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Specialist consults in primary care and inpatient settings typically address complex clinical 
questions beyond standard guidelines. eConsults have been developed as a way for 
specialist physicians to review cases asynchronously and provide clinical answers without 
a formal patient encounter. Meanwhile, large language models (LLMs) have approached 
human-level performance on structured clinical tasks, but their real-world effectiveness 
requires evaluation, which is bottlenecked by time-intensive manual physician review. To 
address this, we evaluate two automated methods: LLM-as-judge and a decompose-then-
verify framework that breaks down AI answers into verifiable claims against human 
eConsult responses. Using 40 real-world physician-to-physician eConsults, we compared 
AI-generated responses to human answers using both physician raters and automated tools. 
LLM-as-judge outperformed decompose-then-verify, achieving human-level concordance 
assessment with F1-score of 0.89 (95% CI: 0.750, 0.960) and Cohen's kappa of 0.75 (95% 
CI 0.47,0.90) , comparable to physician inter-rater agreement κ = 0.69-0.90 (95% CI 0.43-
1.0).  

Keywords: Large Language Models; LLM-as-a-judge; eConsult; Medical Consult 
Answering; Decompose-then-Verify; Concordance 

 

1. Introduction 

Electronic consultations (eConsults) expand specialist access by enabling generalists to 
asynchronously obtain expert advice without an in-person referral. Real-world studies have 
demonstrated faster care and clinical quality comparable to face-to-face consults1,2. Despite 
growing adoption, eConsult programs often face workflow bottlenecks for both referring 
physicians and specialists, as formulating high-quality consults and responses requires retrieving 
dispersed clinical data, synthesizing relevant context, and drafting clear, actionable 
recommendations. These challenges have prompted growing interest in AI systems that can 
streamline and augment key steps in the consultation workflow. Early pilot use cases of large 
language models (LLMs) reduce inbox burden and documentation time3–5 and now match or 
surpass clinicians on standardized medical vignettes4,6–12 and, when paired with physicians, can 
boost diagnostic accuracy13–15. 

Stanford Health Care operates a mature multispecialty eConsult program that generates a 
retrospective corpus of real physician-to-specialist consults. This dataset includes question-and-
answer pairs with accompanying clinical context—offering a valuable resource for evaluating AI 
systems in realistic workflows. As part of ongoing efforts to augment end-to-end eConsult 
workflows, we have been developing SAGE (Specialist AI Guiding Experts), a system 
combining vector embeddings, predictive models, and generative AI to route clinical queries to 
the correct specialty, retrieve relevant chart information, suggest evidence-backed 
recommendations, and draft specialist-level replies to physician queries. 
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Recent LLM  evaluation studies rely on polished vignettes or synthetic benchmarks that sanitize 
the inherent ambiguity and incompleteness of real-world cases16,17. Real-world perturbations, such 
as changes in geography, patient demographics, idiosyncratic phrasing, or missing context, can 
swing diagnostic accuracy by 20 percentage points18, suggesting current benchmarks overestimate 
clinical readiness. Moreover, human evaluation of LLM outputs is labor-intensive, costly, and 
difficult to scale. Researchers are responding by developing more comprehensive benchmarks to 
evaluate their performance19–23. 

In this study, we compare two scalable, LLM-assisted evaluation methods against human specialist 
ratings on a diverse set of real eConsults: (1) an LLM-as-judge approach directly scores 
concordance between SAGE drafts and human responses; (2) a decompose-then-verify framework, 
inspired by and adapted from current existing methods MedScore, VeriFact, which breaks AI 
outputs into atomic claims for fact-checking24,25. We benchmark both approaches against blinded 
ratings from board-certified specialists to determine whether LLM-assisted grading can reliably 
and efficiently approximate human judgment when comparing AI versus expert concordance. By 
assessing robustness across multiple specialties and noisy, unstructured cases, we ask whether 
these methods provide reliable, low-cost grading that can keep pace with rapid model iterations, 
ultimately enabling safer, large-scale deployment of LLM-augmented eConsult workflows. 

2. Methods:

2.1 Data Collection and Study Population

A random sampling of 50 physician-to-physician eConsult pairs performed from October 2022 to 
March 2024 was collected from Stanford Health Care's clinical data. The eConsult program was 
initiated as a way for general physicians to consult advanced specialties such as dermatology and 
hematology virtually via the EHR. Relevant consult notes were extracted from the EHR using 
structured metadata (e.g., specialty, consult type, and date ranges) and keyword-matched section 
headers (e.g., “eConsult Question” and “eConsult Response”). All data were de-identified using 
the Safe Harbor method according to National Institute of Standards and Technology (NIST) 
guidelines, and the clinical text was further anonymized using the TiDE algorithm to ensure 
compliance with privacy regulations. The answering physicians in eConsult provided clinical 
recommendations based solely on chart review and did not see the patient or perform a physical 
examination. Based on physician discretion, some patients would be deemed medically appropriate 
for referral to their respective specialty clinic. The eConsult program did not permit back-and-
forth conversation between physicians. If the consulting physician’s question could not be 
answered satisfactorily, the patient was referred to the specialty clinic for further evaluation, or the 
consult was declined due to reasons such as the wrong scope of specialty or lack of clarifying 
details. The eConsult consult-and-answer pairs were then de-identified again using a BERT-based 
method and manually reviewed by DW, DJW to confirm removal of any identifying information. 
Duplicate, incomplete, or erroneous consults were excluded from the study. This study was 
conducted with IRB approval (IRB-47618) to ensure compliance with ethical research standards. 
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Age Range (years) 

18–34 3 (7.5%) 

35–49 13 (32.5%) 

50–64 8 (20%) 

≥65 16 (40%) 

Sex 

Female 27 (67.5%) 

Male 12 (32.5%) 

Medical Specialties Included (Each containing at least 2 eConsults) 

Cardiology, Endocrinology, Gastroenterology, Immunology, Infectious Diseases, Neurology, 
Obstetrics/Gynecology, Hematology/Oncology, Psychiatry, Pulmonology. 

Table 1: Patient eConsult demographics by consult type, age, and sex. 

2.2 AI eConsult Response Generation 

AI responses were generated using a secure, HIPAA-compliant large language model instance 
("SecureGPT") approved for PHI analysis at Stanford University, utilizing OpenAI GPT-4.1 as 
the underlying model. A standardized prompt was developed to structure AI responses into 
Assessment, Recommendations and Rationale, Contingency Plan, and Citations sections. To 
provide appropriate clinical context, the three most recent clinical Progress Note with 
length >3,500 characters (we found in initial pilot work that those less than this cut-off were more 
likely to be clerical notes without meaningful clinical significance), prioritizing the consulted 
specialty in question, were also provided in the API query, as well as the 20 most recent lab values. 

2.3 LLM-assisted Concordance Evaluation 

To assess the concordance between AI-generated and human-generated eConsult responses, we 
developed two LLM-assisted evaluation workflows, with the original specialist consult answer as 
a “silver-label answer”. For our two LLM-assisted concordance evaluation workflows, one was 
based on using LLM-as-Judge (LaJ) and the other using a Decompose-then-Verify (DtV) approach. 

In our LaJ approach, we provided a concordant and discordant example case not included in the 
data set to provide as a reference in the prompt (Supplemental Fig. 2). API calls were made using 
a secure, HIPAA-compliant, and PHI-safe institution-specific endpoint and automated python 
script.  
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In our DtV approach, we implemented a two-stage pipeline adapted from and inspired by the 
MedScore and VeriFact frameworks22,23. First, AI responses were decomposed into atomic, 
independently verifiable medical claims using a specialized LLM query. Second, each atomic 
claim was verified against the original human specialist response using a separate verification 
query. Claims with ≥80% support percentage were classified as concordant. The pipeline was 
implemented in Python. Three of the authors (DJW, DW, LM)  not involved in the final physician 
review reviewed 4 examples of cases decomposed into atomic claims and their corresponding 
LLM-assisted verification. Consensus determination was that overall performance was 
satisfactory, and a sampling of these cases was included as examples in both the decomposition 
and the verification prompt. 

 
Figure 1: Schematic of study design. 50 real-world retrospective eConsult cases were collected. We provided the 
original consult question as well as clinical context consisting of the three most recent clinical progress notes and 
20 most recent lab values, generating an AI e-Consult response. We then manually assessed concordance of the AI 
response to human response and also performed LLM-assisted automated concordance evaluations. 

2.4 Human Physician Evaluation 

Forty eConsult question-and-answer pairs were provided to three blinded attending internal 
medicine attending physicians (VS, SM, JT) for concordance evaluation. Physicians rated 
concordance between AI-generated and human specialist responses on a binary scale (1 = 
Concordant, 0 = Discordant). For concordant cases, raters indicated their preference between the 
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AI and human responses. For equipoise, only cases in which AI and human were rated as 
concordant were used in Preference rating. Prior to rating, the physician reviewers participated in 
a calibration session to establish consensus on concordance definitions and rating criteria. 

2.5 Statistical Analysis 

Aggregate physician concordance ratings were determined by majority vote (best-of-three). Inter-
rater agreement among the three physician evaluators was calculated using Fleiss' kappa for multi-
rater categorical data. Agreement between physician ratings and LLM-assisted concordance 
evaluations was assessed using Cohen's kappa for pairwise comparisons. Kappa values were 
interpreted as: <0.20 (poor), 0.21-0.40 (fair), 0.41-0.60 (moderate), 0.61-0.80 (substantial), and 
0.81-1.00 (almost perfect) agreement. 

Performance metrics for both LLM evaluation approaches were calculated, including sensitivity, 
specificity, precision, recall, and F1-score (calculated as harmonic mean of precision and recall) 
using physician majority vote as the reference standard.  Ninety-five percent confidence intervals 
for all kappa and F1 coefficients were calculated using bias-corrected and accelerated (BCa) 
bootstrap resampling. The BCa method accounts for both bias and skewness in the bootstrap 
distribution, providing more accurate coverage than standard percentile methods. All statistical 
analyses were performed using Python with scikit-learn and statsmodels libraries.  

3. Results 

3.1 LLM-Assisted Concordance Evaluation Performance 

Forty eConsult cases were included in the final analysis after excluding duplicate, incomplete, or 
erroneous eConsults, with an equal distribution of 20 concordant and 20 discordant cases based on 
physician majority vote. Both LLM evaluation approaches demonstrated substantial performance 
in concordance assessment, with LaJ consistently outperforming the DtV approach (Figure 2). The 
DtV approach achieved moderate performance (F1-score: 0.73 [95% CI: 0.55, 0.86], κ = 0.40, 
[95% CI: 0.12, 0.65]), while LaJ methods showed substantial to near-perfect agreement. Among 
LaJ implementations, DeepSeek R1 achieved the highest performance (F1-score: 0.89 [95% CI: 
0.750, 0.960], κ = 0.75, [95% CI: 0.47, 0.90]), followed by Gemini 2.5 Pro (F1-score: 0.86 [95% 
CI: 0.44, 0.89], κ = 0.70, [95% CI: 0.44, 0.89]). All LaJ approaches demonstrated superior 
concordance evaluation compared to the claim-based DtV method. 

The DtV pipeline decomposed AI responses into an average of 24.9 atomic claims per case (range: 
17-34 claims). Of these claims, 41.0% were classified as "Supported,” 10.1% as "Not Supported," 
and 48.9% as "Not Addressed" by the reference specialist consult answer, suggesting a significant 
amount of extra information added in the AI consult answers. ROC analysis of the support 
percentage threshold revealed an AUC of 0.745. 
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Figure 2: Three-panel comparison showing (A) Accuracy, (B) F1-score,  and (C) Cohen's kappa agreement with 
physician majority vote for five different approaches. LLM-as-Judge methods (GPT-4.1, Gemini 2.5 Pro,  DeepSeek 
R1, Claude 3.5) consistently outperformed the Decompose-then-Verify approach across all metrics. DeepSeek R1 
achieved the highest performance with near-human-level agreement (κ = 0.75, 95% CI 0.47-0.90) 

 

3.2 Physician and LLM Inter-Rater Concordance Agreement 

Inter-rater agreement among the three physician evaluators was moderate (Fleiss' κ = 0.456, n=32). 
Perfect agreement across all three raters occurred in 61.3% of cases, indicating variability in 
concordance assessment even among experienced clinicians. Individual physician agreement rates 
with the aggregate majority vote were substantial: Physician 1 (κ = 0.90, 95% CI 0.70-1.0), 
Physician 2 (κ = 0.69, 95% CI 0.43-0.88), and Physician 3 (κ = 0.69, 95% CI 0.42-0.89), with 
Physician 1 demonstrating the highest consistency with the consensus rating. Pairwise agreement 
between individual physicians showed moderate agreement: Physician 1 vs Physician 2 (κ = 0.57), 
Physician 1 vs Physician 3 (κ = 0.59), and Physician 2 vs Physician 3 (κ = 0.34). When comparing 
LLM-assisted methods to individual physician raters, several patterns emerged (Figure 3). 
DeepSeek R1 achieved substantial agreement with all three physicians (κ = 0.65, 0.61, 0.55), while 
Gemini 2.5 Pro demonstrated strong agreement with Physicians 1 and 2 (κ = 0.70, 0.61) but more 
moderate agreement with Physician 3 (κ = 0.44). The Decompose-then-Verify approach showed 
consistently moderate agreement across all physician raters (κ = 0.40, 0.30, 0.42). Notably, the 
best-performing LLM methods achieved agreement levels with individual physicians that were 
comparable to inter-physician agreement 
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Figure. 3: Inter-rater Agreement Heatmap for Concordance Evaluation. Cohen's kappa coefficients between all 
rater pairs, displayed as a lower-triangular heatmap. Values range from 0 (no agreement) to 1 (perfect agreement), 
with darker colors indicating higher agreement. The aggregate physician vote represents majority consensus among 
the three physician raters. LLM-assisted methods (DeepSeek R1, Gemini 2.5 Pro) achieved substantial agreement 
with physician raters, comparable to inter-physician agreement levels. 

3.3 Physician Preference Analysis 

Among the 20 cases rated as concordant by majority vote, physician preferences between AI and 
human responses showed substantial heterogeneity (Figure 4). Individual preference patterns 
varied dramatically: Physician 1 preferred AI responses in 33.3% of concordant cases, Physician 
3 in 12.5%, and Physician 2 in 81.8% of cases. This divergence in preferences highlights the 
subjective nature of response quality assessment, even when both AI and human responses are 
deemed clinically appropriate. Inter-rater agreement on preferences was poor (Fleiss' κ = -0.12, 
n=11), with pairwise agreements ranging from κ = -0.23 (Physician 1 vs Physician 3) to κ = 0.19 
(Physician 1 vs Physician 2). The negative kappa values indicate systematic disagreement beyond 
what would be expected by chance, suggesting that physicians may have intrinsic differences in 
preference and criteria for those preferences, even when responses are clinically concordant.  
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Figure 4: (A) Pairwise Cohen's kappa coefficients between physicians for preference assessment (AI vs human 
responses), showing poor agreement with negative values indicating systematic disagreement. (B) Overall, Fleiss' 
kappa (κ = -0.12) demonstrates poor multi-rater agreement on preferences. Analysis limited to the 20 cases where 
all three physicians agreed responses were clinically concordant, highlighting that clinical acceptability does not 
predict preference uniformity 

4. Discussion 

This study demonstrates that LLM-assisted evaluation of concordance between AI-generated and 
human specialist eConsult responses achieves substantial performance comparable to inter-
physician agreement. The LLM-as-Judge approach consistently outperformed the Decompose-
then-Verify method, with the best-performing model (DeepSeek R1) achieving an F1-score of 0.89 
(95% CI: 0.75, 0.96) and Cohen's κ of 0.75 (95% CI: 0.47, 0.90)—approaching the range of inter-
physician agreement (κ = 0.69-0.90, 95% CI: 0.43, 1.0) observed in clinical settings. This 
represents the first validation of automated concordance evaluation in real-world physician-to-
physician eConsultations, addressing a critical bottleneck in scalable LLM evaluation for clinical 
applications. 

Our findings address a key challenge in clinical AI evaluation: the labor-intensive nature of expert 
review that limits scalable assessment of LLM performance in real-world settings. Traditional 
evaluations rely heavily on standardized clinical vignettes, which may overestimate performance 
in practice due to their structured nature and absence of real-world ambiguity. By demonstrating 
that LLM-assisted evaluation can reliably assess concordance in unstructured eConsult cases, this 
work provides a pathway for large-scale retrospective benchmarking of clinical LLMs prior to 
deployment that can be tailored to each institution. 

Interestingly, we noted substantial heterogeneity in physician preferences (Fleiss' κ = -0.12) even 
among concordant cases, highlighting an important distinction between clinical acceptability and 
physician preference: while responses may be equally acceptable from a clinical standpoint, 
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individual physicians maintain distinct preferences regarding communication style, 
comprehensiveness, and presentation format (Fig. 5). One physician rater noted that the human 
responses took into account factors such as insurance or even manually reviewed EKG findings 
themselves to provide their own insight, which is beyond the capabilities of the current AI eConsult 
system. Another physician favored the AI responses because they were more well-structured and 
readable. The substantial preference heterogeneity suggests that AI integration in clinical practice 
may benefit from personalization approaches and further iterative improvement that accommodate 
individual physician preferences while maintaining clinical appropriateness. 

 
Figure 5: Physician Preference Distribution of Clinically Concordant Human vs AI responses.  

Significant differences in patterns of preference were observed between our physician raters, calculated by total 
average preference rating per physician in clinically concordant cases. 

The superior performance of LaJ over DtV approaches likely reflects the complexity of medical 
reasoning that is not entirely captured by simple decomposition and verification of atomic claims. 
Clinical decision-making often involves nuanced integration of multiple factors, contextual 
considerations, and implicit medical knowledge that may be lost when responses are parsed into 
discrete verifiable statements. The DtV approach's moderate performance suggests utility for 
systematic claim verification but indicates limitations for holistic clinical assessment. 
Interestingly, 48.9% of all claims generated were classified as ‘Not Addressed’ by the reference 
material, suggesting that AI responses often included extra details that the human physician did 
not. In discussion with the physician raters, it was usually only one or two key “atomic claims” in 
each case, such as the decision to start a new drug or not, that pushed them to decide whether a 
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case was concordant or discordant, whereas in the DtV approach each claim is weighted equally 
relative to the other claims. 

Several limitations warrant consideration. The sample of 40 cases evaluated is not intended to 
generalize across specialties and clinical scenarios, but was sufficiently powered to confirm the 
potential for this methodology to systematically evaluate a volume of cases that would be 
impractical for manual review. Human specialist responses are used here as a comparison standard 
for comparison, but this should NOT be used to assume that actual care delivered represents 
optimal care decisions. Existing evidence and standards of care establish a high correlation 
between actual and preferred clinical decision-making, while also acknowledging legitimate and 
acceptable variations in clinical approaches. Our evaluation focused on concordance rather than 
clinical outcomes, leaving questions about whether concordant responses lead to better patient 
care. Concordance with human experts is thus not the only critical measure of medical advice, but 
an important one, especially in complex clinical scenarios where “correct” answers are often 
poorly defined with limited definitive evidence. It is indeed often the case where limited evidence 
or guidelines are available that physicians reach for specialist consultation.  

During the process of analysis, we also found in discussion with our physician reviewers that 
concordance is difficult to rate in a binary fashion, there is often a spectrum of concordance, with 
some cases being definitely concordant while others fall in a gray zone; sometimes answers are 
concordant in their recommended intervention but differ in their contingency plans. This 
complexity in concordance rating likely explains the moderate inter-rater agreement among 
physicians, highlighting the nuances of medical reasoning and decision making that complicates 
concrete ground truth for clinical evaluations. We originally anticipated that the systematic 
decomposition and then claim-by-claim verification of the DtV method would better capture these 
nuances but were ultimately surprised by the superior and human-level performance of the LaJ 
approach, hinting at the rapid improvement of these models’ innate clinical reasoning abilities on 
a clinical concordance determination task that is difficult even for licensed physicians. 

Conclusion 

This study demonstrates that large language models can be evaluated on real-world physician-to-
physician eConsults using automated concordance methods, with LLM-as-Judge (LaJ) 
approaches achieving performance comparable to human physician raters. Compared to 
decomposition-based verification methods, LaJ more reliably captured overall clinical 
concordance between AI- and human-generated responses. These findings suggest that 
automated, LLM-based clinical evaluation methods can benchmark the performance of AI in 
clinical practice in a scalable fashion, especially in the eConsult setting, promising to ultimately 
expand patient access to specialty care through broader adoption of AI-augmented care and 
contribute to physician wellness by reducing the cognitive burden of conducting these consults.   
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Supplemental Fig. 1 – Example Case: Hematologic eConsult 

Supplemental Figure 1: An example case consisting of human consult question, human answer, SAGE-AI answer, 
the decomposition of the AI answer into atomic claim, LLM-determined claim verdicts, and final concordance 
determination of human physician composite rating, DtV rating, and LLM-As-Judge. 
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Supplemental Fig. 2 – LLM-as-judge Concordance Prompt 
PROMPT = """You are a medical expert evaluating concordance between two clinical answers. Your task is to determine if both 
answers are medically consistent and aligned in their core recommendations. 

CONCORDANCE DEFINITION: 

- Concordant (1): Both answers provide medically consistent recommendations, diagnoses, or treatment approaches that do not
contradict each other, even if they differ in detail level or phrasing

- Discordant (0): The answers contain medically contradictory information, conflicting recommendations, or fundamentally
different clinical approaches

EVALUATION CRITERIA: 

Focus on medical substance over style differences: 

- Do both answers reach similar clinical conclusions?
- Are the treatment recommendations compatible?
- Do they identify the same key medical issues?
- IMPORTANT: If the AI recommends a medication or intervention that the human doesn't recommend, or contradicts what the
human recommends, mark as discordant
- Ignore differences in: formatting, verbosity, organization, or minor procedural details

RESPONSE FORMAT: Respond ONLY with valid JSON: 

{{"concordant": 1, "explanation": "Brief 1-2 sentence explanation focusing on key medical alignment or contradiction"}} 

EXAMPLES: 

CONCORDANT EXAMPLE: 

Question: 68 yo F with history of rheumatoid arthritis, with Tchol 201 and LDL 149. Is statin indicated? 

Answer A (Human): Based on 10-year ASCVD risk of 10.5-13.6%, moderate intensity statin is indicated. 

Answer B (AI): Start moderate-intensity statin therapy (e.g., atorvastatin 20 mg daily) for primary prevention, as RA is 
considered a risk-enhancing factor. 

Evaluation: {{"concordant": 1, "explanation": "Both answers agree on starting moderate-intensity statin therapy based on 
elevated ASCVD risk factors."}} 

DISCORDANT EXAMPLE: 

Question: Patient with hypothyroidism, TSH 33.03, on levothyroxine 100mcg daily. Please help manage/adjust. 

Answer A (Human): Check TSH and Free T4 now. Dose will have to be adjusted based on repeat labs. 

Answer B (AI): Increase levothyroxine to 125 mcg daily, repeat TSH and free T4 in 4-6 weeks to assess response. 

Evaluation: {{"concordant": 0, "explanation": "Human recommends checking labs first before dose adjustment, while AI 
recommends immediate dose increase - contradictory management approaches."}} 

Now evaluate the following: 

Question: {question}.  
Answer A (Human): {answer}.  
Answer B (AI): {ai_output}:""" 
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