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Patient-clinician communication research is crucial for understanding interaction dynamics and for
predicting outcomes that are associated with clinical discourse. Traditionally, interaction analysis is
conducted manually because of challenges such as Speaker Role Identification (SRI), which must
reliably differentiate between doctors, medical assistants, patients, and other caregivers in the same
room. Although automatic speech recognition with diarization can efficiently create a transcript with
separate labels for each speaker, these systems are not able to assign roles to each person in the
interaction. Previous SRI studies in task-oriented scenarios have directly predicted roles using
linguistic features, bypassing diarization. However, to our knowledge nobody has investigated SRI
in clinical settings. We explored whether Large Language Models (LLMs) such as BERT could
accurately identify speaker roles in clinical transcripts, with and without diarization. We used
veridical turn segmentation and diarization identifiers, fine-tuning each model at varying levels of
identifier corruption to assess impact on performance. Our results demonstrate that BERT achieves
high performance with linguistic signals alone (82% accuracy/82% F1-score), while incorporating
accurate diarization identifiers further enhances accuracy (95%/95%). We conclude that fine-tuned
LLMs are effective tools for SRI in clinical settings.

Keywords: Speaker Role Identification, Clinical Conversations, Large Language Models, Natural
Language Processing

1. Introduction

Patient-clinician interaction forms a central component of healthcare, generating medically relevant
data and situating interventions. Effective communication between clinicians and patients impacts
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healthcare utilization, medical adherence, and various other positive and negative functional
outcomes [1][2][3]. Health systems recognize the critical role of communication by adopting
research-informed guidelines for judging quality of patient-clinician communication, such as the
Six Core Competencies for medical professionals defined by the Accreditation Council for Graduate
Medical Education [4][5]. One such competency is Interpersonal and Communication Skills (ICS),
including “effective information exchange and teaming with patients, their families, and other health
professionals.” Similarly, effective communication is central to Patient-Centered Care (PCC), a
model in which patient participation and decision-sharing are key [3][6]. Nevertheless, precisely
evaluating what constitutes “effective communication” is an ongoing research challenge [7].

Evaluating communication requires electronic representations of recorded conversations, which
can be provided as textual transcripts derived from speech-to-text applications. For these transcripts
to be useful for further research, it is necessary to accurately attribute each utterance to the correct
participant, a process we refer to as Speaker Role Identification (SRI). Typical roles in a clinical
setting include “physician,” “medical assistant,” and “patient.”

Diarization tools, often included with automated transcription services, label audio by
distinguishing between speakers based on acoustic features. To do so, diarization pipelines segment
audio into turns using voice activity detection and then utilize clustering algorithms to group
utterances based on spectrographic representations [8]. However, these tools assign generic
diarization identifiers such as “Speaker 1” or “Speaker 2,” without mapping them to functional roles
like “physician” or “patient”. As a result, SRI researchers have employed pipelines that use
diarization identifiers to group utterances into disjoint sets, then employ either structural heuristics
or lexical modeling on each group to infer speaker roles [9][10]. However, diarization errors may
propagate through these pipelines and significantly undermine the accuracy of SRI.

Furthermore, reliance on audio cues causes diarization algorithms to overlook valuable linguistic
information present in the transcript, which might be useful for downstream SRI, such as role-
specific vocabulary. Research on SRI in parallel sources of conversational data, such as call-center
dialogues [9], Air Traffic Control [11], and at-home care [12], suggests that roles may be robustly
identified solely from the textual content of transcribed utterances using Support Vector Machines
[12], Bi-LSTMs, CNNs, and Transformers [9][11], without the use of any diarization identifiers.
Transformers can attend to previous utterance context in addition to the target utterance, allowing
for more flexible utterance grouping strategies. However, these studies overlook the possibility that
diarization identifiers can be useful as categorical inputs to models.

Our primary aim is to test the viability of SRI in the context of clinical conversations by using
Large Language Models (LLMs), as these have shown improvements in a broad set of natural
language processing (NLP) tasks over traditional, task-specific architectures [18], and have been
used successfully for SRI in other domains [19]. We fine-tune BERT, an LL.M based on the encoder-
only transformer architecture [18], to perform SRI on a conversational dataset of over 25,000
utterances from doctors, patients, medical assistants, and others, made during recorded, out-patient
clinical visits. To establish baselines for comparison, we also train decision trees and gradient
boosted decision trees. Additionally, we assess the effect of varying multiple design
hyperparameters that have been evaluated in the SRI literature, including use of heuristic and
linguistic features, and assess the impact of various contextual grouping strategies based on
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proximity to target utterance and use of diarization identifiers. Lastly, we quantify the performance
impact of diarization use and error for each method.

2. Previous Works

SRI has been applied to several domains over the years but has seen limited references in clinical
informatics. Most SRI applications relate to social signal processing and arise in studies of task-
specific communication. In each of these domains, SRI has been motivated by the need for richer
representation of conversational datasets. It generally supports indexing and retrieval functions for
large human conversation datasets [16].

Early work on SRI was done on conversational data for radio broadcast, television news, and
talk shows [13][14][15]. Other SRI work has occurred in domains such as Air Traffic Control, where
it has been used to differentiate between pilots and ATC officials [11]. Recently, SRI has also been
applied to differentiate between social roles in work-related meetings [16], to distinguish between
assistant and customer in call-center conversations [9], and to distinguish between study participants
and administrators in conversations related to clinical trials for autism spectrum disorder [10].
Lastly, in at-home health settings, SRI has been applied successfully to predict caregiver and patient
roles [12].

SRI has been approached using several feature representations. The best-performing models to
date utilize features extracted via Automated Speech Recognition (ASR) software and other
structural features from conversations [12][14][15], spectrographic and prosodic features [11][16],
and in some cases video signals as well [13]. However, it remains possible to achieve high
performance using text alone [9][11][12]. SRI has also been performed using a variety of methods
mentioned previously.

Research exists in non-clinical domains, including at-home care settings, but SRI has not yet
been applied in clinical conversations between doctors and patients. Additionally, the possibility of
incorporating diarization identifiers remains underexplored. Most models ignore diarization
identifiers, or use them for grouping utterances, without allowing downstream models to directly
attend to them.

From an implementation standpoint, the text-only transformer model is the simplest approach
that preserves the ability to fit arbitrarily complex semantic patterns. We hypothesize that lexical
signals alone are sufficient to identify speaker roles in clinical visit conversations, and that inclusion
of diarization identifiers as model inputs will further improve performance. To test this, we applied
BERT to a clinical conversation dataset, evaluating its effectiveness in identifying the roles of
patient, doctor, and medical assistant.

3. Materials & Methods

3.1. Task Definition

The task of SRI consists of accurately identifying one speaker role label for each utterance in a
recorded conversation. We define a conversation as a textual transcript consisting of a list of
utterances. Each utterance is represented as a sequence of tokens, and every token is drawn from a
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specified vocabulary. Each utterance corresponds to one a speaker role, which in our case is one of:
“patient,” “doctor,” “medical assistant,” or “other.” The task of SRI is, given a textual transcript,
uncover the speaker role associated with each utterance.

Although it is possible to use the entire conversation as context for each utterance, in this study,
we consider only previous utterances within a specified number of utterances of the target utterance
as context. A sliding window, which we call a “context window”, is applied to ease computation
and ensure inputs fit fully within LLM context limits. Restriction to the previous context is done to
leave it unambiguous which is the target utterance (the last utterance in the window). The number
of utterances in the window, including the target utterance, is called the “context size”. This is
treated as an independent variable in our experiments.

3.2. Dataset

We used 117 manually transcribed clinical visit transcripts from the Establishing Focus (EF) Study
[17], comprising a total of 27,505 usable utterances across 117 patients and 27 providers, each
labeled with speaker role (doctor, patient, medical assistant, and others). The EF study was a
randomized control trial designed to assess the impact of specialized clinician training in agenda-
setting on communication behaviors and functional outcomes of clinical visits. Participating
clinicians were trained and had their visits audio-taped six months afterwards (March 2004-March
2005). Recordings spanned 1460 patients and 48 clinicians. The clinical population was generated
via convenience sampling of 12 community-based primary care clinics in the Puget Sound area of
Washington. Consented patients were over the age of 18 and had previous visits with the clinician.
Encounters shorter than three minutes were removed from the dataset. Encounters lasted an average
duration of 32 minutes, 58 seconds (std. dev. = 14 minutes, 40 seconds).

3.3. Pre-Processing

Transcript pre-processing was performed using the Python docx module, version 1.2.0. The steps
are shown in Figure 1. An example of a transcript prior to processing is shown in Figure 2. Human
transcribers inserted paragraph breaks between successive transcribed speaker turns, which consist
of a speaker label and an utterance, allowing them to be easily extracted using the docx module. For
each extracted turn, we normalized spacing by replacing tab characters with a single white space
and stripping leading and trailing whitespaces from the result. Next, if a turn began with an open
parentheses or bracket, we dropped it from the transcript, as it was most likely a description of non-
verbal activity, such as “(MA enters the room)”. To separate the utterance and the speaker label, we
split each remaining turn on the colon character (“:”). If this failed to extract two separate items for
a given utterance, we attempted to split on semi-colons (*;”), and lastly on spaces (“ ), in case
transcribers forgot to include relevant punctuation. If all these methods failed, the turn was dropped
from the transcript. If speaker label extraction succeeded, we removed all non-alphanumeric
characters from the speaker label, stripped trailing and leading whitespaces, and converted it to

lowercase before saving both the speaker label and the utterance.

¢ 9
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Fig. 1. Diagram displaying pre-processing steps taken for transcript data prior to modeling.

Next, we collected all extracted speaker labels across our corpus, removed duplicates, and
manually pruned the results to remove malformed labels (e.g. (e.g., “Case ID Number,” “Stop
Time,” and “Patient”, the latter likely coming from lines such as “Patient 50768 checking in at
12:42,” rather than from actual utterance labels, which would have been coded as “PT”). For
malformed labels, we also excluded the associated utterances from our dataset. We then categorized
each distinct speaker label in the resulting set to one of “patient,” “doctor,” “medical assistant,” or
“other”, and applied this mapping to our dataset to normalize the speaker labels.

To compute features for each utterance in each transcript, we computed the “line number,” or
number of preceding utterances in the transcript plus one, for that utterance, and stored it along with
the utterance content and the speaker role. Additionally, we computed the “second-person pronoun
proportion,” the percentage of pronouns from that utterance that were second person, as opposed to
first or third person. This was computed by searching for exact matches between a listed set of
pronouns and the words in each utterance.
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0768.05-01-04
Patient 50768 checking in at 12:42
(MA and PT enter 0:56)

MA: I'1l just meet you in the lobby when you’re done. I’'ll have a little
packet for you. Thanks T.

PT: All right, I'l1l send it off today.

MA: Oh, perfect. Okay.

PT: Soon as I get home, [and get my glasses.]
MA: [All right.] Great.

(MA exits 1:06)

PT: Shoo, lordy, lordy, lordy (whisper).

(2 minute 30 second pause; MA enters 2:36)

MA: That’s yours, and it’s all ready, there’s no additional postage
necessary, just drop it in [the mail,]

PT: [Oh, okay.]

Fig. 2. An example transcript from the EF dataset. Only the beginning is shown.
Identifiable information has been replaced with dummy values.

3.4. Diarization Error Simulation

We investigated whether numeric speaker identities computed via diarization software would
provide models with helpful signals for reliably identifying speaker roles throughout transcripts, and
if so, to what degree errors in diarization pipelines would adversely impact downstream SRI
performance. Rather than relying on open source diarization tools that would provide us with a
definite accuracy, we used our ground truth labels to simulate diarization at varying degrees of
corruption. We did so by assigning each speaker role within a transcript to a numeric identifier and
then randomly reassigning a pre-specified percentage of the numeric identifiers from the pool of
identifiers in the conversation. We refer to this percentage as the “error rate”. The error rates we
tested were 0%, 10%, 25%, and 50%.

3.5. Models

Three main model types were evaluated:

e Gradient-boosted decision tree classifiers using the Gini criterion as purity measure/objective
function, a max depth of two, and 100 estimators, trained on the proportion of second-person
pronouns in each utterance, as well as the utterance line number.

e Gradient-boosted decision tree classifiers using the Gini criterion as purity measure/objective
function, a max depth of five, and 100 estimators, learning rate of 0.1, trained on the lexical
content of the utterance using a bag of words approach.

e BERT-base-cased models with a multiclass classification head fine-tuned on the utterance
content (sequence data) with utterance line number appended at the end, to classify speaker role.
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We refer to instances of our first model type as “heuristics-based”” models, and instances of the
second and third types as “linguistic-based”” models. For both the heuristics-based and linguistic-
based boosted decision trees, we trained decision trees with identical max depth and purity settings
for comparison.

All tree-based models were trained using scikit-learn, version 1.6.1. For BERT models, the
tokenizer, model, and configuration files were loaded from the Hugging Face Transformers Library,
version 4.48.0. The models were fine-tuned using the Hugging Face Trainer class.

All models were evaluated under differing context sizes, parametrized by the number of
preceding utterances. Models received a sliding window of utterances and predicted the speaker of
the final utterance. Inputs to BERT models were trimmed to avoid exceeding the token limit of 512
tokens for the model.

3.6. Overview of Experiments

Our primary aim was to evaluate the effectiveness of LLMs for SRI in clinical conversations. We
also compared several methodological choices from the SRI literature, such heuristics-based versus
linguistic-based models, basic machine learning versus LLMs, use of diarization identifiers, and
using diarization identifiers to group utterances versus as direct model inputs.

To compare heuristic and linguistic approaches, we trained decision trees and boosted decision
trees under two schemes: (1) models using bag-of-words features, and (2) models using simple
heuristics; namely, pronoun proportion and utterance line number.

To evaluate the use of diarization identifiers for BERT, we experimented with three separate
approaches, each attending to only a “context window” of previous utterances:

e BERT with no additional speaker information.

e BERT where the context window is filtered to only include utterances with the same diarization
identifier as the target utterance. We call this a “grouping-based”” model.

e BERT where the diarization identifier for each utterance is prefixed to that utterance, in the form
“speaker<identifier>: ”. We call this a “token-based” model.

This allowed us to compare LLM models without diarization, LLMs with grouped context based on
speaker, and LLMs with diarization identifiers as tokens.

For tree-based models, diarization was handled differently, as the token-based strategy does not
apply to bag-of-words features. Tree models which did not use diarization only attended to the target
utterance without conversational context. For all other tree models, a grouping-based strategy was
used. For heuristics-based trees, feature values were averaged over utterances from the same speaker
within the context window; for linguistic-based trees, features were aggregated as the union of all
words used by the same speaker within the context window.

3.7. Training and Optimization

Our dataset was split into training (70%), validation (15%), and testing (15%) subsets at the level
of conversation id prior to all experiments. Proportion of utterances due to patients, doctors, medical
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assistants, and others in the dataset was 49%, 40%, 11%, and 0% (0.001% unrounded), respectively,
and was preserved in each subset. All models were trained for exactly one epoch. BERT models
were trained using the AdamW optimizer with a learning rate of 5e-05, and batch size of 32. No
prompts were used.

3.8. Evaluation

Performance was assessed using accuracy and weighted F1 score on the testing dataset averaged
across all speaker categories. Accuracy was computed as the number of ground truth labels predicted
correctly. The F1 score, computed as the harmonic mean of precision and recall for a single class,
was averaged across classes using weights proportional to the support to obtain the weighted F1
score. The weighted F1 score was chosen to aggregate per-class performance in a way that reflects
the real-world distribution of utterances by speaker role in clinical environments.

3.9. Computational Environment

All experiments were performed on a dedicated GPU compute cluster, equipped with 4 vCPUs, 28
GB system memory, and a single NVIDIA T4 GPU (16 GB GDDR6). The software stack included
Databricks Runtime 17.0.

3.10. Ethics

This study utilized transcripts containing protected health information (PHI) from the EF dataset
[17], under a Data Use Agreement between the University of Washington (UW) and the University
of Pennsylvania (UPenn). The protocol was approved by the UW IRB (STUDY000005436), listing
UPenn as the relying institution via the SMART Master Reliance Agreement. All data were stored
in secure, access-controlled environments only accessible to authorized study personnel. All
handling of PHI was conducted in compliance with HIPAA and relevant institutional policies, as
reflected in the IRB determination (exempt). Re-consent of participants was not required per IRB
approval. Data used and machine learning models developed in this work are not publicly released
to maintain the safety of participant data.

4. Results

4.1. Model Class

Accuracy and F1 scores for all models are shown in Table 1. The BERT models scored higher than
the decision trees and boosted trees with respect to both accuracy and F1 for each setting of context
size and diarization error rate. BERT models achieved balanced accuracy and F1 scores. Tree
models achieved mostly balanced scores, but many of them displayed F1 scores anywhere from 2-
6% lower than corresponding accuracy scores.

While BERT models outperformed decision tree models overall, the best-performing decision
tree model, which was the linguistic-based decision tree with context size 10 utterances and 0%
error rate (82%/80% accuracy/F1), outperformed the token-based BERT model trained with context
size one utterance and no diarization (73%/73%), and performed on par with the token-based BERT
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model with two utterances and no diarization. The heuristics-based decision tree model with
identical settings also matched the same BERT model in F1 score and accuracy.

Table 1. Accuracy and F1 scores for BERT, decision-tree, and gradient-boosted decision tree models across
alternative input and experimental hyperparameter settings. The column “Diarization Use” indicates whether
grouping-based or token-based methods were used. “Inputs” indicates whether heuristics-based features or
linguistic-based features were used, the latter encompassing bag of words features and text sequences.
“Context Size” indicates the number of preceding utterances, including the target utterance, that were used
in the context window. “Diarization Error” refers to experiments that used diarization and varying error
levels, and the “No Diarization” refers to models that do not use diarization.

Diarization Error No Diarization

Model Diarization Use Inputs Context Size 50% error  25% error 10% error 0% error

Decision Tree N/A Heuristics 1 N/A N/A N/A N/A 0.62/0.58
Decision Tree Grouped Heuristics 2 0.58/0.54 0.60/0.56 0.61/0.58  0.62/0.59 N/A
Decision Tree Grouped Heuristics 5 0.62/0.61 0.67/0.66 0.70/0.70  0.71/0.71 N/A
Decision Tree Grouped Heuristics 10 0.64/0.63 0.70/0.69 0.74/0.73 0.76/0.76 N/A
Decision Tree N/A Bag of Words 1 N/A N/A N/A N/A 0.62/0.57
Decision Tree Grouped Bag of Words 2 0.55/0.51  0.58/0.54 0.60/0.55  0.62/0.56 N/A
Decision Tree Grouped Bag of Words 5 0.58/0.56  0.62/0.60 0.67/0.64 0.71/0.68 N/A
Decision Tree Grouped Bag of Words 10 0.55/0.53  0.62/0.59 0.68/0.66 0.73/0.71 N/A
Boosted Trees N/A Heuristics 1 N/A N/A N/A N/A 0.62/0.59
Boosted Trees Grouped Heuristics 2 0.58/0.55 0.60/0.57 0.61/0.58  0.62/0.59 N/A
Boosted Trees Grouped Heuristics 5 0.63/0.62 0.67/0.66 0.71/0.70  0.72/0.71 N/A
Boosted Trees Grouped Heuristics 10 0.65/0.64 0.71/0.70  0.74/0.74 0.77/0.77 N/A
Boosted Trees N/A Bag of Words 1 N/A N/A N/A N/A 0.65/0.61
Boosted Trees Grouped Bag of Words 2 0.56/0.52  0.60/0.56 0.63/0.59  0.65/0.61 N/A
Boosted Trees Grouped Bag of Words 5 0.63/0.61 0.67/0.64 0.72/0.70  0.76/0.74 N/A
Boosted Trees Grouped Bag of Words 10 0.58/0.55 0.67/0.65 0.76/0.74 0.82/0.80 N/A
BERT N/A Sequence 1 N/A N/A N/A N/A 0.73/0.73
BERT Token Sequence 2 0.86/0.86 0.90/0.90 0.90/0.90 0.95/0.95  0.82/0.82
BERT Token Sequence 5 0.86/0.86 0.89/0.89 0.92/0.92 0.95/0.95  0.80/0.80
BERT Token Sequence 10 0.71/0.71  0.75/0.76 0.81/0.81 0.84/0.84  0.68/0.68
BERT N/A Sequence 1 N/A N/A N/A N/A N/A
BERT Grouped Sequence 2 0.69/0.67  0.69/0.67 0.68/0.66  0.70/0.68 N/A
BERT Grouped Sequence 5 0.71/0.70  0.74/0.74  0.79/0.78  0.83/0.83 N/A
BERT Grouped Sequence 10 0.70/0.69 0.76/0.76  0.82/0.82 0.88/0.88 N/A

4.2. Heuristics vs. Lexical Content

Features utilized by the heuristics-based decision tree are shown in Figure 3. First-person pronouns
were more associated with patients than medical professionals. Line number was useful for
distinguishing between doctors and medical assistants. Linguistic-based boosted decision trees
scored higher than heuristics-based boosted decision trees with respect to both accuracy and F1 for
each setting of context size and diarization error rate. However, the opposite was the case for the
regular decision trees.
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second_person_proportion <= 0.304
gini = 0.59
samples = 20482
value = [8034, 2322, 25, 10101]
class = pt

within-transcript line number <= 415 within-transcript line number <= 33.5

gini = 0. 552 glm 0526

samples = samples = 4668
value = [5051, 1576 16 9171] value = [2983 746, 9, 9301
class = pt class = dr
gini = 0.557 gini = 0.525 gini = 0.501 gini = 0.446
samples = 2574 samples 13240 samples = 606 samples = 4062
value = [241, 873, 6, 1454] value = [4810, 703, 10, 7717] value = [94, 405, 5, 102] value = [2889, 341, 4, 828]
class = pt class = pt class = ma class = dr

Fig. 3. Visualization of Decision Tree trained with 5-utterance context and 100%
diarization accuracy. Individual nodes contain the condition (variable and threshold) for
moving left (top line), along with the value of the gini purity measure of the applicable
records (gini), the number of such records (samples), the ground-truth distribution of the
records (value), and the majority class (class).

4.3. Diarization-Based Grouping vs. Diarization-Based Tokens

The token-based BERT model outperformed the grouping-based BERT model respect to both
accuracy and F1 score at all settings of context size and diarization error rate. The best token-based

BERT model achieved both an accuracy and F1 score 95%, whereas the most performant grouping-
based BERT model scored 88% on both.

4.4. Context Size

Increasing context size beyond a single utterance improved performance of the token-based BERT
model. Increasing it to 5 improved performance for some levels of diarization error rate (10%) but
decreased it for others (25%, no diarization) and left others unaltered (0%, 50%). However,
increasing context size to 10 utterances degraded results. For all other models, increasing context
size when diarization error rate was below 50% always increased accuracy and F1 score.

4.5. Diarization and Accuracy

Diarization was seen to improve performance for all models when it remained accurate. BERT
models which did not use diarization performed uniformly worse than counterparts trained with
accurate diarization with respect to accuracy and F1 score. For example, the token-based BERT
model with context size 2 scored 82% accuracy, 82% F1 score with no diarization, but achieved a
balanced 95%, 90%, 90%, and 86% accuracy and F1 score for settings with 0%, 10%, 25%, and
50% diarization error rate, respectively. Tree-based models also benefited from the combination of
context and diarization.
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All diarization-based models showed similar patterns of partial reliance on diarization
performance, with differences in F1 score between the setting with 0% diarization error rate and
50% diarization error rate ranging from 4% to 18%. There is no clear trend relating the model type
and robustness to diarization error.

5. Discussion

The purpose of our study was to investigate the potential for LLMs to perform SRI in clinical
conversations involving patients, doctors, and medical assistants, and to compare aspects of model
design with respect to performance. We find that LLMs can accurately identify who is speaking in
clinical conversations using SRI, and furthermore that they benefit from the use of accurate
diarization despite remaining robust to errors. This contributes to the growing literature on SRI by
demonstrating its possibility in clinical settings and providing helpful comparisons of design
considerations. Despite being the first of their kind for clinical SRI in clinical conversations, our
models perform on par with recent text transformer-based SRI models trained in other domains such
as Air Traffic Control [11].

Comparison of boosted decision tree models and LLMs reveal that model class makes a large
difference in downstream performance, with LLM models outperforming boosted decision tree
models for SRI in clinical conversations. Comparison of decision tree models and boosted decision
trees reveals the same finding. This is likely a result of the fact that boosted decision trees can
approximate a wider range of functions than decision trees, and LLMs a yet wider range, allowing
them to model the intricate semantic dependencies between speaker role and conversational
utterances with increasing intricacy. LLM superiority likely also results from the fact that LLM
embeddings encode richer semantic information than bag-of-words features, including positional
information and synonymy relations.

Comparison of the boosted decision tree trained using second-person pronoun proportions
versus using bag-of-words reveals that pronoun-usage heuristics underperform lexical approaches
for SRI in our clinical conversation dataset. This is because the latter permits learning a more general
set of role-specific keywords, including but not limited to tendencies in pronoun usage.
Nevertheless, pronoun usage trends are important for performance in lexical approaches: presence
of the word “you” serves as the primary split in all our learned decision trees. The fact that decision
trees performed better with heuristics is not evidence that lexical approaches underperform
heuristics due to the tendency for decision trees to overfit in the presence of complex data types
such as text [20].

LLM models which employed diarization outperformed LLM models which did not, as long as
diarization identifiers remained accurate, indicating that diarization identifiers can be useful as input
signals to SRI pipelines, as long as accuracy is maintained. Decision trees which were able to attend
to context in the presence of diarization identifiers outperformed single-utterance decision trees as
well, demonstrating that use of diarization-based grouping methods can allow decision trees to
benefit from larger context sizes effectively.

Amongst LLM models which attended to diarization, the grouping-based models
underperformed relative to the token-based models. This indicates that models benefit from being
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able to flexibly attend to diarization signals rather than being constrained by them to analyze
utterance groups which may or may not be malformed due to diarization errors.

For all grouping-based models, increasing context size had a positive impact on performance.
However, for the LLM models trained without diarization-based grouping, increasing context past
a certain point had the tendency to degrade performance. Interestingly, this trend persisted in the
absence of diarization. This suggests that excessive context has the tendency to degrade results when
adequate filtering steps are not taken to minimize input sizes. Despite potential inaccuracies,
diarization-based grouping can act as a filtering mechanism to reduce input token sizes.

All models which used diarization benefited from increased diarization accuracy. Interestingly,
the token-based LLM did not have a more robust performance against diarization inaccuracy
compared to grouping-based methods, indicating that diarization errors may propagate through
LLMs regardless of whether grouping is used or not.

6. Limitations

While the current study has revealing findings concerning design and implementation of SRI
systems in clinical settings, there exist limitations which will need to be addressed in future works.
First, our analysis was limited to a single dataset of clinical conversations, leaving questions about
generalizability across specialty and institution. Second, our experiments only simulated one aspect
of diarization error; namely, when diarization identifiers are inconsistent. However, future
experiments should also simulate errors in segmentation due to voice activity detection, which is
another component of diarization. Lastly, our experiments only use one candidate LLM, which can
potentially limit generalizability to other models. However, given the number of open-source LLMs
and the fact that many of them are comparable to and more performant than BERT in a wide array
of NLP tasks, we hypothesize that our results are broadly applicable to performant LLMs and may
even act as a lower bound on possible performance.

7. Conclusion

We demonstrate that semantic cues alone can identify speaker roles in clinical conversations. These
are more powerful than specific communication heuristics. While diarization is useful for various
model types depending on how it is incorporated, our LLM-based approach is robust to diarization
errors and even remains performant in the absence of diarization. Further, non-LLM based
approaches which use simple techniques such as bag-of-words also perform well in the context of
clinical SRI and remain somewhat robust to diarization errors. Lastly, LLM approaches which attend
to a target utterance in the context of previous utterances enriched with diarization labels are shown
to be superior to utterances which analyze disjoint groups of diarized utterances separately, whether
diarization is accurate. These findings support the viability of SRI pipelines for clinical interaction
analysis using transcribed conversations and have implications for the implementation of
conversational analysis in clinical systems. Applications of this technology allow speaker role-based
segmentation of visits at scale, providing a possible foundation for downstream modeling, such as
speaker-based sentiment analysis and measurement of communication quality for clinical
professionals.
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