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Specialist consults in primary care and inpatient settings typically address complex clinical
questions beyond standard guidelines. eConsults have been developed as a way for
specialist physicians to review cases asynchronously and provide clinical answers without
a formal patient encounter. Meanwhile, large language models (LLMs) have approached
human-level performance on structured clinical tasks, but their real-world effectiveness
requires evaluation, which is bottlenecked by time-intensive manual physician review. To
address this, we evaluate two automated methods: LLM-as-judge and a decompose-then-
verify framework that breaks down Al answers into verifiable claims against human
eConsult responses. Using 40 real-world physician-to-physician eConsults, we compared
Al-generated responses to human answers using both physician raters and automated tools.
LLM-as-judge outperformed decompose-then-verify, achieving human-level concordance
assessment with F1-score of 0.89 (95% CI: 0.750, 0.960) and Cohen's kappa of 0.75 (95%
C10.47,0.90) , comparable to physician inter-rater agreement k = 0.69-0.90 (95% CI 0.43-
1.0).

Keywords: Large Language Models; LLM-as-a-judge; eConsult; Medical Consult
Answering; Decompose-then-Verify; Concordance

1. Introduction

Electronic consultations (eConsults) expand specialist access by enabling generalists to
asynchronously obtain expert advice without an in-person referral. Real-world studies have
demonstrated faster care and clinical quality comparable to face-to-face consults!?. Despite
growing adoption, eConsult programs often face workflow bottlenecks for both referring
physicians and specialists, as formulating high-quality consults and responses requires retrieving
dispersed clinical data, synthesizing relevant context, and drafting clear, actionable
recommendations. These challenges have prompted growing interest in Al systems that can
streamline and augment key steps in the consultation workflow. Early pilot use cases of large
language models (LLMs) reduce inbox burden and documentation time*~> and now match or
surpass clinicians on standardized medical vignettes*®-'? and, when paired with physicians, can
boost diagnostic accuracy'>!>.

Stanford Health Care operates a mature multispecialty eConsult program that generates a
retrospective corpus of real physician-to-specialist consults. This dataset includes question-and-
answer pairs with accompanying clinical context—offering a valuable resource for evaluating Al
systems in realistic workflows. As part of ongoing efforts to augment end-to-end eConsult
workflows, we have been developing SAGE (Specialist Al Guiding Experts), a system
combining vector embeddings, predictive models, and generative Al to route clinical queries to
the correct specialty, retrieve relevant chart information, suggest evidence-backed
recommendations, and draft specialist-level replies to physician queries.

© 2025 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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Recent LLM evaluation studies rely on polished vignettes or synthetic benchmarks that sanitize
the inherent ambiguity and incompleteness of real-world cases'®!”. Real-world perturbations, such
as changes in geography, patient demographics, idiosyncratic phrasing, or missing context, can
swing diagnostic accuracy by 20 percentage points'®, suggesting current benchmarks overestimate
clinical readiness. Moreover, human evaluation of LLM outputs is labor-intensive, costly, and
difficult to scale. Researchers are responding by developing more comprehensive benchmarks to

evaluate their performance!®23.

In this study, we compare two scalable, LL M-assisted evaluation methods against human specialist
ratings on a diverse set of real eConsults: (1) an LLM-as-judge approach directly scores
concordance between SAGE drafts and human responses; (2) a decompose-then-verify framework,
inspired by and adapted from current existing methods MedScore, VeriFact, which breaks Al
outputs into atomic claims for fact-checking?*?3. We benchmark both approaches against blinded
ratings from board-certified specialists to determine whether LL.M-assisted grading can reliably
and efficiently approximate human judgment when comparing Al versus expert concordance. By
assessing robustness across multiple specialties and noisy, unstructured cases, we ask whether
these methods provide reliable, low-cost grading that can keep pace with rapid model iterations,
ultimately enabling safer, large-scale deployment of LLM-augmented eConsult workflows.

2. Methods:

2.1 Data Collection and Study Population

A random sampling of 50 physician-to-physician eConsult pairs performed from October 2022 to
March 2024 was collected from Stanford Health Care's clinical data. The eConsult program was
initiated as a way for general physicians to consult advanced specialties such as dermatology and
hematology virtually via the EHR. Relevant consult notes were extracted from the EHR using
structured metadata (e.g., specialty, consult type, and date ranges) and keyword-matched section
headers (e.g., “eConsult Question” and “eConsult Response™). All data were de-identified using
the Safe Harbor method according to National Institute of Standards and Technology (NIST)
guidelines, and the clinical text was further anonymized using the TiDE algorithm to ensure
compliance with privacy regulations. The answering physicians in eConsult provided clinical
recommendations based solely on chart review and did not see the patient or perform a physical
examination. Based on physician discretion, some patients would be deemed medically appropriate
for referral to their respective specialty clinic. The eConsult program did not permit back-and-
forth conversation between physicians. If the consulting physician’s question could not be
answered satisfactorily, the patient was referred to the specialty clinic for further evaluation, or the
consult was declined due to reasons such as the wrong scope of specialty or lack of clarifying
details. The eConsult consult-and-answer pairs were then de-identified again using a BERT-based
method and manually reviewed by DW, DJW to confirm removal of any identifying information.
Duplicate, incomplete, or erroneous consults were excluded from the study. This study was
conducted with IRB approval (IRB-47618) to ensure compliance with ethical research standards.
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Age Range (years)

18-34 3 (7.5%)
35-49 13 (32.5%)
50-64 8 (20%)
265 16 (40%)
Sex

Female 27 (67.5%)
Male 12 (32.5%)
Medical Specialties Included (Each containing at least 2 eConsults)

Cardiology, Endocrinology, Gastroenterology, Immunology, Infectious Diseases, Neurology,
Obstetrics/Gynecology, Hematology/Oncology, Psychiatry, Pulmonology.

Table 1: Patient eConsult demographics by consult type, age, and sex.

2.2 Al eConsult Response Generation

Al responses were generated using a secure, HIPAA-compliant large language model instance
("SecureGPT") approved for PHI analysis at Stanford University, utilizing OpenAl GPT-4.1 as
the underlying model. A standardized prompt was developed to structure Al responses into
Assessment, Recommendations and Rationale, Contingency Plan, and Citations sections. To
provide appropriate clinical context, the three most recent clinical Progress Note with
length >3,500 characters (we found in initial pilot work that those less than this cut-off were more
likely to be clerical notes without meaningful clinical significance), prioritizing the consulted
specialty in question, were also provided in the API query, as well as the 20 most recent lab values.

2.3 LLM-assisted Concordance Evaluation

To assess the concordance between Al-generated and human-generated eConsult responses, we
developed two LLM-assisted evaluation workflows, with the original specialist consult answer as
a “silver-label answer”. For our two LLM-assisted concordance evaluation workflows, one was
based on using LLM-as-Judge (LaJ) and the other using a Decompose-then-Verify (DtV) approach.

In our LaJ approach, we provided a concordant and discordant example case not included in the
data set to provide as a reference in the prompt (Supplemental Fig. 2). API calls were made using
a secure, HIPAA-compliant, and PHI-safe institution-specific endpoint and automated python
script.
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In our DtV approach, we implemented a two-stage pipeline adapted from and inspired by the
MedScore and VeriFact frameworks???3. First, Al responses were decomposed into atomic,
independently verifiable medical claims using a specialized LLM query. Second, each atomic
claim was verified against the original human specialist response using a separate verification
query. Claims with >80% support percentage were classified as concordant. The pipeline was
implemented in Python. Three of the authors (DJW, DW, LM) not involved in the final physician
review reviewed 4 examples of cases decomposed into atomic claims and their corresponding
LLM-assisted verification. Consensus determination was that overall performance was
satisfactory, and a sampling of these cases was included as examples in both the decomposition
and the verification prompt.

50 Retrospective eConsult 3 most recent Clinical Progress Notes

Physician-to-Physician including most recent Progress Note
Q&A pairs v from Consultant Specialty, if available.

SAGE Al eConsult . .
Response W
Physician-Rater Validation
—
Decompose-then-Verify Approach Reviewed sample of eConsult
QA pairs, consensus decision

made for inclusion
and concordance criteria

Generation

Atomic Facts ), 1
1 Each factis then
SELRE | verified vs. the
@A | physician-written ?
1 consult answer {4\ ) 4ireccbd?

L

Supported?

LLM-assisted Evaluation

Claim 3

Blinded ratings of
If Supported Facts > 80% concordance between
human and Al answers.

v v

If concordant, asked:

Concordance Determination @~ [ Rl = OV C SO

Scoring

Figure 1: Schematic of study design. 50 real-world retrospective eConsult cases were collected. We provided the
original consult question as well as clinical context consisting of the three most recent clinical progress notes and
20 most recent lab values, generating an Al e-Consult response. We then manually assessed concordance of the Al
response to human response and also performed LLM-assisted automated concordance evaluations.

2.4 Human Physician Evaluation

Forty eConsult question-and-answer pairs were provided to three blinded attending internal
medicine attending physicians (VS, SM, JT) for concordance evaluation. Physicians rated
concordance between Al-generated and human specialist responses on a binary scale (1 =
Concordant, 0 = Discordant). For concordant cases, raters indicated their preference between the
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Al and human responses. For equipoise, only cases in which Al and human were rated as
concordant were used in Preference rating. Prior to rating, the physician reviewers participated in
a calibration session to establish consensus on concordance definitions and rating criteria.

2.5 Statistical Analysis

Aggregate physician concordance ratings were determined by majority vote (best-of-three). Inter-
rater agreement among the three physician evaluators was calculated using Fleiss' kappa for multi-
rater categorical data. Agreement between physician ratings and LLM-assisted concordance
evaluations was assessed using Cohen's kappa for pairwise comparisons. Kappa values were
interpreted as: <0.20 (poor), 0.21-0.40 (fair), 0.41-0.60 (moderate), 0.61-0.80 (substantial), and
0.81-1.00 (almost perfect) agreement.

Performance metrics for both LLM evaluation approaches were calculated, including sensitivity,
specificity, precision, recall, and F1-score (calculated as harmonic mean of precision and recall)
using physician majority vote as the reference standard. Ninety-five percent confidence intervals
for all kappa and F1 coefficients were calculated using bias-corrected and accelerated (BCa)
bootstrap resampling. The BCa method accounts for both bias and skewness in the bootstrap
distribution, providing more accurate coverage than standard percentile methods. All statistical
analyses were performed using Python with scikit-learn and statsmodels libraries.

3. Results
3.1 LLM-Assisted Concordance Evaluation Performance

Forty eConsult cases were included in the final analysis after excluding duplicate, incomplete, or
erroneous eConsults, with an equal distribution of 20 concordant and 20 discordant cases based on
physician majority vote. Both LLM evaluation approaches demonstrated substantial performance
in concordance assessment, with LaJ consistently outperforming the DtV approach (Figure 2). The
DtV approach achieved moderate performance (F1-score: 0.73 [95% CI: 0.55, 0.86], x = 0.40,
[95% CI: 0.12, 0.65]), while LaJ methods showed substantial to near-perfect agreement. Among
LaJ implementations, DeepSeek R1 achieved the highest performance (F1-score: 0.89 [95% CI:
0.750, 0.960], « = 0.75, [95% CI: 0.47, 0.90]), followed by Gemini 2.5 Pro (F1-score: 0.86 [95%
CI: 0.44, 0.89], « = 0.70, [95% CI: 0.44, 0.89]). All LaJ approaches demonstrated superior
concordance evaluation compared to the claim-based DtV method.

The DtV pipeline decomposed Al responses into an average of 24.9 atomic claims per case (range:
17-34 claims). Of these claims, 41.0% were classified as "Supported,” 10.1% as "Not Supported,"
and 48.9% as "Not Addressed" by the reference specialist consult answer, suggesting a significant
amount of extra information added in the AI consult answers. ROC analysis of the support
percentage threshold revealed an AUC of 0.745.
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Performance Evaluation of LLM-assisted Concordance Methods

A) Accuracy with 95% CI B) F1 Score with 95% CI C) Agreement with Physicians (95% CI)
1.0 1.0 0.889 1.0
osso 0875 081 0833 0864
0.800 - 0.700  0.750
0.775 T 0.727

0.8 o.700 l l 0.8 1 J_ 0.8
-
¥
z
z H

306 Qo6 Sos6
g 9 ©
3 a M
o - »

“t’ 0.4 T o4 c 0.4
]
£
-]
o

0.2 0.2 0.2

0.0 0.0 0.0

O & < ¢ < g & %4 ke < &
5* ¢ & & I o & S & N o ¥
N ° PG o A g S o o & °
4 ) o° > o N o o > 2 N o
& X e o R o oe" & [ & X
* o S o = <~ *

Figure 2: Three-panel comparison showing (A) Accuracy, (B) Fl-score, and (C) Cohen's kappa agreement with
physician majority vote for five different approaches. LLM-as-Judge methods (GPT-4.1, Gemini 2.5 Pro, DeepSeck
R1, Claude 3.5) consistently outperformed the Decompose-then-Verify approach across all metrics. DeepSeek R1
achieved the highest performance with near-human-level agreement (x = 0.75, 95% CI 0.47-0.90)

3.2 Physician and LLM Inter-Rater Concordance Agreement

Inter-rater agreement among the three physician evaluators was moderate (Fleiss' k =0.456, n=32).
Perfect agreement across all three raters occurred in 61.3% of cases, indicating variability in
concordance assessment even among experienced clinicians. Individual physician agreement rates
with the aggregate majority vote were substantial: Physician 1 (x = 0.90, 95% CI 0.70-1.0),
Physician 2 (x = 0.69, 95% CI 0.43-0.88), and Physician 3 (k = 0.69, 95% CI 0.42-0.89), with
Physician 1 demonstrating the highest consistency with the consensus rating. Pairwise agreement
between individual physicians showed moderate agreement: Physician 1 vs Physician 2 (k= 0.57),
Physician 1 vs Physician 3 (k = 0.59), and Physician 2 vs Physician 3 (k = 0.34). When comparing
LLM-assisted methods to individual physician raters, several patterns emerged (Figure 3).
DeepSeek R1 achieved substantial agreement with all three physicians (kx = 0.65, 0.61, 0.55), while
Gemini 2.5 Pro demonstrated strong agreement with Physicians 1 and 2 (x = 0.70, 0.61) but more
moderate agreement with Physician 3 (k = 0.44). The Decompose-then-Verify approach showed
consistently moderate agreement across all physician raters (x = 0.40, 0.30, 0.42). Notably, the
best-performing LLM methods achieved agreement levels with individual physicians that were
comparable to inter-physician agreement

378



Pacific Symposium on Biocomputing 2026

Inter-Rater Concordance Agreement (Cohen's Kappa)
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Figure. 3: Inter-rater Agreement Heatmap for Concordance Evaluation. Cohen's kappa coefficients between all
rater pairs, displayed as a lower-triangular heatmap. Values range from 0 (no agreement) to 1 (perfect agreement),
with darker colors indicating higher agreement. The aggregate physician vote represents majority consensus among
the three physician raters. LLM-assisted methods (DeepSeek R1, Gemini 2.5 Pro) achieved substantial agreement
with physician raters, comparable to inter-physician agreement levels.

3.3 Physician Preference Analysis

Among the 20 cases rated as concordant by majority vote, physician preferences between Al and
human responses showed substantial heterogeneity (Figure 4). Individual preference patterns
varied dramatically: Physician 1 preferred Al responses in 33.3% of concordant cases, Physician
3 in 12.5%, and Physician 2 in 81.8% of cases. This divergence in preferences highlights the
subjective nature of response quality assessment, even when both Al and human responses are
deemed clinically appropriate. Inter-rater agreement on preferences was poor (Fleiss' k = -0.12,
n=11), with pairwise agreements ranging from k = -0.23 (Physician 1 vs Physician 3) to « = 0.19
(Physician 1 vs Physician 2). The negative kappa values indicate systematic disagreement beyond
what would be expected by chance, suggesting that physicians may have intrinsic differences in
preference and criteria for those preferences, even when responses are clinically concordant.
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Figure 4: (4) Pairwise Cohen's kappa coefficients between physicians for preference assessment (Al vs human
responses), showing poor agreement with negative values indicating systematic disagreement. (B) Overall, Fleiss'
kappa (x = -0.12) demonstrates poor multi-rater agreement on preferences. Analysis limited to the 20 cases where
all three physicians agreed responses were clinically concordant, highlighting that clinical acceptability does not
predict preference uniformity

4. Discussion

This study demonstrates that LI M-assisted evaluation of concordance between Al-generated and
human specialist eConsult responses achieves substantial performance comparable to inter-
physician agreement. The LLM-as-Judge approach consistently outperformed the Decompose-
then-Verify method, with the best-performing model (DeepSeek R1) achieving an F1-score of 0.89
(95% CI: 0.75, 0.96) and Cohen's x of 0.75 (95% CI: 0.47, 0.90)—approaching the range of inter-
physician agreement (kK = 0.69-0.90, 95% CI: 0.43, 1.0) observed in clinical settings. This
represents the first validation of automated concordance evaluation in real-world physician-to-
physician eConsultations, addressing a critical bottleneck in scalable LLM evaluation for clinical
applications.

Our findings address a key challenge in clinical Al evaluation: the labor-intensive nature of expert
review that limits scalable assessment of LLM performance in real-world settings. Traditional
evaluations rely heavily on standardized clinical vignettes, which may overestimate performance
in practice due to their structured nature and absence of real-world ambiguity. By demonstrating
that LLM-assisted evaluation can reliably assess concordance in unstructured eConsult cases, this
work provides a pathway for large-scale retrospective benchmarking of clinical LLMs prior to
deployment that can be tailored to each institution.

Interestingly, we noted substantial heterogeneity in physician preferences (Fleiss' k = -0.12) even
among concordant cases, highlighting an important distinction between clinical acceptability and
physician preference: while responses may be equally acceptable from a clinical standpoint,
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individual physicians maintain distinct preferences regarding communication style,
comprehensiveness, and presentation format (Fig. 5). One physician rater noted that the human
responses took into account factors such as insurance or even manually reviewed EKG findings
themselves to provide their own insight, which is beyond the capabilities of the current Al eConsult
system. Another physician favored the Al responses because they were more well-structured and
readable. The substantial preference heterogeneity suggests that Al integration in clinical practice
may benefit from personalization approaches and further iterative improvement that accommodate
individual physician preferences while maintaining clinical appropriateness.

Physician Preference

(Human vs Al response)

Prefers Al 50:50 Prefers Human

OV

Physician 2 Physician 1 Physician 3

81.8% Al preference 66% human preference 87.5% human preference

Preferred human
responses more because

Preferred Al responses More balanced explanations more
more because "more clinically relevant, e.g.
succinct, organized" addressing insurance

coverage

Figure 5: Physician Preference Distribution of Clinically Concordant Human vs Al responses.
Significant differences in patterns of preference were observed between our physician raters, calculated by total
average preference rating per physician in clinically concordant cases.

The superior performance of LalJ over DtV approaches likely reflects the complexity of medical
reasoning that is not entirely captured by simple decomposition and verification of atomic claims.
Clinical decision-making often involves nuanced integration of multiple factors, contextual
considerations, and implicit medical knowledge that may be lost when responses are parsed into
discrete verifiable statements. The DtV approach's moderate performance suggests utility for
systematic claim verification but indicates limitations for holistic clinical assessment.
Interestingly, 48.9% of all claims generated were classified as ‘Not Addressed’ by the reference
material, suggesting that Al responses often included extra details that the human physician did
not. In discussion with the physician raters, it was usually only one or two key “atomic claims” in
each case, such as the decision to start a new drug or not, that pushed them to decide whether a
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case was concordant or discordant, whereas in the DtV approach each claim is weighted equally
relative to the other claims.

Several limitations warrant consideration. The sample of 40 cases evaluated is not intended to
generalize across specialties and clinical scenarios, but was sufficiently powered to confirm the
potential for this methodology to systematically evaluate a volume of cases that would be
impractical for manual review. Human specialist responses are used here as a comparison standard
for comparison, but this should NOT be used to assume that actual care delivered represents
optimal care decisions. Existing evidence and standards of care establish a high correlation
between actual and preferred clinical decision-making, while also acknowledging legitimate and
acceptable variations in clinical approaches. Our evaluation focused on concordance rather than
clinical outcomes, leaving questions about whether concordant responses lead to better patient
care. Concordance with human experts is thus not the only critical measure of medical advice, but
an important one, especially in complex clinical scenarios where “correct” answers are often
poorly defined with limited definitive evidence. It is indeed often the case where limited evidence
or guidelines are available that physicians reach for specialist consultation.

During the process of analysis, we also found in discussion with our physician reviewers that
concordance is difficult to rate in a binary fashion, there is often a spectrum of concordance, with
some cases being definitely concordant while others fall in a gray zone; sometimes answers are
concordant in their recommended intervention but differ in their contingency plans. This
complexity in concordance rating likely explains the moderate inter-rater agreement among
physicians, highlighting the nuances of medical reasoning and decision making that complicates
concrete ground truth for clinical evaluations. We originally anticipated that the systematic
decomposition and then claim-by-claim verification of the DtV method would better capture these
nuances but were ultimately surprised by the superior and human-level performance of the LaJ
approach, hinting at the rapid improvement of these models’ innate clinical reasoning abilities on
a clinical concordance determination task that is difficult even for licensed physicians.

Conclusion

This study demonstrates that large language models can be evaluated on real-world physician-to-
physician eConsults using automated concordance methods, with LLM-as-Judge (Lal)
approaches achieving performance comparable to human physician raters. Compared to
decomposition-based verification methods, LaJ more reliably captured overall clinical
concordance between Al- and human-generated responses. These findings suggest that
automated, LLM-based clinical evaluation methods can benchmark the performance of Al in
clinical practice in a scalable fashion, especially in the eConsult setting, promising to ultimately
expand patient access to specialty care through broader adoption of Al-augmented care and
contribute to physician wellness by reducing the cognitive burden of conducting these consults.
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Supplemental Fig. 1 — Example Case: Hematologic eConsult

Consult Human SAGE-AI Al Answer Claim Concordance

question Answer Answer Decomposition Verdicts Determination
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Rationale: Persistent isolated
RDW elevation is nonspecific
and often benign in older adults
if other labs are stable."

RDW is a history of mixed

vitamin or mineral

deficiency”

8. “Repeat iron studies
should be performed”

Supported

v

Supported
Claims

75%<80%
LLM-as-Judge

v/

Supplemental Figure 1: An example case consisting of human consult question, human answer, SAGE-AI answer,

the decomposition of the AI answer into atomic claim, LLM-determined claim verdicts, and final concordance
determination of human physician composite rating, DtV rating, and LLM-As-Judge.
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Supplemental Fig. 2 — LLM-as-judge Concordance Prompt
PROMPT = """You are a medical expert evaluating concordance between two clinical answers. Your task is to determine if both
answers are medically consistent and aligned in their core recommendations.

CONCORDANCE DEFINITION:

- Concordant (1): Both answers provide medically consistent recommendations, diagnoses, or treatment approaches that do not
contradict each other, even if they differ in detail level or phrasing

- Discordant (0): The answers contain medically contradictory information, conflicting recommendations, or fundamentally
different clinical approaches

EVALUATION CRITERIA:
Focus on medical substance over style differences:

- Do both answers reach similar clinical conclusions?

- Are the treatment recommendations compatible?

- Do they identify the same key medical issues?

- IMPORTANT: If the Al recommends a medication or intervention that the human doesn't recommend, or contradicts what the
human recommends, mark as discordant

- Ignore differences in: formatting, verbosity, organization, or minor procedural details

RESPONSE FORMAT: Respond ONLY with valid JSON:

{{"concordant": 1, "explanation": "Brief 1-2 sentence explanation focusing on key medical alignment or contradiction"} }
EXAMPLES:

CONCORDANT EXAMPLE:

Question: 68 yo F with history of rheumatoid arthritis, with Tchol 201 and LDL 149. Is statin indicated?

Answer A (Human): Based on 10-year ASCVD risk of 10.5-13.6%, moderate intensity statin is indicated.

Answer B (Al): Start moderate-intensity statin therapy (e.g., atorvastatin 20 mg daily) for primary prevention, as RA is
considered a risk-enhancing factor.

Evaluation: {{"concordant": 1, "explanation": "Both answers agree on starting moderate-intensity statin therapy based on
elevated ASCVD risk factors."} }

DISCORDANT EXAMPLE:

Question: Patient with hypothyroidism, TSH 33.03, on levothyroxine 100mcg daily. Please help manage/adjust.
Answer A (Human): Check TSH and Free T4 now. Dose will have to be adjusted based on repeat labs.

Answer B (Al): Increase levothyroxine to 125 mcg daily, repeat TSH and free T4 in 4-6 weeks to assess response.

Evaluation: {{"concordant": 0, "explanation": "Human recommends checking labs first before dose adjustment, while Al
recommends immediate dose increase - contradictory management approaches."} }

Now evaluate the following:

Question: {question}.
Answer A (Human): {answer}.
Answer B (Al): {ai_output}:"""
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