25

PROTEIN STRUCTURE COMPARISON USING
REPRESENTATION BY LINE SEGMENT SEQUENCES

TATSUYA AKUTSU HIROSHI TASHIMO
Department of Computer Science, Gunma University
1-5-1 Tenyin, Kiryu, Gunma 876, Japan®

This paper proposes a new comparison method of tertiary protein structures. The
method consists of two parts. First, a sequence of line segments which approx-
imates each tertiary protein structure is computed. Then, an alignment of the
sequences of line segments corresponding to input structures is computed. The
proposed method is considered as an intermediate one between two comparison
methods: a method based on topology diagram and a method based on structure
alignment. Moreover it takes less CPU time than structure alignment methods
because most structures are represented by means of sequences of at most 100 line
segments. The effectiveness of the method is confirmed through a comparison with
a previous method and an application to database searching for similar structures.

1 Introduction

Classification of tertiary protein structures is very important for better under-
standing of protein structures. Indeed several studies have been done®?%1%:12
Among them, the FSSP ¢ (families of structurally similar proteins) database
is well known. In most of them, protein structure alignment is a basic tool
for classification. Protein structure alignment is, given two tertiary structures,
to find equivalent residues (Ca atoms) between them. Many methods have
been proposed for protein structure alignment. Rao and Rossmann}!! and
Pascarella and Argos !? proposed iterative improvement methods. Vriend and
Sander'* developed a greedy method in which small fragments were assembled
into larger structures. Taylor and Orengo '3 developed the SSAP algorithm
using the double dynamic programming technique. Holm and Sander® devel-
oped the DALI algorithm using Monte Carlo optimization to compare distance
matrices. Nussinov and Wolfson® applied geometric hashing to protein struc-
ture alignment. Sali and Overington 12 developed a stochastic method using
probability density functions.

Although these proposed methods work very well in general, Holm et al.®
point out that each one has one or more limitations. Thus, they use three algo-
rithm to classify tertiary protein structures. Moreover, consider the following
extreme case: although two proteins have similar core structures, one consists
of B-strands while the other consists of a-helices. In this case, it seems that

%e-mail: akutsu@cs.gunma-u.ac.jp tashimo@keim.cs.gunma-u.ac.jp

26

most structure alignment algorithms fail to find the similarity because they
try to find one-to-one correspondences between Ca atoms. Although this case
is not probable, a similar case might occur in the future. Thus, protein struc-
ture alignment is too detailed in such a case. Another problem is that protein
structure alignment takes long CPU time in general. Thus, it will take a large
amount of CPU time if applied to classification of protein structures. Since
the number of tertiary structures stored in PDB* (Protein Data Bank) is in-
creasing rapidly and the number of structure comparisons required to classify
n protein structures is O(n?), much faster structure alignment methods are
required.

On the other hand, classification by topology diagram has been used
traditionally® Using this, protein structures are classified into such families
as: a/f sandwich, a/3 doubly wound, TIM barrel, Greek key, Globin, --
In this method, each protein structure is treated as a sequence of a-helices,
(B-strands and turns. Although this method is useful, it seems difficult to make
the classification procedure automatic and difficult to classify structures into
more detailed families.

From the above discussions, it seems that there is a case where classification
by structure alignment is too detailed and classification by topology diagram
is too rough, although most cases can be treated by the usual structure align-
ment methods. Thus, an intermediate classification method is required. In
this paper, we propose such a method. In this method, each tertiary structure
is represented by a sequence of line segments (see Fig. 1) and the similarity
between two structures is measured by the score of the alignment between two
sequences of line segments. Note that, once such representation (i.e., a se-
quence of line segments) is computed, the alignments can be computed quickly
because most structures are represented by means of sequences of at most
100 line segments. Thus the proposed comparison method is very useful for
classification of tertiary structures in which a lot of comparisons are required.

We compare the proposed comparison method with a conventional struc-
ture alignment algorithm?® using PDB* data. Moreover, we apply the proposed
method to database searching for similar tertiary structures, which will lead to
classification of tertiary protein structures. The results of these experiments
show that the proposed method 1s much faster than the previous one and
classifies tertiary structures as well as the previous one does.

The organization of this paper is as follows. First, a method for computing
a sequence of line segments from a tertiary structure is described. Next, a
method for computing an alignment between two sequences of line segments
is described. Then, experimental results are described. Finally, we conclude
with a brief summary and future work.

27

Figure 1: An example of a sequence of line segments computed from protein structure '4hhb’.
Black circles denote the input Ca atoms and black lines denote the obtained line segments.

2 Representation by a Sequence of Line Segments

As mentioned in Section 1, the proposed comparison method consists of two
parts: computation of a sequence of line segments from a tertiary structure,
and alignment of two sequences of line segments. In this section, we describe a
method to compute a sequence of line segments which approximates an outline
of an input tertiary structure. First a basic version is described, and then an
improved one is described.

2.1 Method

We assume that each tertiary protein structure is input as a sequence of points
(i.e., a sequence of Ca atoms). This representation method is used in most
structure alignment algorithms®!>!4 Thus we let P = (p,,--+,p,,) be an input
tertiary structure, where each p; denotes a point in the three-dimensional Eu-
clidean space. Then we compute a sequence of line segments via the following
two steps (see Fig. 2):

(1) Compute a sequence of lines (L, -, L) approximating an outline of a
protein structure P.

28

STEP 1 STEP 2

Figure 2: A method for computing a sequence of line segments.

(2) Compute a sequence of line segments ss(P) = (5782, -, Sk, 8k+1) from
the sequence of lines obtained in step (1).

First, we consider step (1). Let LS = (L, La,---,Lx) be a sequence of
lines, and I = (¢y,- -, ix+1) be a sequence of integer numbers such that ¢; = 1,
ik+1 =n and ¢; < i;41. We define a score fit(P,LS,I) by

k41

. 1 - -
fit(P,LS,I) = m(z d(p;, L1)? + Z d(p;, La)? + - + Z d(p;, Lx)?)
=¥] =12 JI=1k

where d(p;, L) denotes the distance between a point p; and a line Lj,. Note
that fit(P, LS, I) corresponds to the average distance between points and lines.
In step (1), we compute a pair (LS, I) that minimizes k under the condition
that fit(P,LS,I) < §, where d > 0 is a constant. In order to compute such
pair (LS, I), we consider the following problem: given P and k, compute a
pair (LS, I) that minimizes fit(P, LS, I). This problem can be solved in O(n?)
time, using the least-squares fitting technique and the dynamic programming
technique. Here we briefly describe the algorithm.

Let Isf(¢,7) (i < j) denotes the sum of squares of distances that is com-
puted from an application of the least-squares fitting technique to p;, p; ., -, P;-
That is, Isf(i,7) denotes min Z‘;lﬁd(ph,l})z, where the minimum is taken
from all lines L in three-dimensions. From P and k, we construct a directed
graph G(V, E) such that

V = {(p;h)|p; € P,1<h<k} U {START,GOAL},

29

Figure 3: Transformation to the shortest path problem. A shortest path (denoted by dashed
arcs) corresponds to a sequence of lines minimizing fit(P, LS, I), where k = 3 in this example.

E = {{START,(p, 1))} U {{(psk— 1), GOAL))
U {((pish’)s(pj:h"' 1le<ihl<sh<k—1}

where the costs of edges are given by

cost((START, (p;,1))) =Isf(1,i), cost({(p;,k — 1), GOAL)) = lsf(i,n),
COSt(((pia h)? (pj: h + 1))) = tsf(i:j)'

Then, a minimum cost path (i.e., a shortest path) from START to GOAL
corresponds to a pair (LS, I) that minimizes fit(P, LS, I) (see Fig. 3). Thus,
such a pair can be computed by solving the shortest path problem for G(V, F).
Since G(V, E) is an acyclic graph, the shortest path problem can be solved in
O(|E|) = O(kn?) time using the dynamic programming technique (the reaching
algorithm ?). Although O(n) time is required for computing a cost of each
edge, the total computation time for computing all the costs of edges is O(n?)
because there are O(n?) distinct costs (note that cost({(p;,h), (p;,h + 1))) =
cost({(p;, k'), (pj, K’ +1))) for all 1 < h,h’ < k—1). Therefore, the pair (LS, I)
that minimizes fit(P, LS, I) can be computed in O(kn? + n®) = O(n®) time.
Note that the above problem is a variant of the k-link path problem, which is
well-known in computational geometry.

30

Using the above algorithm as a subroutine, the following procedure com-
putes a pair (LS, I) minimizing k under the condition that fit(P, LS, I) < 6.

Procedure ComputeSequenceO f Lines(P, §)
begin k := 1;
repeat
Compute (LS, I) that minimizes fit(P, LS, I) where |LS| = k;
ki=k+1
until fit(P,LS,I) < ¢;
Output (LS, I) -

end

If this procedure is implemented as it is, it would take Y ;_, O(n®) = O(n?)
time. However, this procedure can be implemented so that it works in O(n®)
time by means of the following modification. Note that, adding O(n?) edges
to a graph for k, we can obtain a graph for k£ 4+ 1. Moreover, a tail of each
added edge is a newly created node. Thus, testing newly added O(n o edges
(in the reaching algorithm?), we can obtain a shortest path for k+ 1 in O(n?)
time. Therefore, the total computation time is reduced to O(n?).

The choice of § is important because § affects the quality of the obtained
sequence. Currently we use § = 2.35A, where this value was determined by
experiment. . :

Next we consider step (2). Step (2) is very simple although it is rather
ad hoc (see Fig. 4). Note that we must create endpoints of each line segment
because two lines do not necessarily have a common point in three-dimensions.
For each pair of lines (L;,L;;+1) (1 £ j < k), we compute a point s; = q;T,
where q € L; (resp. © € Lj1,) is a point such that |p;_ g| (resp. [P, 7|)

Figure 4: Computation of endpoints of line segments in Step (2).

31

is minimum. Moreover, we compute a point s, € L, (resp. 841 € L) such
that |51p7| (resp. |$k+1P,|) is minimum. Finally, we obtain a sequence of
line segments ss(P) = (8182,5283, -+, 5k8k+1)- Note that, in this paper, Ty
denotes a line segment connecting points # and y, and |ZY| denotes the length
of a line segment Ty.

2.2 Improvement

Although the above algorithm works well in most cases, there are some cases
where good approximations are not computed. For example, in the case of
Fig. 5, representation (A) is computed. However, in this case, representation
(B) should be computed. Thus, we have improved the algorithm so that such
representation as (B) can be computed. The improvement is done by removing
bad edges from G(V, E) in the following way. Let L be a line obtained by
applying the least-squares fitting technique to p;,-- -, Pj, and let v be a unit
vector parallel to L. Let x - v denote the inner product between vectors
and v. Then, each edge ((p;,h), (p;,h + 1)) such that there exists i <1 < j
satisfying p; - v > pyy, - v is removed from G(V, E). Moreover, each edge
((P;»h), (pj, h + 1)) such that Isf(i,j) > (j — i + 1)é% is also removed from
G(V,E).

This improvement is effective not only for obtaining good approximations
but also for reducing the computation time. Since bad lines are removed and
most lines are bad lines, the computation time is considerably reduced although
O(n?) time is still required in the worst case. Table 1 shows the CPU times for
the basic version and the improved version on SUN Sparc Station-10 (a unix
workstation). PDB code and the size (the number of residues) are described
for each protein structure. Note that in this paper, only chain A is used in
each structure. You can see that the computation time is considerably reduced

==semssms Representation (A) ———— Representation (B)

Figure 5: A bad case for the basic version.

32

by this improvement. Examples of sequences of line segments obtained by this
improved algorithm are shown in Fig. 6.

Table 1: CPU times for computing line segment representations.

| PDBcode | SIZE " BASIC(sec) | IMPROVED(sec) I
1tgn 245 137.33 2.18
2trm 245 139.82 1.98
2ivb: | 106 125.80 2.19
2fvw 116 135.99 2.36
4hhb 141 24.26 1.01
5mbn 153 . 33.48 1.11

3 Comparison of Structures

We compare two tertiary structures using the line segment representation de-
scribed in Section 2. The comparison is done via the following two steps.

(1) ss(P) and ss(Q) are transformed into strings str(ss(P)) and str(ss(Q))
respectively.

(2) The score between str(ss(P)) and str(ss(Q)) is computed applying the
standard string (sequence) alignment algorithm.

In Subsections 3.1 and 3.2, we describe a basic method corresponding to
the above steps. In Subsection 3.3, we describe an improved procedure using
the double dynamic programming technique. 3

3.1 Transformation into Strings

From a sequence of line segments ss(P) = (5752,%253, -+, 5,8k41); We con-
struct a string str(ss(P)) in the following way. Let ¢; be the centroid of a
line segment §;8;17. For segments 3;5,11 and 5;5,11, we define the following
values (see Fig. 7):

l;: alength of a line segment 575;17 (i.e., I; = |5:5:11),
l; ;+ alength between ¢; and c;,

@; ;: an angle between 375,17 and 35,57,

B; j: an angle between €;¢; and 58,11,

7i,j¢ an angle between €;¢; and §;8;17.

33

hi
heta

nnn

Enéta
R

Figure 6: Sequences of line segments computed from 'ltgn’ and '2fvw’ respectively. Se-
quences of k = 37 and k = 30 are obtained respectively.

34

Figure 7: Definitions of l;,l; j,a; ;,6i ; and 7 ; used in str(ss(P)).

For each pair of segments 3;5;77 and 55,51, we define ch(i,j) as a sequence
of six real numbers by ch(i,j) = (I, 1}, j, i j,Bi,7,;) - Note that ch(i, j)
corresponds to a character in a string. For each segment §;5,71, we define
str(i) as a sequence of such characters by

str(z) = (ch(i,i+1),ch(i,i+2),---,ch(i,i + D)),

where D is some constant. Then str(ss(P)) is obtained by concatenating
str(1), str(2), - - -, str(k—D), where concatenation of (t1,---,t,) and (uy,- - -, u,)
is(tla"':tp}ula"'auq)-)

3.2 Alignment of Transformed Strings

To apply the standard alignment algorithm, we must define a score between
two characters. For ch(i,j) = (I;,1;,li j,%i 5,5 4,7 ;) in P and ch(g,h) =
(Lgslnslg hy g ks By by Yg,n) In Q, We define a score (score(ch(i, 5), ch(g, h))) be-
tween ch(z, 7) and ch(g, h) to be

cr—calli—lg|—cs|lj—ln|—call; j=lg n|—cs|oi j—ag n|—cs|Bi j—Bg nl—ct|%i. ;=g 1l

where ¢y, - - -, c7 are appropriate constants (¢; = 100.0, ¢ = c3 = 0.2, ¢4 = 0.5,
cs = cg = ¢y = 10.0 are used in the current version). Then, for two protein
structures P and (), we compute an optimal alignment between str(ss(P))
and str(ss(Q))) by means of the standard alignment algorithm for two strings.
Finally the score of an optimal alignment indicates the similarity between P
and Q. It is expected that the score is high if P is similar to Q, and the score
1s low if P is not similar to @) (see Fig. 8). Note that not only local similarities
but also global similarities are taken into account if large D is used.

35

(A) e Sj 5g+1 ‘gh P
i ? o\g’” = >
8y ‘.l) 8y
(B) 8y B

81,1 ? O _sdﬁl
3_141
‘Bgu

5, s,

Figure 8: The score between ch(z,j) and ch(g, h) is high in (A), while it is low in (B).

3.3 Alignment by Double Dynamic Programmaing

Although the similarity between str(ss(P)) and str(ss(@)) can be computed
by the standard alignment algorithm, a correspondence (an alignment) be-
tween ss(P) and ss(Q) can not be computed. To compute an alignment be-
tween ss(P) and ss(Q), we apply the double dynamic programming method
proposed by Taylor and Orengo,'® in which the dynamic programming proce-
dure is applied at two levels. While the dynamic programming procedure is
applied to residues (or points) in their method, it is applied to line segments in
our method. The procedure Double DP(ss(P), ss(Q), D) describes an outline
of the alignment algorithm for line segments, where n; (resp. ny) denotes the
number of line segments in ss(P) (resp. ss(Q)).

Note that the main routine (DoubleD P(ss(P), ss(Q), D)) corresponds to
the standard alignment algorithm, where scores are computed using a subrou-
tine InnerDP(i,j). InnerDP(i,j) computes a score between two line seg-
ments 3;5;1; in ss(P) and ;5,77 in ss(Q) applying the standard alignment
algorithm to sequences (37811, -,5iyp8i+p+1) in ss(P) and (375,41, -+,
3;+D5;+D+1) in ss(Q). Note that the score defined in Subsection 3.2 is used
to compare two pairs of line segments. This alignment procedure works in
O(D?*n?) time, where n is max(ni,nz2). In the current version, we use D = 5,

36
GAP, = 35.0, GAP, = 0.0.

procedure DoubleDP(ss(P),ss(Q), D)
begin
for : := 0 to n1 do a[i][0] := i x GAPx;
for j := 0 to ny do a[0][y] := 7 x GAP;
for ::=1ton; —D do
for j:=1tony, — D do
begin
s:= InnerDP(i,3);
a[t][j] := max(a[i — 1][j] + GAPy, a[i][j — 1] + GAPy,a[i — 1][j — 1] + s)
end;
Output a[n1][ns]
end

function InnerDP(i,)
begin
for z; := 0 to D do b[1,][0] := i x GAP,;
for j; := 0 to D do b[0][j1] := j Xx GAP;;
for ¢; :=1 to D do
for 3; :=1to D do
begin
s := score(ch(i,i 4+ i1),ch(j,7 + 71));
bli1][71] := max(b[i1 — 1][j1] + GAP;,
b[z'l][jl - 1] + GAPz, b[t] — 1][]1 - 1] + S)
end;
return b[D][D]
end

4 Experimental Results

The proposed comparison method was examined on SUN Sparc Station 10
using PDB data. All methods were implemented in the C programming lan-
guage. First, we compare the proposed method with an existing protein struc-
ture alignment algorithm. Next, we apply the proposed method to searching
for similar structures in a database.

4.1 Comparison with a Previous Method

We have compared the proposed method (denoted by NEW) with a protein
structure alignment algorithm 3 (denoted by DP), where the improved method
(described in Subsections 2.2 and 3.3) was used for NEW. DP was previously

37

proposed by us, in which input structures are divided into small fragments and
then a dynamic programming technique is applied? DP tries to find a set of
spatially equivalent Ca atom pairs between two input structures with keeping
the rms (root mean square) distance between corresponding points small. Note
that DP is similar to the algorithms by Taylor and Orengo !* and Vriend and
Sander!4

Table 2 shows the results. PDB code and the size (the number of residues)
are described for each input protein structure. The score in DP is defined by

size of the obtained alignment (the number of atom pairs)

100 x - -
size of smaller input structure

while scores in NEW are normalized so that the score between the same struc-
tures becomes 100.0. CPU times are shown for both DP and NEW.

Table 2: Comparison of the methods for tertiary structure comparison.

INPUT1 INPUT2 DP NEW
PDB SIZE | PDB SIZE || SCORE| TIME SCORE[TIME
code code (sec) (sec)
2fvb 106 2fvw 112 75.5 2.30 84.5 0.05
4hhb 141 5mbn | 153 85.1 1.67 58.3 0.07
1tgn 245 2trm 245 81.6 2.75 74.2 0.43
2fvb 106 4hhb 141 9.4 0.85 30.0 0.06
2fvb 106 2trm 245 94 X1 [| 28.1 0.16
S5mbn | 153 2fvw 112 8.9 2.14 34.1 0.06
5mbn | 153 2trm 245 13.4 7.3l 34.1 0.15
1tgn 245 2fvw 112 8.9 3.53 25.6 0.15
1tgn 245 4hhb 141 .1 2.66 40.0 0.19

You can see that the scores of the first three pairs are higher than those
of the other pairs in both methods. Indeed, looking at each structures, we
can see that two structures are similar to each other in the first three pairs,
and two structures are not similar to each other in the other pairs. Thus it is
confirmed that NEW finds the similarity between tertiary structures as well as
DP does.

Next, we consider the CPU time. Note that the time for computing a
sequence of line segments is not included in NEW. Such computation must be
done only when a new tertiary structure is registered into a database. More-
over, it takes a few seconds per structure. Thus we can ignore the time for

38

computing a sequence of line segments. From Table 2, it is seen that NEW is
much faster than DP.

4.2 Result on Database Search

We have applied the presented method to database searching for similar struc-
tures. We use 811 structures of PDB since we only have an old version of PDB.
Note that the following preprocessing is done before the experiment: for all
structures, sequences of line segments are computed and stored as files along
with tertiary structure data. Although this preprocessing takes a few hours, it
may be done only once.

Table 3 shows the result of the experiment. Each item in PDBcode denotes
an input protein structure. For each input structure, protein structures that
have the scores more than a threshold value are listed in MATCHED, where we
use 50.0 as a threshold value, which is determined by experiment. The number
of matched structures is shown in NUM. For each structure, CPU time for the
comparison with 810 structures is described.

Note that most structures in MATCHED have tertiary structures (folding
patterns) similar to an input structure. Indeed, DP computed high scores for
each pair of structures in MATCHED in most cases. Moreover, the obtained
result seems to be similar to (a part of) the classification result by Sali and
Overington 2 although we can not compare the results directly since different
data are used.

Next, note that CPU time for each input structure is less than 7 minutes.
If we apply DP to searching for similar structures, it would take a few hours.

5 Conclusion

We have proposed a new method for comparing tertiary protein structures. In
this method, a sequence of line segments which approximates each tertiary
protein structure is computed and then an alignment of the obtained line
segments is computed. Comparison with a previous method (DP) shows that
the proposed method is much faster than the previous one and classifies tertiary
structures as well as the previous one does.

However, we have not yet shown an advantage of the proposed method over
the other structure alignment algorithms, especially from a viewpoint of the
quality of classification. Thus, we are planning to apply the proposed method
to classification of tertiary structures using the latest version of PDB and
compare the results with such database as FSSP® This is the most important
future work. :

Table 3: Result on searching for similar structures.

39

PDB | TIME | NUM | MATCHED (PDBcode/SCORE)

code | (sec)

1tim | 273.8 6 1lypi/68.1 2ypi/68.9 3tim/66.8 4tim/68.5 5tim/68.6
6tim/67.8

4fab | 173.1 12 1fai/77.5 1fc1/58.4 1fd1/76.8 1igf/86.0 1mcp/79.4
219/79.5 2fb4/61.5 2fbj/77.9 2ig2/61.4 2igf/85.2
2mcp/81.5 3hfm/81.9

2hhb | 96.7 45 leca/60.8 1coh/99.3 1fdh/79.1 1hbs/58.6 2sdh/60.1
11h1/53.4 1mba/59.9 1pmb/65.3 - - -

2prk | 313.1 15 1mee/72.7 1cse/70.5 1s01/69.7 1s02/69.8 1sbc/71.9
1sbt/64.7 1sic/62.0 1st2/70.0 1ltec/70.0 2sbt/58.8
2sec/71.7 2sni/67.9 2st1/72.5 2tec/75.5 3tec/75.5

3ldh | 385.2 9 11db/67.8 11dm/83.7 1llc/73.1 11db/65.3 1ldx/66.0
51dh /66.5 61dh/73.3 8ldh/72.3 4mbh/63.9

4cpv | 102.1 14 1cdp/97.9 1pal/65.9 2pal/80.0 3cln/54.3 3pal/80.0
4pal/85.1 5cpv/82.1 1cch5/53.0 3cyt/55.6 451c/56.8
5cyt/55.9 lomd/69.5 4tnc/51.0 2¢ln/52.9

1trm | 252.5 59 1chg/67.3 lgct/84.9 2est/79.0 2kai/74.3 2pka/84.0
3rp2/84.0 1sgt/67.2 1tab/84.4 - - -

l1hla | 242.9 3 1hsa/73.2 2hla/70.7 3hla/74.7

Another future work is to improve the proposed method. For exam-
ple, using an existing program to identify a-helices and (-strands in tertiary
structures, better fittings (better sequences of line segments) might be ob-
tained because biological and chemical structures of proteins are taken into
account in such a case. For another example, using special kinds of curves in-
stead of line segments, better fittings might be obtained. Such methods should
be studied since better representation may lead to better comparison methods.

Acknowledgments

This work was partially supported by the Grant-in-Aid for Scientific Research
on Priority Areas, ” Genome Informatics”, of the Ministry of Education, Science
and Culture of Japan.

40

References

1

10.

1.

12.

13.

14.

A. Agarwal, B. Schieber and T. Tokuyama, “Finding a minimum weight
K-link path in graphs with Monge property and applications,” Proc.
ACM Symposium on Computational Geometry, 189-197 (1993).

R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows - Theory,
Algorithms, and Applications, (Prentice Hall, NJ, 1993).

T. Akutsu, “Efficient and robust three-dimensional pattern matching
algorithms using hashing and dynamic programming techniques,” Proc.
27th Hawai Int. Conf. on System Sciences 5, 225-234 (1994).

F. C. Bernstein et al., “The Protein Data Bank: A computer-based
archival file for macromolecular structures,” J. Molecular Biology 112,
535-542 (1976).

C. Branden and J. Tooze, Introduction to Protein Structure, (Garland
Publishing, 1991).

L. Holm, C. Onzounis, C. Sander, G. Tuparev and G. Vriend, “A
database of protein structure families with common folding motifs,” Pro-
tein Science 1, 1691-1698 (1992).

W. Kabsch and C. Sander, “Dictionary of protein secondary struc-
ture: pattern recognition of hydrogen-bonded and geometrical features,”
Biopolymers 22, 2577-2637 (1983).

R. Nussinov and H. J. Wolfson, “Efficient detection of three-dimensional
structural motifs in biological macromolecules by computer vision tech-
niques,” Proc. Natl. Acad. Sci. (USA) 88, 10495-10499 (1991).

C. A. Orengo, D. T. Jones and J. M. Thornton, “Protein superfamilies
and domain superfolds,” Nature 372, 631-634 (1994).

S. Pascarella and P. Argos, “A data bank merging related protein struc-
tures and sequences,” Protein Engineering 5, 121-137 (1992).

S. T. Rao and M. G. Rossmann, “Comparison of super-secondary struc-
tures in proteins,” J. Molecular Biology 76, 241-256 (1973). :

A. Sali and J. P. Overington, “Derivation of rules for comparative pro-
tein modeling from a database of protein structure alignments,” Protein
Science 3, 1582-1596 (1994).

W. R. Taylor and C. A. Orengo, “Protein structure alignment,” J. Molec-
ular Biology 208, 1-22 (1989).

G. Vriend and C. Sander, “Detection of common three-dimensional sub-
structures in proteins,” PROTEINS: Structure, Function, and Genetics
11, 52-58 (1991).

