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Protein function prediction remains a fundamental challenge in computational biology. Here,
we present a Large Language Model (LLM) agent-based system that improves protein func-
tion prediction performance using knowledge-augmented reasoning and multi-source evi-
dence synthesis.

Our approach integrates computational predictions with structured protein metadata,
scientific literature, and ontological knowledge through a multi-stage reasoning process. An
LLM agent equipped with specialized tools progressively refines functional predictions by
querying constraints, cross-referencing evidence, and ensuring biological plausibility. Fur-
thermore, the system provides detailed explanations for each prediction update, document-
ing the reasoning process and evidence sources.

We evaluate our approach against established baseline methods across three Gene On-
tology sub-ontologies using four complementary metrics, achieving superior performance in
threshold-dependent measures, attaining the lowest Sy, scores across all ontologies and the
best Finax for Molecular Function and Cellular Component ontologies. We make our code
publicly available at https://github.com/bio-ontology-research-group/go-agent.
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1. Introduction

Protein function prediction is one of the key challenges in modern biology and bioinformatics as
it enables better understanding of the roles and interactions of proteins within living systems.
Accurate functional descriptions of proteins are necessary for tasks such as identification of
drug targets, understanding disease mechanisms, and improving biotechnological applications
in industry. While predicting protein structures has become increasingly accurate in recent
years,! predicting protein function remains challenging due to the small number of known
functions combined with their complexity and interactions.

Functions of proteins are described using the Gene Ontology (GO).2 GO includes three
sub-ontologies for describing molecular functions (MFO) of a single protein, biological pro-
cesses (BPO) to which proteins can contribute, and cellular components (CCO) where pro-
teins are active. Researchers identify protein functions based on both targeted experiments
and high-throughput experimental approaches, generating scientific reports which are then
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taken by database curators and added to knowledge bases. Currently, the UniProtKB/Swiss-
Prot database?® contains reviewed GO annotations for thousands of organisms and more than
570,000 proteins.

Protein function prediction methods can rely on different sources of information such as
sequence, interactions, protein tertiary structure, literature, or the information provided in
GO.4# 16 The methods may use sequence domain annotations,>%817 directly apply deep con-
volutional neural networks (CNN)!? or language models such as LSTMs? and transformers,'4
or use pretrained protein language models!®!5 to represent amino acid sequences. Models may
also incorporate protein—protein interactions through knowledge graph embeddings,'?16 ap-
proaches using k-nearest neighbors,'” and graph convolutional neural networks.® Also, natural
language models applied to scientific literature have been successful in automated function
prediction.®

Despite these advances, current protein function prediction methods face several limita-
tions. Most approaches treat prediction as a static classification problem without incorpo-
rating the rapidly growing nature of biological literature or providing multi-step reasoning
explanations for their predictions. While some methods offer interpretability through atten-
tion mechanisms'* or graph-based explanations in GNNs!'® or LLMs' they typically highlight
important features rather than providing structured reasoning that traces through multiple
evidence sources and biological constraints. Traditional methods, although capable of inte-
grating multiple data types as demonstrated by approaches like GOLabeler,® often rely on
fixed integration schemes that cannot re-evaluate evidence based on context-specific biological
knowledge. These methods cannot easily incorporate new biological insights without retrain-
ing or adapt their integration strategy based on the reliability of different evidence sources for
specific protein families or functional categories. Furthermore, while these methods provide
confidence scores, they lack the ability to generate natural language explanations that trace
the logical steps from evidence to conclusion, making it difficult for biologists to assess the
reliability of predictions or understand the biological reasoning supporting specific functional
assignments.

The emergence of large language models (LLMs) has introduced new capabilities for inte-
grating heterogeneous information sources and performing evidence-based reasoning in compu-
tational biology. Traditional machine learning approaches for protein function prediction rely
on fixed feature representations and statistical patterns learned from training data, limiting
their ability to incorporate new biological knowledge or provide explanations for their predic-
tions. In contrast, LLM agent-based systems, exemplified by frameworks such as LangChainf
and multi- agent systems like CAMEL-AT? can access external knowledge bases on-demand,
synthesize information from scientific literature, and apply domain-specific constraints through
specialized tools. The key advantage of LLM agents over standalone LLMs lies in their ability
to perform multi-step reasoning processes, where intermediate results can be validated against
external knowledge sources and refined through iterative consultation of different information
repositories. This agent-based approach enables the combination of computational predictions

®https://github.com/langchain-ai/langchain
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with structured biological knowledge and experimental evidence from literature, potentially
improving both the accuracy and interpretability of protein function predictions.

In this work, we propose an LLM agent-based system that addresses these limitations by
combining computational predictions with LLM-generated reasoning and evidence synthesis.
Our approach integrates multiple information sources including supervised predictions from
a multi-layer perception (MLP) network trained on SwissProt annotations, homology-based
predictions from DiamondScore methods, structured protein metadata from UniProtKB, rel-
evant scientific literature from PubMedP] and ontological knowledge from the Gene Ontology
database. The system employs a multi-stage reasoning process where an LLM agent equipped
with specialized tools progressively refines functional predictions through evaluation of avail-
able evidence and ontological consistency checking. Unlike traditional black-box approaches,
our method provides detailed explanations for each prediction update, tracing the reasoning
process and evidence sources that influenced the final annotations. We evaluate our approach
against established baseline methods and demonstrate improved performance in semantic ac-
curacy and optimal threshold-dependent metrics, while providing interpretable insights that
support biological hypothesis generation and validation.

2. Materials and Methods
2.1. Gene Ontology and Dataset

We obtained all proteins that were manually curated and reviewed from the UniProtKB /Swiss-
Prot Knowledgebase. We generated a time-based test set by following the CAFA?! challenge
time-based approach. For training, we took all proteins from release v2023_05 (08-Nov-2023).3
For validation, we took the proteins that collected annotations in the release v2024_06 (27-Nov-
2024). For testing, we took the proteins that appeared in the release v2025_03 (18-Jun-2025).
We selected time based evaluation with these dates to make sure that the LLMs we use were
not trained on our testing set. We filtered proteins with experimental functional annotations
using evidence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC, HTP, HDA, HMP, HGI, HEP.
The dataset contains 84, 748 reviewed and manually annotated proteins and a subset of filtered
Gene Ontology annotations. The dataset includes comprehensive annotations from multiple
sources: UniProtKB entries containing protein metadata and functional descriptions, PubMed
abstracts associated with each protein through database cross-references, InterPro domain
annotations obtained via InterProScan, and curated Gene Ontology annotations across all
three sub-ontologies (Molecular Function, Biological Process, and Cellular Component). Table
summarizes the datasets for each sub-ontology.

We use Gene Ontology (GO)? version released on 09-Oct-2023. In addition, we use
go-computed-taxon-constraints file to query taxon constraints axioms.

2.2. Baseline comparison methods

To evaluate our LLM agent-based approach for protein function prediction, we compare against
several established methods that provide diverse perspectives on computational function pre-

Phttps://pubmed.ncbi.nlm.nih.gov/
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Table 1. Summary of the UniProtKB-SwissProt dataset. The ta-
ble shows the number of GO terms, total number of proteins, num-
ber of groups of similar proteins, number of proteins in training,
validation and testing sets for the UniProtKB-SwissProt dataset.

Ontology Terms Proteins Training Validation Testing

MFO 7,168 46,573 45,365 801 407
BPO 20,848 62,613 60,615 1,225 773
CcCO 2,905 61,591 99,926 1,126 939

diction.

Given the inherent class imbalance in Gene Ontology (GO) annotations and the hierar-
chical structure imposed by the true-path rule, certain GO terms appear more frequently
than others in training data. The naive classifier, introduced by the Critical Assessment of
Functional Annotation (CAFA) challenge,?? exploits this frequency distribution by assigning
GO terms to all proteins based solely on their prevalence in the training set. For each query
protein p and GO term f, the prediction score is computed as S(p, f) = %, where Ny repre-
sents the number of training proteins annotated with GO term f, and N;,, denotes the total
number of training proteins. This baseline provides a lower bound for performance evaluation
and helps assess whether more sophisticated methods provide meaningful improvements over
frequency-based predictions.

The DiamondScore method is based on the sequence similarity score obtained by Dia-
mond.?? The method aims to find similar sequences from the training set and transfer their
annotations using the normalized bitscore to compute the prediction score for a query sequence

. > .cp bitscore(q,s)*I(f€Ts) ) L
q S(g, f) = e where E is a set of similar sequences filtered by e-value of

0.001, Ty is a set of true annotations of a protein with sequence s, and I is an indicator function
which returns 1 if the condition is true and 0 otherwise.

MLP baseline uses ESM2%* embeddings as input features. The network archi-
tecture consists of two MLP blocks with residual connections, followed by a sig-
moid classification layer. Each MLP block applies the transformation MLPBlock(x) =
Dropout(BatchNorm(ReLU(Wx +b))). The first MLP block reduces the input dimensionality
from 2,560 to 1,024, the second block maintains the 1,024-dimensional representation while
incorporating a residual connection, and finally, the classification layer produces predictions
using sigmoid activation where the output dimensionality matches the number of classes in
each GO sub-ontology. We train separate models for each sub-ontology (Biological Process,
Molecular Function, and Cellular Component).

DeepGO-PLUS! integrates sequence-based predictions from a Convolutional Neural Net-
work (CNN) model with similarity-based DiamondScore predictions. The CNN model employs
a one-dimensional convolutional neural network to identify sequence motifs associated with
specific GO functions directly from amino acid sequences.

DeepGraphGOS integrates sequence-derived features with protein-protein interaction
(PPI) network information using graph convolutional neural networks. The method combines
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InterPro domain annotations with topological information from PPI networks, allowing the
model to leverage both intrinsic protein properties and interaction context for function predic-
tion. The graph convolutional architecture enables the propagation of functional information
through the protein interaction network, potentially capturing functional relationships that
emerge from protein complex formation and pathway participation. We implemented Deep-
GraphGO based on the original manuscript specifications and trained the model using our
standardized dataset for fair comparison.

SPROF-GO? uses the ProtT5-XL-U50 protein language model to extract protein sequence
embeddings and learns an attention-based neural network model. The model incorporates the
hierarchical structure of GO into the neural network and predicts functions that are consis-
tent with hierarchical relations of GO classes. Furthermore, SPROF-GO combines sequence
similarity-based predictions using a homology-based label diffusion algorithm. We used the
trained models (v1) provided by the authors to evaluate them on the time-based dataset.

2.3. LLM-based agent system

The LLM agent system is implemented using the CAMEL-AT? framework, with the Gemini-
Flash-2.0 and GPT-4.1 nano language models as the underlying LLM engine, which were
selected for their strong performance on scientific reasoning tasks and multi-step problem
solving. The agent operates with a context window that accommodates protein-specific in-
formation including UniProtKB metadata, relevant literature abstracts, and specialized tool
outputs. Both Gemini-Flash-2.0 and GPT-4.1 nano have knowledge-cutoff date of June 2024
which is before the release date of our test protein annotations.

The implemented LLM agent-based system integrates multiple information sources and
computational predictions to refine protein function annotations through structured reason-
ing and evidence synthesis. The system operates as a specialized GO annotation curator that
processes individual proteins through a multi-stage refinement pipeline following a system-
atic workflow. The system aim is to refine scores for already known functions rather than
discovering new ones.

For each target protein, the system begins by assembling a comprehensive information
profile that includes initial computational predictions from MLP models trained on SwissProt
annotations, homology-based predictions from DiamondScore sequence similarity methods,
structured protein metadata and functional descriptions from UniProtKB entries, relevant
scientific literature abstracts from PubMed associated with the protein, InterPro domain an-
notations obtained through InterProScan, and ontological knowledge with taxonomic con-
straints from the Gene Ontology database (Figure |1| section (a)). The agent operates with a
contextual system message that establishes its role as a GO annotation curator for the specific
protein, incorporating UniProtKB functional information and relevant literature abstracts into
its reasoning context to ensure responses are grounded in protein-specific biological knowledge.

The LLM agent is equipped with four specialized tools that enable adaptive information
retrieval and prediction updates during the reasoning process. The InterPro tool retrieves
and processes InterPro domain annotations, mapping them to associated GO terms through
the InterPro2GO mappings. The GO tool provides detailed information about specific GO
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terms, including their definitions, hierarchical relationships, and associated prediction scores.
The TaxonConstraints tool queries organism-specific constraints from the Gene Ontology,
identifying GO terms that are taxonomically restricted or prohibited for the target organism.
The Update tool allows the agent to modify prediction scores based on its analysis.

The prediction refinement operates through a two-stage prompting strategy that follows
the agent’s analytical workflow. In the first stage, the agent receives all GO terms with initial
prediction scores > 0.1 along with their associated information including prediction scores,
DiamondScore homology evidence, and annotation frequencies in the training data. The agent
analyzes each term considering multiple evidence sources: annotation frequency patterns to
identify potentially underrepresented terms with frequencies below 200, supporting evidence
from InterPro domains and sequence similarity, and resolution of conflicts between different
evidence sources. The system integrates multiple types of biological constraints during this
analysis, using taxonomic constraints to ensure predicted functions are biologically plausible
for the target organism, while annotation frequency analysis helps identify potentially novel
or underrepresented functions that may be missed by frequency-biased training data (Figure
section (b)).

In the second stage, the agent applies its analysis to update GO term scores with spe-
cific constraints: changes are limited to increments or decrements of maximum z to minimize
excessive modifications, and updates must be accompanied by detailed rationales explaining
the evidence and reasoning behind each change. We empirically determined the value of x to
be 0.2 for the current experiment using a limited random search. The agent provides struc-
tured output including current versus recommended scores, confidence levels, and resolution
of conflicting evidence. Throughout this process, the agent synthesizes evidence from sequence
homology (DiamondScore), structural domains (InterPro), experimental literature (PubMed
abstracts), and ontological relationships (GO hierarchy) to make informed decisions about
functional assignments (Figure |1f section (c)).

The iterative nature of this workflow allows the agent to reconsider initial predictions in
light of multiple evidence sources, potentially identifying functions that were initially scored
low due to training data biases but are well-supported by domain annotations or literature
evidence. This approach enables the system to provide not only refined predictions but also de-
tailed explanations that trace the reasoning process and evidence sources that influenced each
functional assignment, supporting biological hypothesis generation and enabling researchers
to understand the rationale behind functional annotations. We show an example of the agent
creation and reasoning process in our Supplementary Materialq]

3. Results
3.1. FEwvaluation Metrics

We evaluate the performance of our protein function prediction models using four complemen-
tary metrics established by the CAFA challenge:?? three protein-centric measures (Fiax, Smin,

‘https:
//github.com/bio-ontology-research-group/go-agent/blob/main/supplementary.pdf
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(b) Tool Use and (c) Action and
Reasoning Output

liafle Refined GO scores Rationales
Domains Updated predictions Evidence synthesis
+/- 0.2 change
GO Info
Knowledge
PubMed Diamond o
Article Abstracts Homology-based Constraints Update tool
Related Literature scores

Fig. 1. LLM Agent-Based Protein Function Prediction Workflow. (a) Agent acquires protein meta-
data information from UniprotKB and literature information from PubMed. Furthermore, the Agent
also acquires GO prediction scores from a MLP and Diamond. (b) Agent performs tool calls, in-
tegrates information and performs a reasoning step. (c¢) Agent produces refined GO scores with
explanations.

(a) Information Acquisition

UniprotKB

Protein metadata
Functions

and AUPR) and one class-centric measure (AUC). Fpax represents the maximum protein-
centric F-measure achieved across all possible prediction thresholds, balancing precision and
recall by identifying the optimal threshold that maximizes their harmonic mean. Sy, quan-
tifies the semantic distance between predicted and true annotations by incorporating the
information content of GO terms, accounting for the hierarchical structure of the Gene On-
tology and penalizing errors based on term specificity. AUPR measures the area under the
precision-recall curve, providing a threshold-independent comprehensive view of model perfor-
mance across all operating points. AUC represents a class-centric evaluation where we com-
pute the area under the ROC curve for each individual GO class and calculate the average
across all classes, assessing the model’s ability to distinguish between positive and negative
instances for each functional category independently. These metrics provide comprehensive
assessment across different aspects of prediction quality, capturing both threshold-dependent
and threshold-independent performance characteristics.

3.2. Fvaluation

The results presented in Table 2] demonstrate the comparative performance of our LLM agent-
based approach (Gemini-Flash-2.0 and GPT-4.1 nano) against established baseline methods
across three Gene Ontology sub-ontologies: Molecular Function Ontology (MFO), Biological

Process Ontology (BPO), and Cellular Component Ontology (CCO).
Both LLM-based approaches achieve superior performance across most evaluation metrics,
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with complementary strengths. Gemini-Flash-2.0 demonstrates the strongest performance in
threshold-dependent measures, achieving the highest Fyax scores for MFO (0.718) and CCO
(0.737), and the best semantic accuracy with Sy, values of 5.935 for MFO, 25.381 for BPO and
6.190 for CCO. GPT-4.1 nano achieves the second best performance for Fy,.x and Sy, for MFO
and CCO, without sacrificing threshold-independent metrics such as AUC. Table [2| contains
results for GPT-2.1 nano and Gemini-Flash 2.0 averaged across 5 versions of each experiment
and Table |3|integrates both mean and standard deviation results. Among the computational
baselines, the MLP+DiamondScore combination demonstrates the strongest overall perfor-
mance, serving as the most competitive non-LLM approach. This hybrid method achieves
best results AUPR and AUC scores across all subontologies. DeepGOPIlus shows strong per-
formance particularly in threshold- independent metrics, while methods like DeepGraphGO
and SPROF-GO exhibit lower performance across most measures. The naive baseline, as ex-
pected, provides the lowest performance bounds across all metrics.

The results indicate that incorporating LLM-based reasoning with domain knowledge and
literature evidence can improve protein function prediction, particularly when optimizing for
balanced precision-recall performance and semantic accuracy.

Table 2. The comparison of performance on the time-based dataset. For our method, we report the
mean metrics accross 5 runs of experiments. Best performing results are bold.
Method Finax Stin AUPR AUC
MFO BPO CCO| MFO BPO CCO| MFO BPO CCO| MFO BPO CCO
Naive 0.266  0.262 0.568 | 12.452  30.865 9.822 | 0.126 0.146 0.410 | 0.500 0.500  0.500
DiamondScore (DS)  0.699 0.452 0.689 | 6.262 25.907 6.488 | 0.568 0.320 0.492 | 0.877 0.727 0.826
DeepGOPlus 0.695 0.454 0.719 | 6.313 25.873 6.456 | 0.688 0.382 0.746 | 0.931 0.833 0.906
SPROF-GO 0.649 0.398 0.681 7.988 27.278 7948 | 0.628 0.333 0.695 | 0.746 0.692 0.749
DeepGraphGO 0.611 0.378 0.651 | 8.390 28.118 7.997 | 0.546 0.295 0.620 | 0.781 0.696 0.791
MLP 0.642 0.414 0.693 | 7.364 27.440 7.530 | 0.642 0.354 0.723 | 0.957 0.868 0.936
MLP+DS 0.706 0.463 0.718 | 6.177 25.495 6.365 | 0.712 0.402 0.755 | 0.964 0.874 0.949
GPT-4.1 nano 0.709 0.462 0.722 | 6.132 25.515 6.332 | 0.704 0.400 0.748 | 0.964 0.874 0.949
Gemini-Flash 2.0 0.718 0.460 0.737 | 5.935 25.381 6.190 | 0.695 0.386 0.728 | 0.945 0.867 0.946

Table 3. Performance variance of LLM-based systems. We setup LLM tempera-
ture at 0.3. We report the mean and standard deviation across 5 runs of experi-

ments.
Model  Ontology Froax Smin AUPR AUC
MF 0.709 =+ o0.003 6.132 & 0.046  0.704 & 0.005s 0.964 = 0.000
GPT BP 0.462 = 0001 25.515 £ 0.018  0.400 =+ 0.001 0.874 = 0.000
CcC 0.722 % o0.002 6.332 £ 0.053  0.748 £ 0.002  0.949 = 0.000
MF 0.718 =+ o0.002 5.935 £ 0.099  0.695 £ 0.003 0.945 =+ 0.003
Gemini BP 0.460 = 0.003 25.381 £ 0111 0.386 £ 0.001  0.867 = 0.003
CC 0.737 =+ 0.005 6.190 + 0.052  0.728 & 0.007  0.946 = 0.002

We additionally evaluate the impact of the external information provided to the agent:
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UniProtKB metadata and PubMed literature information. The results in Table [l demonstrate
that the integration of external information sources has a nuanced impact on performance
across different GO ontologies and evaluation metrics. For both GPT and Gemini models,
the inclusion of metadata and abstracts shows improvements in Fj,., and Sy, scores across
most ontologies, with the most gains observed in CCO predictions. Interestingly, the AUPR
and AUC metrics show mixed results, with some configurations performing better without
external information, suggesting that the benefits of incorporating metadata and literature
abstracts are context-dependent and metric-specific. This indicates that while external infor-
mation sources can enhance certain aspects of GO term prediction, their integration requires
careful consideration of the specific evaluation criteria and ontology domains being targeted.

Table 4. Results for the ablation study of the initial context for GPT-4.1 nano and Gemini-Flash-2.0.
Best performing results are bold.

Finax Smin AUPR AUC
MFO BPO CCO| MFO BPO CCO| MFO BPO CCO| MFO BPO CCO

Without Metadata  0.705 0.461 0.720 | 6.223  25.537 6.414 | 0.704 0.399 0.738 | 0.957 0.874 0.949
GPT Without Abstracts 0.708 0.461 0.722 | 6.062 25.530 6.351 | 0.707 0.400 0.746 | 0.961 0.874 0.949
All info 0.709 0.462 0.722 | 6.132 25.515 6.332 | 0.704 0.400 0.748 | 0.964 0.874 0.949

Without Metadata  0.710  0.458 0.724 | 6.129  25.760 6.216 | 0.700 0.387 0.734 | 0.952 0.871 0.946
Gemini Without Abstracts 0.717  0.457 0.731 | 6.118 25.508 6.223 | 0.703 0.385 0.735 | 0.951 0.870 0.944
All info 0.718 0.460 0.737 | 5.935 25.381 6.190 | 0.695 0.386 0.728 | 0.945 0.867 0.946

Model Method

4. Conclusions and Future work

In this work, we introduced an LLM agent-based system for protein function prediction that ef-
fectively integrates computational predictions with domain knowledge and scientific literature
through multi-stage reasoning. Our approach addresses key limitations of traditional methods
by providing both improved predictive performance and interpretable explanations for func-
tional assignments. The system demonstrates superior performance in threshold-dependent
metrics, achieving the highest Fp.x for Molecular Function and Cellular Component sub-
ontologies and and optimal semantic accuracy across all Gene Ontology sub-ontologies. Beyond
quantitative improvements, our method provides detailed reasoning traces that document the
evidence and constraints considered during prediction refinement, enabling researchers to un-
derstand and validate functional assignments. The results establish that knowledge-augmented
LLM agents can effectively combine heterogeneous biological information sources, leveraging
both computational predictions and domain expertise to advance protein function annotation.
This paradigm shift from purely data-driven approaches to reasoning-based systems opens new
possibilities for interpretable and evidence-grounded computational biology applications.
While our current approach demonstrates significant improvements in protein function pre-
diction, several limitations present opportunities for future enhancements. Our single-agent
architecture, though effective, may benefit from a multi-agent collaborative framework where
specialized agents with distinct expertise domains work together to provide more comprehen-
sive functional annotations through agent negotiation and consensus building. A significant
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limitation is the system’s reliance on pre-curated literature abstracts, which could be addressed
by incorporating real-time literature search capabilities that allow agents to actively query
and retrieve updated relevant publications, patents, and preprints, accessing the most recent
research findings beyond manually curated associations. Additionally, our method currently
lacks integration of three-dimensional protein structure information from sources like the Pro-
tein Data Bank?® and AlphaFold! predictions, which represents a critical knowledge gap given
the fundamental relationship between protein structure and function. The system’s access to
Gene Ontology background knowledge is limited to basic term definitions and taxonomic con-
straints, and could be expanded to include comprehensive ontological relationships, semantic
similarities between GO terms and annotation provenance information. Furthermore, our cur-
rent approach processes each protein independently, missing potential functional relationships
and dependencies that emerge from protein-protein interactions, co-expression patterns, and
shared evolutionary history. Future multi-agent systems could incorporate network-based rea-
soning to consider functional coherence within protein complexes, metabolic pathways, and
regulatory modules, leading to more biologically consistent and systems-level functional an-
notations while maintaining the interpretability and evidence-based reasoning demonstrated
in our current approach.
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