%  0.101  223.8%  0.023  595.7% 0.588 16.5%
MF. GPT-40 0.096 237.5% 0.097 237.1%  0.020  700.0% 0.584 17.3%
ol 0.147 1204%  0.150 118.0%  0.037 332.4% 0.632 8.4%
03-mini 0.119 172.3%  0.120 172.5%  0.029  451.7% 0.611 12.1%
Gene-R1(1B) 0.315 2.9% 0.318 2.8% 0.122 31.1% 0.661 3.6%
Gene-R1(3B) 0.316 2.5% 0.319 2.5% 0.122 31.1% 0.661 3.6%
Gene-R1(8B) 0.324 / 0.327 / 0.160 / 0.685 /
Llama3-1B 0.039 546.2%  0.039 564.1% 0.008 962.5% 0.449 43.9%
Llama3-3B 0.075 236.0% 0.076  240.8%  0.013  553.8% 0.497 30.0%
Llama3-8B 0.092 173.9%  0.093 178.5%  0.028  203.6% 0.536 20.5%
Llama3-70B 0.091 176.9%  0.091 184.6%  0.022  286.4% 0.546 18.3%
GO: GPT-4 0.093 171.0%  0.092 181.5% 0.016 431.3% 0.562 14.9%
CC. GPT-40 0.105 140.0%  0.105 146.7%  0.020  325.0% 0.573 12.7%
ol 0.144 75.0% 0.148 75.0% 0.038 123.7% 0.609 6.1%
03-mini 0.139 81.3% 0.142 82.4% 0.031 174.2% 0.598 8.0%
Gene-R1(1B) 0.222 13.5% 0.226 14.6% 0.054 57.4% 0.618 4.5%
Gene-R1(3B) 0.143 76.2% 0.143 81.1% 0.035 142.9% 0.578 11.8%
Gene-R1(8B) 0.252 / 0.259 / 0.085 / 0.646 /

As shown in Tab.4, Gene-R1 consistently outperforms all baselines on both ROUGE and
semantic-similarity metrics. Specifically, compared to Llama3 models, Gene-R1 increased ROUGE
scores by 133.1%, 133.9%, and 257.3% in average, respectively. Compared to the GPT series
reasoning models, it improved these metrics by 82.0%, 77.5%, and 192.8% in average. The marked
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gain in ROUGE-2 indicates that the biological function names predicted by Gene-R1 exhibit
substantially longer n-gram overlaps with the gold-standard labels, demonstrating that our fine-
tuning workflow effectively captures distributional patterns for precise sequence generation. This
high ROUGE performance also translates into superior semantic alignment. By averaging similarity
scores from MedCPT, SentenceBERT, and SapBERT, we found that Gene-R1 achieved gains of
5.9%, 16.9%, and 18.3% respectively over Llama-based models and 2.9%, 8.4%, and 6.1%
respectively over GPT-based models across the three evaluation datasets. These results confirm that
Gene-R1 closes the performance gap with commercial LLMs.

Additionally, the paired comparisons between the backbone models and Gene-R1 at the 1B, 3B,
and 8B parameter scales show that our fine-tuning workflow preserves strong performance across
Llama variants of different sizes. Specifically, Gene-R1 consistently delivers over 15% gains in
terms of the semantic similarity scores on every evaluation dataset, underscoring its robustness. This
reliability opens new avenues for applying Gene-R1 to a wide range of tunable and open-source
LLMs for the specificized downstream task, thereby being able to shorten development cycles.

5.2. Out-of-distribution Evaluation

To address Q2, which concerns the generalization of Gene-R1, we evaluated on 106 gene sets
curated by Hu et al.? and filtered by Wang et al.'° These gene sets are annotated with labels that
exhibit distributions distinct from those used during the RA module.

Table 5. Performance comparison between Gene-R1 and other LLMs on out-of-distribution datasets. The best results in
different datasets are bold. “n.s.” denotes no significant difference (p-value > 0.05) according to a two-tailed paired
t-test at the 95 % confidence level. Note that we only compute the p-value for the comparable results.

Datasets Models ROUGE-L ROUGE-1 ROUGE-2 Similarity Score (avg.)
Llama3-1B 0.149 0.154 0.056 0.522
Llama3-3B 0.152 0.162 0.033 0.570
Llama3-8B 0.197 0.210 0.073 0.610
Llama3-70B 0.220 0.234 0.071 0.633 (n.s.)
GPT-4 0.239 0.252 0.082 0.638 (n.s.)
NeST GPT-40 0.185 0.200 0.065 0.611
ol 0.153 0.156 0.028 0.618
03-mini 0.179 0.190 0.035 0.625
Gene-R1 (1B) 0.249 0.252 0.071 0.630
Gene-R1 (3B) 0.238 0.243 0.091 0.635
Gene-R1 (8B) 0.216 0.223 0.089 0.616
Llama3-1B 0.033 0.033 0.005 0.463
Llama3-3B 0.164 0.164 0.030 0.563
Llama3-8B 0.177 0.177 0.037 0.596
Llama3-70B 0.195 0.195 0.070 0.611
GPT-4 0.239 0.239 0.074 0.628 (n.s.)
MsigDB GPT-40 0.220 0.220 0.046 0.632 (n.s.)
ol 0.167 0.167 0.031 0.625
03-mini 0.165 0.165 0.011 0.605
Gene-R1 (1B) 0.177 0.177 0.041 0.605
Gene-R1 (3B) 0.214 0.218 0.077 0.622
Gene-R1 (8B) 0.203 0.203 0.068 0.625
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As shown in Tab.5, although Gene-R1 does not outperform all comparison methods on every

evaluation metric, it is consistently comparable to the best baselines across both datasets. Notably,
significance tests on similarity scores between Gene-R1 and the top-performing LLMs reveal no
significant differences, indicating that Gene-R1 achieves performance on par with both commercial
LLMs such as GPT-4 and large-scale models like Llama3.3-70B. It is also worth mentioning that
Gene-R1 consistently surpasses the ol and 03-mini, demonstrating that the task-specific reasoning
generated by Gene-R1 better aligns with biological functions than general-purpose reasoning LLMs.
These findings highlight the strong generalization capability of Gene-R1 for diverse gene sets.

5.3. Ablation Experiments

Additional ablation experiments were conducted to address Q3 by investigating the individual
contributions of each module within Gene-R1.
We designed an incremental fine-tuning setup in which modules are introduced one at a time,
enabling us to quantify their independent effects on model performance. Specifically, we produced
two intermediate variants of Gene-R1: one using only the gene-centric relational data from the
knowledge warm-up module (i.e., w/ KW) and another with both realtional data and the supervised
reasoning data from the reasoning activation modue (i.e., w/ KW&RA). To ensure robust evaluation,
we applied different variants acorss multiple backbone models (Llama 1B, 3B, and 8B) and datasets
(in-distribution and out-of-distribution). The results are summarized in Fig.2.
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Fig. 2. Performance comparison of the individual module contributes to Gene-R1. The experiments were conducted
using Llama with 1B, 3B, and 8B parameters, respectively. The y-axis represents the performance score, while the x-
axis indicates the sequential addition of modules to the baseline backbone model.
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On the in-distribution datasets (i.e., GO:BP, GO:MF, and GO:CC), each module demonstrated
a clear and consistent positive contribution to the performance of Gene-R1 compared to the baseline
model. In constract, the results on the out-of-distribution datasets (i.e., NeST and MsigDB) revealed
that no individual module consistency improved performance in solation. Instead, the combination
of all three modules (i.e., w/ KW&RA&TA) provided systematic improvement. Notably, the most
significant performance gain was observed when the TA module was incorporated, underscoring
the critical role of reinforcement learning in enhancing the effectiveness of Gene-R1. For example,
on the GO:MF benchmark, the model using Llama3.1-8B backbone achieveed a 10.3 percentage
point increase in semantic similarity and a 0.217 absolute gain in ROUGE-L.

6. Discussion

Advantages of data augmentation for lightweight LLM fine-tuning. In this work, we present
Gene-R1, an effective pipeline that enables open-source LLMs with fewer parameters to achieve
performance comparable to larger models, including popular commercial alternatives. The high cost
and opaque nature of commercial LLMs raise concerns including budget and data privacy, which
hinder their deployment in real world settings. Although recent fine-tuned LLMs have shown
promise in domain-specific tasks, they often generate fabricated content such as incorrect definitions
of technical terms, due to limited exposure to specialized knowledge. In contrast, Gene-R1
incorporates domain knowledge to its fine-tuning workflow that uses accessible lightweight open-
source LLMs. This allows local deployment with limited computational resources and can reduce
domain-specific hallucinations and inference expenditure.

Different reward functions for reinforcement learning. Reinforcement learning is crucial for
Gene-R1’s performance. To further investigate this component, we examined how the choice of
reward modeling and reward function design impacts the performance of Gene-R1.

Backbone model: Llama 3.2- 3B Backbone model: Llama 3.2-1B

B Gene-R1w/DPO 0.625

0.7 ~
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Fig. 3. Alation experiments for Gene-R1. (a) The comparison for Gene-R1 with different reinforcement learning
settings. (b) The results of different approaches for the incorporation of gene-centric relational data. “KW & RA”
denotes merged strategy, while “KW -> RA” denote the cascade strategy. “*” indicates the significant improvement (p-
value < 0.05) according to a two-tailed paired t-test at a 95% confidence interval, while “n.s.” indicates there is not
significant.
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We first compare the GRPO with standard online DPO, where the reward model is trained on
pre-generated responses®. Then, we relax the reward formulation by introducing a “soft-match”
component that assigns partial credit for outputs that are semantically related to the gold-standard
labels. For this evaluation, we use the most stable model (Llama 8B) and the GO:BP bechmark as
shown in Fig.2. As summarized in Fig.3 (a), the GRPO with soft-match rewards consistently
outperforms both the online DPO and GRPO with only exact-match rewards.

Different strategies to incorporate domain-specific knowledge. This work has shown that
domain-specific knowledge provides the foundational biological context necessary for Gene-R1’s
step-by-step reasoning. To explore the optimal strategy for injecting the gene-centric relational
knowledge into model training, we investigated two separate approaches: the Cascade strategy
(employed in Gene-R1) and a Merged strategy.

In the alternative merged approach, relational data are appended directly to the reasoning
exemplars and introduced solely during the RA stage. This allows the model to learn structural
knowledge and reasoning patterns simultaneously, without a dedicated pre-training phase. We
evaluate them on two representative benchmarks containing the largest number of gene sets: GO:BP
(in-distribution) and MsigDB (out-of-distribution). The results shown in Fig.3 (b), demonstrating
that the cascade strategy yields only modest improvements over the merged approach in terms of
both similarity score; however, most of these differences are not statistically significant.

Error analysis. In addition to being constrained by the inherent limitations of the Llama model
for the gene set analysis task, the primary source of errors in Gene-R1 comes from its informal
reasoning processes. As shown in Tab.6, the models fail to consistently achieve 100% accuracy in
output formatting. Some outputs either lack a clearly defined biological function name or fail to
adhere to a valid step-by-step reasoning structure, ultimately resulting in incorrect predictions. A
promising solution to this shortcoming is to manually create a subset of high-quality reasoning
annotations to guide the teacher policy (e.g., the GPT-01 model) in generating better supervised
data. Alternatively, customized reward functions can be introduced to encourage the production of
longer and more coherent reasoning chains.

Table 6. The proportion of correct output format generated by Gene-R1

Gene-R1 (1B) Gene-R1 (3B) Gene-R1 (8B)
GO:BP 95.6% (956/1000) 42.4% (424/1000) 93.8% (938/1000)
GO:MF 94.4% (321/340) 94.4% (321/340) 85.0% (289/340)
GO:CC 91.7% (154/168) 42.9% (72/168) 88.1% (148/168)
NeST 96.0% (48/50) 100% (50/50) 100% (50/50)
MsigDB 91.1% (51/56) 100% (56/56) 100% (56/56)

2 In Online DPO, a reward function is used to determine the chosen and rejected response during training. In our work,
we train the reward function using pre-generated model responses from GPT. Specifically, for each gene set query, we
generate four types of responses in preference order: 1. Response with correct answer and contains reasoning; 2.
Response with correct answer and does not contain reasoning; 3. Response with incorrect answer and contains
reasoning; 4. Response with incorrect answer and does not contain reasoning. These responses are then used to create a
pair-wise dataset consisting of chosen-rejected pairs. Given two responses, the reward model is trained to distinguish
and select the better response following the preference order.

504



Pacific Symposium on Biocomputing 2026

Limitaions. Despite these advancements achieved by Gene-R1, it currently relies on manual
data collection for the training workflow, which limits the flexibility when applied to novel or
underrepresented genes. Moreover, Gene-R1 may still hallucinate plausible-sounding but incorrect
functions when operating on unseen genes which are outside its training domain. Furthermore, our
evaluation primarily focuses on biological function annotation, leaving the model’s transferability
to other ontologies (e.g., disease ontology, phenotype ontology) as open questions.

7. Conclusions

In this study, we present Gene-R1 to equip lightweight, open-source LLMs with strong reasoning
capabilities specifized for the gene set analysis task, effectively narrowing the performance gap with
proprietary, large-scale models. The effectiveness of Gene-R1 is shown by both the in-distribution
and out-of-distribution evaluations on five datasets containing 1604 gene sets. LLMs trained with
general domain data are highly capable of linguistic tasks, knowledge recalling and reasoning, but
they often fail in domain specific tasks. We believe one best way to fully utilize the power of the
LLMs is through incoporating domain knowledges, and methods like our Gene-R1 can enable
powerful Als for wider and more diffuclt tasks.

8. Data Availability

The GitHub repository (https://github.com/ncbi-nlp/Gene-R1) containing code to reproduce this
work. Supplementary materials, including the training data and case studies, are also provided in
the same repository. The fully fine-tuned model is available on the Hugging Face platform
(https://huggingface.co/ncbi/Gene-R1).
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