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Protein function prediction from multiplex protein-protein association networks is a crucial
approach to extending functional annotation. Current methods use embeddings of the het-
erogeneous network data that aim to place related proteins near each other in embedding
space. However, such embeddings suffer from spurious protein proximity as well, reducing
function prediction accuracy. Because heterogeneous input networks often have very differ-
ent structures, it is hard to confidently declare proteins to be dissimilar using the network
structure or the resulting embeddings. Here we address this problem with REPEL, a func-
tion prediction tool using a random graph augmentation method that applies a uniform
weak force to push nodes apart. We assess this method on simulated networks with planted
overlapping communities, as well as on real multiplex yeast and FE.coli protein association
networks. Surprisingly, we find that this method consistently improves protein function
prediction over competing methods Mashup, deepNF, and BIONIC. The random repelling
nature of the augmented graphs has a denoising effect on the learning process, distancing
node pairs with spurious proximity while preserving true functional connections, thus in-
creasing robustness. This graph augmentation principle may generalize to denoising and
improving robustness in other graph-based learning algorithms.
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1. Introduction

Determining the functional roles of genes and proteins is crucial for better understanding bio-
logical processes and developing focused medical interventions. Given the cost and complexity
of experimental assays of gene function in different cellular contexts, computational prediction
of function is an important problem. Data from large-scale protein-protein interaction (PPI)
networks has often been used for such purposes.!

Most early results in this area relied on the principle of “guilt by association,” which
assumes that protein functions are likely similar to those of other proteins with which they
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interact.? Subsequent efforts grouped functions within highly connected graph communities or
minimized interactions linking proteins with different functional annotations.?® Improvements
in predictive accuracy came from new measures of graph proximity that reflected random
walk®" or diffusion distances,® characterizing information flow in the local graph structures.

In 2016, Cho et al.? introduced the Mashup algorithm, integrating information across
multiple biological networks reflecting heterogeneous sources of protein-protein interactions.
Mashup consists of three main steps. First, Random Walk with Restart (RWR)” is run sepa-
rately for each node for each network. Next, a low-dimensional embedding is constructed to
minimize the distance to all the individual network-specific vectors. Finally, these global low-
dimensional feature vectors are passed to classifiers such as k-nearest neighbors® or support
vector machines!? to predict functional labels. The aim of this low dimensional embedding is
to induce proximity between nodes linked by network edges.

In this paper, we characterize the effects of extending the Mashup embedding paradigm
by adding negative weight edges that push nodes further apart. Specifically, we augment the
network with new artificial nodes and connect each original protein node uniformly, with
negative weight “repelling” edges, to a random artificial node. The result of this random
augmentation is to stretch out the integrated PPI network. Original protein nodes are still
pulled closer together by the source network edges. However, the the new augmented nodes
simultaneously are uniformly repelling, pushing everything further apart.

Surprisingly, we find that the resulting stretched network is far better for functional label
prediction. We believe this improvement shows that the repelling process from the augmenta-
tion, though not strong enough to separate well-connected communities of truly related nodes,
has sufficient strength to pull apart nodes placed in proximity just by chance. Accordingly,
this repelling approach effectively regularizes the embedding, improving its utility for pro-
tein function prediction. We believe this represents another example of random perturbations
effectively denoising and improving machine learning algorithms.!* 13

2. Algorithms
2.1. Preliminaries and Notation

Let G* = (V, E?) with i € {1,---, M} be a multiplex network which shares a set of nodes V, with
|V| = n. Each individual network i has its own set of edges E* corresponding to different types
of pairwise associations. The weighted adjacency matrix A® € [0,1]"*" contains the confidence
scores of the association edge of type i between the node pairs being correct.

Let L'*™ denote a function annotation matrix with I functional labels and n proteins. We
let L;; =1 if protein i has label j, otherwise L;; = 0.

2.2. The REPEL Algorithm

REPEL de-noises the learned protein embeddings by augmenting the network before the
embedding and function prediction phases. Figure 1 gives an overview of the procedure; details

of the algorithm follow.
Augmentation. For the proteins with known labels, we randomly split them into 5 folds, and

use 4 folds as function voting proteins and 1 fold as testing proteins. We further randomly split
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Fig. 1. REPEL Workflow. The blue arrows illustrate how we augment auxiliary nodes and edges.
The blue rectangle area represents the augmented edge matrices for proteins with functional labels.
The orange and gray rectangles represent the all edge 0 matrix between test proteins (orange) and
unlabeled proteins (gray). The pink square illustrates the repelling negative weight matrix. Using
these augmented networks, REPEL follows the feature representation learning procedures of Mashup
to learn a protein embedding and predict functions.

the function voting proteins into z equal sized non-overlapping groups, to achieve a uniformly
“repelling” power. For each group, we create one auxiliary node, and connect each protein
that belongs to that group to the auxiliary node with an edge with weight 1. We augment all
networks with the same set of edges between the auxiliary nodes and proteins. Then we add
a “repel” edge with weight —1 between each pair of the auxiliary nodes to push them apart.
We denote the augmented graph as G'. The resulting symmetrical weighted signed adjacency
matrix A' € [—1,1](*+2)x(+2) ig defined as:

Al ifuveV,
= 1 it edge(u,v) € Equg,
-1 if u,v € Vayg, u # v,

0 otherwise,

where Vg4 is the augmented node set with |V,4| = 2, and E,.4 is the augmented edge set. In
addition, due to how we augment the graph, we ensure

ZZZ@:C for all u € Vpyg and v € V, Zﬁfwzl for all u € Vg and v € V.

The constant ¢ is the closest integer to the number of voting proteins divided by z, the total
number of groups. Each group contains ¢ proteins, except the last one which may contain
more or fewer to account for the remainder.

Diffusion. On each augmented graph G', a diffusion process using RWR on the signed
graph is run which creates a matrix representation denoted as W' of the augmented network.
Since we augment the links with negative weights to the graph, the original RWR won’t work,
because it requires positive transition probabilities. Thus, we need to generalize the diffusion
state matrix W' to signed graphs.

A natural generalization to a signed graph is obtained by replacing the weighted degree
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matrix D in the normal RWR diffusion state equation with the signed weighted degree matrix
D. Letting o represent the restart rate, the diffusion state matrix for signed graphs is defined:

W=oaD(D-(1-a)A) "

Embedding. A shared low-dimensional embedding X € R**™ is created using the matrix
representation W' where i € {1,---, M}. This is achieved via a singular value decomposition
(SVD). Ultimately this results in a d-dimensional vector representation of every node in the
dataset. We adopted Mashup’s approach to combine these matrix representations to obtain a
low-dimensional embedding. '

Once each set of M networks has been represented by its RWR matrix W', the low-
dimensional embedding X is formed by the scaled largest d left singular vectors of the con-
catenated matrix log(S) where § = (W17, ,(W")T]T and log(-) denotes the element-wise
logarithm. As suggested in the Mashup paper,” to optimize the implementation, the SVD-
based embedding can be computed by the eigenvalue decomposition of the n x n matrix R,

M
R=> log(W")" log(W").
=1

A small constant is added to W" to avoid taking the logarithm of zero. Taking the top d eigen-
values A = diag(\1,---,\) and eigenvectors U = (uq,---,ug) € R™¥?, the low-dimensional
embedding is X = AV4UT.

Learning. Once the embedding X for every node in the dataset is learned, any classical
function prediction method can be applied. We adopted a weighted majority voting classifier
by k-nearest neighbors (kNN) (similar to that used by Cao, et al.?) to predict functional labels
using the embedding and the available annotations.

2.3. Prior Work and Review of Comparator Algorithms

In the experiments in this paper, we compare REPEL to Mashup; DeepNF, which uses a
multimodal deep autoencoder; and BIONIC, which integrates biological networks using a
Graph Convolutional Network based model. Each of these is reviewed briefly below.

2.3.1. Mashup

The original Mashup procedure consists of three core steps. First a Diffusion step that creates
a RWR matrix representation W¢ € R™*" for each input of the network G?, followed by
an Embedding step where a shared embedding is created using the matrix representations
generated in the diffusion step. This is achieved via singular value decomposition or dictionary
learning techniques. Ultimately, this gives a d-dimensional vector representation of every node
in the dataset. Finally the Learning step: once every node in the dataset is represented by
a vector, the existing function prediction methods can be applied using the embedding and
available annotations. The original Mashup used a support vector machine (SVM) for the
final learning step. However, it also carefully filtered the set of GO labels that it considered
to discard GO labels whose set of labeled genes overlapped (with a Jaccard threshold greater
than 0.1), advantaging methods such as SVM that search for a separating hyperplane. Since

773



Pacific Symposium on Biocomputing 2026

we are mainly interested in the functional enrichment of the embedding itself and in the more
realistic setting where GO labels are allowed to overlap, we instead use kNN as the classifier
to compare the different embedding methods in this paper.

2.3.2. deepNF

DeepNF! tries to learn a useful low-dimensional embedding of proteins with a multimodal
deep autoencoder (MDA)! that preserves non-linear network structure across multiple net-
works characterized by diverse connectivity patterns.'* It is shown to preserve the non-linear
network structure with its deep neural network (DNN) architecture in an efficient and scalable
manner, and at the same time it denoises the links in the networks.

It first utilizes RWR to create its matrix representation W* € R™*" for each input net-
work G*. Then each RWR matrix is converted into a Positive Pointwise Mutual Information
(PPMI) matrix Q" € R™" that captures the structural information of the network. Then an
MDA is trained that takes the PPMI matrices as input. A canonical d-dimensional feature
representation across the networks is extracted from the middle layer of the MDA, which will
be fed into the downstream function predictors.

2.3.3. BIONIC

BIONIC!6 is a Graph Convolutional Network!” based deep learning model to learn a uni-
fied, combined gene feature representation using multiple biological networks. It reflects the
underlying network topologies while capturing the gene functional information.

BIONIC first encodes each biological networks through a 3-layer GAT'® model, then ag-
gregates the learned features through a weighted, stochastically masked summation. It has
both unsupervised and semi-supervised learning modes depending on availability of the gene
functional information. For the unsupervised learning mode, the model will be trained with
network reconstruction loss as the objective. For the semi-supervised learning mode, an addi-
tional label classification loss term, introduced by incorporating the known label information,
will be added along with the reconstruction loss as the training objective. Here, to match
the learning modes of REPEL, Mashup, and deepNF, and to make as fair a comparison as
possible, we adopted the unsupervised approach and retrieved the learned gene embeddings
using the recommended parameters.

2.3.4. Other methods

In addition to the methods discussed here and in the Introduction, there have been other efforts
to predict function from heterogeneous networks using modern neural network approaches.
However, because most also require other input data, these could not be directly compared on
the data used by Mashup and REPEL. For example, NetGO' and its subsequent incarnations
integrate data across multiple species and predict cross-species interactions, a separate and
challenging problem. GTPLM-GO?° and SEGT-GO?! are related graph transformer methods
that both require additional protein sequence data. It would, however, also be interesting to
test REPEL against DropEdge?? variants of DeepNF or BIONIC, or other GCN augmenta-
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tion strategies for BIONIC that, like REPEL, are intended to prevent over-squashing of the
embedding space.?3

3. Materials and Methods
3.1. Btiological Interaction Data
3.1.1. Protein-protein Interaction Networks

Yeast Networks The set of yeast (Saccharomyces cerevisiae) networks we consider in this pa-
per are the ones used in the original Mashup paper? and are also described in detail there. They
come from the STRING database v9.1,%* excluding links derived from text-mining. In partic-
ular, we consider six heterogeneous networks featuring neighborhood, fusion, co-occurrence,
co-expression, experimental, and database interaction types with edge counts ranging from
1,361 to 314,013 over the same set of 6,400 genes (see Table S1 in the Supplement).

E. coli Networks We downloaded analogous E. coli (FEscherichia coli) networks from
STRING database v12.0.2°> We use the same interaction types as in yeast, with edge counts
ranging from 9,152 to 219, 483 on the same set of 4, 140 genes (see Table S1 in the Supplement).

3.1.2. Protein annotation

We use functional annotation from the Gene Ontology (GO)?® for yeast and E. coli; func-
tional labels are separated according to their three distinct hierarchies: Biological Process
(BP), Molecular Function (MF), and Cellular Component (CC). As in the Mashup paper, we
filter the GO terms to only retain functional labels of intermediate specificity, terms labeling
more than 10 and fewer than 301 protein nodes. This label set is further divided into levels
of varying specificity, each containing labels that annotate either 11-30, 31-100, or 101-300
proteins, respectively.?” Thus for each organism we perform 9 different function prediction
experiments, parameterized by one of the three hierarchies (BP, MF, or CC) and one of the
three levels of GO-term specificity (11-30, 31-100, and 101-300). Number of GO labels in each
bin appear in Table S2 in the Supplement.

3.2. Synthetic Data

To clarify the role of negative weight edges, we generate synthetic data that we use to specif-
ically compare Mashup to REPEL in cases where there are known, correct annotations.

To create synthetic datasets with a realistic multi-network structure, we begin by randomly
generating one graph referred to as the base graph, denoted Gz. The graph Gz contains
multiple communities, characterized by a higher density of intra-community edges and a lower
density of inter-community edges; these communities are each assigned a different label that
is considered to be the ground truth. Each node is assigned to exactly one community.

We create Gz with 1,000 nodes using the LFR_benchmark_graph function?® from the Net-
workX library.?? This function produces a simulated graph in which both the node degrees
and community sizes follow power-law distributions, where we set the power-law exponent to
2.5 and 1.5, respectively, resembling the real-world biological networks we study. The mixing
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Gz and (G — 20%) Gz and (G — 80%)

Fig. 2. Tllustration of sparsity robustness analysis experiment settings. (A.) An example of Gg
generated with the LFR algorithm but with just 120 nodes to improve visualization. G is shown
on the left. The next two graphs illustrate Gg with a random 20% and 80% of the edges removed,
respectively. For the first round of sparsity experiments, we input each individual graph alone to
both Mashup and REPEL. (B.) In the second experimental setting, both the Mashup and REPEL
algorithms receive as input a pair of graphs: Gg plus one of the graphs with edges randomly removed.

parameter u, which controls the fraction of each node’s edges that connect to nodes outside
its own community, is set to 0.15, reflecting relatively well-separated communities. We set the
average node degree to 20 and the maximum degree to 100, while constraining community
sizes to range from 15 to 100 nodes.

From Gg we then generate multiple graphs, each of which captures different (yet consistent
and overlapping) parts of this base graph community structure. To mimic the noisy, incom-
plete, and biased nature of our real input networks, we create these simulated networks such
that the communities among multiple networks have some overlap, but we allow different
levels of sparsity and noise.

Sparsity Available PPI network data are typically sparse,3® motivating an investigation of
how sparsity impacts model performance. To introduce varying levels of sparsity, we randomly
remove 20%, 40%, 60% and 80% of the edges from Gp to generate increasingly sparse versions.
We then evaluate model performance under two input settings: first, using only the sparse
graph, and second, using both the sparse graph and Gz as input, as shown in Figure 2. We
note that although these methods are all designed to learn from multiple networks, in some
simulations, we assess performance when learning from just a single network as a control.

Noise Similar to the sparsity analysis, and motivated by the fact that PPI networks are
often noisy and biased,?° we also conducted a noise robustness analysis. To simulate variation
and introduce noise while preserving the community information, we construct a new empty
graph with the same set of nodes as Gz and add its edges as follows: for each community, we
randomly select a subset comprising p percent of its nodes. Within this subset, we add intra-
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community edges with higher probabilities to ensure cluster formation. Also, we randomly add
edges between these selected nodes and nodes outside their community (inter-community) with
lower probabilities, thereby introducing a degree of noise. This process yields a noisy graph
derived from Gp that maintains at least some of its core community structure.

Table 1. Configurations for Noisy Graph Generation
Configurations | num graph | Gye,l param set | Gyen2 param set | Gyen3d param set
Config 1 3 (0.8, 0.2, 0.005] [0.8, 0.2, 0.005] [0.8, 0.2, 0.005]
Config 2 3 [0.8, 0.2, 0.005] [0.6, 0.2, 0.005] [0.4, 0.2, 0.005]
Config 3 3 [0.2, 0.005, 0.005] | [0.2, 0.005, 0.005] | [0.2, 0.005, 0.005]
Config 4 1 [0.2, 0.005, 0.005] NA NA

Gg a.[0.8,0.2,0.005] b.[0.6,0.2,0.005] c.[0.4,0.2,0.005] d.[0.2,0.005,0.005]

Fig. 3. [Illustration of noise robustness analysis experiment settings. The base graph Gz shown is
generated using the LFR algorithm with 120 nodes for clarity of visualization. Noisy graphs a. to d.
are randomly generated using the methods in Section 3.2 under different sets of parameters (Table
1). Each parameter list denotes the percentage of preserved cluster core nodes, the probability of
edges existing intra-cluster, and the probability of edges existing inter-cluster. From graph a. to d.,
the structure of Gg becomes more disrupted.

We construct multiple noisy graphs under varying configurations to simulate different noise
scenarios and assess model robustness. The parameters for the four chosen configurations are
shown in Table 1, where the parameters for each of three simulated graphs are listed in order:
percent of preserved cluster core nodes, probability of within-cluster edges, and probability of
between cluster edges.

In Configuration 1, we generate three random graphs with similar structural characteristics
to Gp. In these graphs, the core structure of each cluster is largely preserved and remains
connected, while inter-cluster edges are kept sparse. In Configuration 2, we also generate three
random graphs with the same overall probability of intra-cluster and inter-cluster edges as in
Configuration 1. However, in this case, the core structures within the clusters are gradually
disrupted, simulating a scenario where community integrity is degraded. In Configuration 3, we
generate three graphs in which the cluster cores are deliberately disrupted and the clusters are
only loosely connected. In Configuration 4, we follow the same procedure as in Configuration
3 but generate only a single corrupted graph.

Thus, Configurations 3 and 4 together serve as a negative control, providing a baseline for
evaluating model performance in the absence of a meaningful community structure. In each
case, we evaluate the performance by providing the algorithms either with only the simulated
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graphs, or with the simulated graphs derived graphs together with Gg.

3.3. FEvaluation Methods

We evaluate the performance of Mashup, deepNF, BIONIC and our REPEL approaches for
predicting GO functional labels across the three GO hierarchies, BP, MF, and CC, using
the yeast and FE. coli multi-network collections. On the simulated networks, we evaluate the
performance using only Mashup and REPEL, to directly analyze how the augmented uniform
repel strength denoises the learned embeddings. Evaluation is conducted via five-fold cross-
validation, by randomly splitting the nodes into five folds. In each iteration, the labels from
one fold are withheld and treated as test data.

For each test fold, after obtaining the low-dimensional embedding of each node, we identify
its k nearest neighbors based on the pairwise Euclidean distance in the embedding space. A
weighted majority vote is then performed, where each neighbor’s vote is weighted by the
reciprocal of its distance to the test node. The GO terms receiving the highest total votes are
assigned as the predicted functions.

In each simulation setting, following the evaluation protocol described in the Mashup pa-
per,? we report the performance as accuracy, measured as the proportion of correctly annotated
nodes. We conduct 10 independent runs of five-fold cross-validation. The averaged prediction
accuracy and the standard deviation of that accuracy across the 10 runs are reported.

In experiments on real data, we conduct 5 independent runs of five-fold cross-validation
and report the accuracy, F1 score, and area under the precision-recall curve (AUPRC), again
following the definitions in the Mashup paper.?

3.4. Algorithm Parameters

For all experiments, REPEL was run with default parameters (summarized also in Tables S3
and S4) as follows. We set the dimensionality of the embeddings to 400, consistent with the
recommendation of Cho et al® for yeast and E.coli, which suggests retaining the dimensionality
of 5% — 10% of the original number of nodes. We also adopt the restart rate « of 0.5 from the
Mashup implementation. For label prediction, we only consider the nodes with labels within
the nearest 10 neighbors. Positive and negative edge weights are set to 1 and -1. The number
of auxiliary nodes was set to 15 based on a hyperparameter search, in which we observed
that when the number of augmented nodes is below 5, the results are noisy. The performance
becomes and remains stable with 10 to 20 augmented nodes, then starts to drop very gradually
as more augmented nodes are added (see Figure S1 in the Supplement).

4. Results and Discussion
4.1. REPFEL is Robust on Synthetic Networks

In our synthetic data experiments, we generated “ground-truth” base graphs consisting of
1,000 nodes. Using the procedures described in Section 3.2, we constructed several sets of
additional sparse and noisy graphs. We evaluated REPEL and Mashup performance based on
the accuracy in predicting community labels for the test nodes to directly compare the impact
of random graph augmentation in controlled settings.
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The results of the sparsity simulations are reported in Table S6 in the Supplement. When
provided with only the single network Gz as input, both Mashup and REPEL perfectly recover
the community assignments of all nodes. Removal of up to 40% of edges does not significantly
impact prediction accuracy for either method. However, a noticeable decline in accuracy is ob-
served at a 60% edge removal rate. With removal of 80% of the edges, performance deteriorates
substantially for both methods, with Mashup being more severely affected than REPEL.

Incorporating Gz with the sparse graph consistently improves prediction performance as
expected. When the edge removal rate is 60% or lower, both methods achieve accuracy above
0.99. Notably, at an 80% edge removal rate, if provided with Gz, REPEL’s accuracy rebounds
to above 0.99, while Mashup’s performance only returns to 0.92. These results indicate that
Mashup is robust to some degree of sparsity, but becomes more sensitive as sparsity increases.
In contrast, REPEL not only achieves comparable performance when more community infor-
mation is available, but also demonstrates greater robustness under high levels of sparsity.

Performance in the noise robustness simulations is reported in Table S7 in the Supplement.
Here, the results of Configuration 1 indicate that Mashup is more sensitive to noise, while
REPEL demonstrates greater robustness. Moreover, when Gg is incorporated as additional
input, REPEL shows a larger performance gain compared to Mashup, suggesting its better
ability in leveraging the underlying structures. As more noise is introduced in Configuration 2,
both Mashup and REPEL experience a decline in performance. However, REPEL consistently
demonstrates greater robustness, maintaining higher accuracy. While incorporating Gz as a
fourth input network leads to improved performance for Mashup, it remains substantially
affected by the noise. In contrast, REPEL is able to more effectively incorporate the structural
information provided by Gg, restoring its accuracy to over 0.95.

The results from Configurations 3 and 4 further support the above observations. When
only severely corrupted graphs are provided as input, both Mashup and REPEL perform
poorly as expected, with similarly low accuracy. When Gz is included, Mashup performs more
variably given different numbers of degraded graphs. Specifically, additional corrupted graphs
more strongly degrade Mashup’s performance, suggesting it struggles to distinguish noise from
real graph structure. This highlights a limitation in Mashup’s ability to filter out spurious
information. In contrast, although the addition of more corrupted graphs also leads to a
decrease in REPEL’s performance, the impact is smaller. This suggests that REPEL is better
equipped to extract and preserve underlying structure in the presence of noise.

4.2. Fvaluation on Real Networks

We observed that REPEL outperforms Mashup, deepNF and BIONIC on accuracy, F1 score
and AUPRC in all experiments on the yeast networks (Figures 4 and 5, Tables S5A and S5B).
On the E.coli networks, REPEL also outperforms other methods in all BP and MF experiment
settings. The methods show similar performance in CC settings on terms labeling at least 31
nodes, because there are very few (< 30) terms in these categories, so the numbers of labels
and test genes are too low to reliably distinguish the methods.
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Fig. 4. Cross-validation performance on yeast protein networks with GO functional labels for BP,
MF, and CC hierarchies compared to Mashup, deepNF and BIONIC. Performance measured by
accuracy, F1 score and AUPRC, averaged across 5 independent runs of 5-fold cross-validation. The
black lines denote the averaged standard deviation. Full numerical results in Table S5A.

4.3. REPFEL Finds Better Functional Clusters

We analyzed the learned embeddings for both REPEL and Mashup. Given a protein, we find its
nearest 10 neighbor proteins using L2 distance according to the learned protein feature vectors.
Then we queried the protein along with its neighbors in the STRING v12.25 database. We filter
out the text mining interactions, and only keep the interactions with combined confidence
scores higher than 0.9. Figure 6 shows the interactions among some example proteins and
their neighbors, with line thickness indicating the strength of data support. We observe more
consistent and more functionally closely connected proteins using REPEL.

For example, OLI1 is a mitochondrial ATP synthase. Mashup is able to find some function-
ally related genes, including ATP1, ATP2, COX4 and CYT1, however, the rest of its neighbor
genes are not obviously functionally closely related. REPEL is able to find more ATP related
genes including ATP1, ATP2, ATP3, ATP5, ATP6, ATP8, ATP16, and ATP17.

For another example protein, COB, both Mashup and REPEL find overlapping sets of
close functionally related genes. However, the protein set found by REPEL shows slightly
higher connectivity, with an average local clustering coefficient of 0.952, versus 0.846 for the
neighbors according to Mashup.

5. Discussion

We have introduced the simple but effective REPEL algorithm for protein function predic-
tion. Our experiments on both synthetic data and biological data demonstrate the power of
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Cross-validation performance on E. coli protein networks with GO functional labels for

BP, MF, and CC hierarchies compared to Mashup, deepNF and BIONIC. Performance measured by
accuracy, F1 score and AUPRC, averaged across 5 independent runs of 5-fold cross-validation. The
black lines denote the averaged standard deviation. Full numerical results in Table S5B.
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neighbors for COB. D) REPEL learned neighbors for COB

injecting uniform random repelling strength in regularizing protein embeddings across multi-
plex networks. The simulation experiments highlight that this approach appears to increase
robustness, effectively de-noising the learned embeddings. In the current version of REPEL,
we apply the node augmentation before embedding, but it would be interesting to see what
happens if instead we did it afterwards. Also, we have kept the focus on the information
content of the embedding by having the learning module simply perform k-nearest neighbors
to predict the functional labels. However, the best way to combine the REPEL embedding
with more sophisticated classifiers could be an interesting topic of future work. In addition,
we would like to add some degree of uncertainty quantification to the REPEL framework, so
that in addition to predicting functions, REPEL gives confidence levels for its predictions.
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