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Abstract

We propose new empirical scoring potentials and associated align-
ment procedures for optimally aligning protein sequences to protein
structures. The method has two main applications: first, the recog-
nition of a plausible fold for a protein sequence of unknown structure
out of a database of representative protein structures and, second, the
improvement of sequence alignments by using structural information
in order to find a better starting point for homology based modelling.
The empirical scoring function is derived from an analysis of a non—
redundant database of known structures by converting relative frequen-
cies into pseudoenergies using a normalization according to the inverse
Boltzmann law. These — so called contact capacity — potentials turn out
to be discriminative enough to detect structural folds in the absence of
significant sequence similarity and at the same time simple enough to
allow for a very fast optimization in an alignment procedure.

1 Introduction and Problem Definition

Predicting protein structure from the protein sequence is one of the most
challenging problems of molecular biology with many applications and con-
sequences for theory and experiment. We are interested in the following quite
simple instance of this problem: Given a sequence of unknown structure and
a database of representative folds, identify the most plausible fold for the se-
quence if there is one and assess the quality or reliability of the proposed
structure.



Towards this goal we applied the following method: Using simple empirical
potentials we optimize mappings of residues of the sequence onto structural
positions of any of the proposed folds (so called sequence—structure alignments
or threadings [2, 5, 18]). The resulting alignments are then evaluated and
ranked according to the potential and the statistical significance of the best
alignment is estimated in comparison with the other alignments.

In an approach related to [2, 14], we use simple environment dependent poten-
tials — so called contact capacity potentials (CCPs)—, which do not explicitly
depend on the actual contact partner. The latter dependency would destroy
the so called prefix optimality principle and, thus, prohibit fast optimization
via dynamic programming. It is generally believed that the objective func-
tion for sequence—structure alignment needs to include pairwise contact energy
terms to get high quality alignments and good discrimination between appro-
priate and inappropriate folds. An experiment demonstrates that the major
contributions for native fold recognition in the sippl-test are various types of
contact capacity instead of detailed pairwise contact energies. We also show
that more involved CCPs do not improve much in the sippl-test as compared
to simple CCPs and secondary structure preferences.

From these experiments we conclude that for the even less precise energy es-
timations employed in threading with gaps it should be possible to restrict
oneself to CCPs thus allowing for fast and exact optimization. Additionally,
in current procedures, there is some discrepancy in having quite significant fold
recognition but only poor alignments. Our goal is to get both good alignments
and good discrimation with a fast dynamic programming optimization proce-
dure. Therefore, we adapted the dynamic programming to deal with CCPs
and to account for position and secondary structure dependent costs, espe-
cially gap costs, and for averaging scores for certain matches over a window
centered at this match. We implemented these options with several versions
of this kind of potentials and evaluated the effects on fold recognition and
detailed alignments using the ToPLign procedures [11].

2 Methods

2.1 Potentials

We used statistically derived potentials computed from a non-redundant set
of representative protein structures suggested by Bauer&Beyer[1]. This set
was obtained from the list of 185 non—homologous structures proposed by
Hobohmd&Sander [10] by eliminating membrane and virus proteins.  As our
empirical free energy function we use a sum of three terms: secondary structure
preferences, pairwise contact potentials, and contact capacity potentials.



2.1.1 Secondary Structure Preference

For each amino acid we assigned one of three types of secondary structures
(SS): alpha, beta and other. Assignment was made based on the similarity of
the 5-residue C,~trace fragment from the structure to the typical a—helix or
f—strand. From the total number of 66634 amino acids, 24970 were assigned
to class alpha, 17403 to class beta, and 24261 to class other. The secondary
structure preference (SSP) of amino acid ¢ to be in secondary structure class
s are calculated from the following formula:

N{(i,s)
(N(i,s))’

where N(z,s) is the actual number of amino acids ¢ in secondary structure
conformation s, (IV(7, s)) is the expected number of the residue ¢ to be in SS

N(i)* N(s)

Pss(i,s) = —log (N(2,8)) = — N

class s, N(2) is the number of the amino acids ¢, N(s) is the number of amino
acids in conformation s, and N is the total number of amino acids.

The potential we obtained is similar to those obtained previously by many
authors, e.g. Chou and Fasman [4], and is summarized in table 1.

ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR
ALPHA -33 44 0 -24 -1 38 4 1 -9 -24 -23 4 78 -22 -17 14 23 20 -2 19
BETA 32 -15 27 33 -18 11 0 -39 9 -1 9 27 6 22 15 7 -21 -45 -12 -22
OTHER 22 -20 -15 7 16 -31 -4 37 3 32 22 -19 -44 10 8 -16 -3 23 12 0

Table 1: Secondary structure potentials (multiplied by 100 for clarity)

2.1.2 Pairwise Contact Potentials

This type of potential was initially suggested by Miyazawa and Jernigan [12].
We defined a pair of residues as being in contact, if the distance between Csz-
atoms is less than 7.0 A. The coordinates for a fake Cs—atom for Glycine were
calculated from the backbone. The contact potentials for amino acids ¢ and j
were calculated as follows:

N(,J)

N(@) + N()
(N(, 7))

(Vi) = =

PC(ZL]) = —lOg

where N(i,j) is the actual number of residues ¢ and j in contact, (N(¢,7)) is
the expected number computed from N(z) = 3. N(2,7), N(j) = > N(%,7),
and N =3, ; N(z,7) These potentials are in good agreement with previously
derived contact potentials.
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Figure 1: Contact capacity potentials for hydrophobic (circled), polar (dotted),
and Cysteine residues (dashed).

2.1.3 Contact Capacity Potentials

This new type of potentials was introduced to account for the hydrophobic
contribution to the free energy. Contact capacity characterizes the ability of
residues to make a certain number of contacts with any other residues. Obvi-
ously, hydrophobic residues should have more contacts than polar residues. For
each type ¢ of amino acid, we derived its ability to form k contacts Pcc(s, k)as:

N(i, k) N@G)* NC (k)

Pec(i, k) = —logm, (N(1,k)) = I

where N(z, k) is the number of residues ¢ having k contacts. The expected
number (N(z, k)) is calculated using N(7) the number of residues 7, NC(k) the
number of residues having k contacts, and N the total number of residues.
We used several different variations of the contact capacity potentials:
Long-range and local contact capacity potentials (CCP): We divided
the contacts and, correspondingly, the contact capacity potentials into two
categories: local and long-range potentials. We consider a contact as local if
there are less than five residues in the sequence between the two residues in
contact. There is a clear correlation between residue hydrophobicity and long
range contact capacity potentials (figure 1). Local contact capacity shows some
correlation with secondary structure preferences: obviously, those residues,
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which have a preference to be in a-helical conformation tend to have more
local contacts.

Secondary structure dependent CCP (SSCCP): The ability of the residues
to make contacts may depend on the secondary structure: residues in a—helices
have less vacant surrounding space for contacting residues than residues in -
strands. Thus, we have derived and tested secondary structure dependent
potentials, having now 6 types of contact capacity potentials: two sequence
separations (local and long—range) multiplied by three types of the SS. There is

a significant difference between the long-range alpha CCP and the long-range
beta CCP (tables 2 and 3).

#contacts: O 1 2 3 4 5 6 7 8 9
ALA 8 35 39 -10 -40 -36 -22 -3 0 5
CYSs 95 78 26 -36 -64 -24 -73 -111 -133 5
ASP -61 -20 16 72 104 115 79 53 40 5
GLU -60 -20 22 54 95 104 134 99 40 5
PHE 107 11 -44 -49 -19 20 11 54 1 5
GLY -14 13 32 52 -3 -35 -59 -85 -31 -47
HIS 31 -43 -46 14 35 77 59 -34 40 5
ILE 108 38 -7 -34 -44 -46 -60 -33 -34 -26
LYS -49 -38 -8 60 134 165 130 122 40 5
LEU 109 27 -21 -41 -41 -34 -12 -22 22 5
MET 82 2 -18 -34 -13 -42 -18 63 -17 5
ASH -36 -1 6 21 39 50 40 -13 1 5
PRO -28 10 2 31 37 19 -37 -14 -96 5
GLN -26 -256 -10 30 33 65 73 85 40 5
ARG -6 -44 -23 5 80 96 70 87 40 5
SER -26 1 18 31 8 -5 17 -5 -14 5
THR -9 13 7 10 12 -31 -18 -16 -21 5
VAL 106 48 21 -38 -48 -61 -79 -62 9 5
TRP 99 -39 -25 -20 -7 -35 81 122 40 5
TYR 100 -5 -33 -31 -33 0 11 70 -11 5

Table 2: Long-range CCP (times 100) for residues in alpha—conformation

Conditional CCP (CCCP): Assuming that the local CCP reflects a type
of SS preference in protein structures, we can replace the SS dependent CCP
with a conditional CCP. The local CCP in this case do not depend on the
SS, whereas the long-range CCP depend on the number of local contacts.
An example of this type of long—range contact capacity potentials is shown in
table 4. Conditional CCP are consistent with the hierarchical model of protein
folding [15], when an initial SS formation is followed by the formation of the
long-range contacts.

Distance—dependent CCP (DCCP): Sippl introduced distance-dependent
contact potentials, gaining excellent performance in the Sippl-test. We tried
to exploit the same idea to improve the results of the Sippl-test with CCP. We
have introduced six distance intervals: 45 A, 56 A, 6-7 A, 7-8 A, 8-9 A, and
9-10 A and 6 sequence separations between contacting residues: 1, 2, 3, 4, 5,
and 6 or more. The total number of the parameters for each amino acid with



#contacts: O 1 2 3 4 5 6 7 8 9 10 11 12
ALA 9 26 23 10 -5 0 -9 -19 -31 -3 -3 9 -24
CYS 197 124 71 8 -1 -4 -18 -b51 -67 -77 -47 -48 3
ASP -59 -59 -38 -4 -6 19 68 104 89 58 a7 9 -31
GLU -66 -41 -58 -28 3 26 92 91 123 103 9 9 3
PHE 91 35 24 7 -4 -19 -33 -21 18 -14 a7 9 3
GLY -74 -21 9 17 33 0 25 4 10 -8 -67 -14 3
HIS 7 -1 13 -43 -21 -6 45 22 27 76 a7 9 3
ILE 153 105 55 30 19 1 -57 -40 -73 -39 24 -13 3
LYS -40 -50 -56 -28 2 9 89 125 119 141 18 9 3
LEU 101 90 55 21 -3 -33 -36 -22 -35 4 -7 -12 3
MET 86 50 12 7 -9 -17 -45 -2 10 66 a7 9 3
ASH -41 -63 -42 0 5 34 48 54 52 18 a7 9 3
PRO -17 -54 -19 -6 -10 43 24 29 39 -3 9 9 3
GLN -36 -48 -25 -41 -12 50 a7 53 114 87 a7 9 3
ARG -24 -9 -5 -45 -27 -2 66 51 108 141 a7 9 3
SER -42 -42 -28 1 -3 36 40 27 17 29 -23 9 3
THR -24 -6 -26 -23 0 5 42 27 20 16 a7 9 3
VAL 81 7 64 33 8 -14 -28 -54 -43 -64 -37 -7 3
TRP 127 65 35 -13 -20 20 -40 -35 10 13 -36 9 3
TYR 103 52 23 41 -10 -35 -41 -10 17 -28 a7 9 3

Table 3: Long-range CCP (times 100) for residues in beta—conformation

# of long-range contacts
0 1 2 3 4 5 6 7 8 9 10 11 12

# of local

contacts

0 218 135 109 30 -1 -17 -29 -93 -91 -91 -82 -56

1 219 218 67 20 4 0 -12 -95 -96 -86 -99 3

2 153 74 4 -18 -24 -48 -78 -78 -94 -116 18 7 1
3 102 105 20 -51 -38 -48 -54 -77 -26 9 1 1
4 110 57 a7 3 -57 -27 -54 -55 9 1

5 17 48 -18 -26 -77 -51 -67 7

6 37 41 -66 -89 -41 9 5

7 1 11 5 1 1 1

Table 4: Long-range conditional CCP for Cysteine (multiplied by 100)

a certain number of contacts equals to 3%6%6=108 (3 types of SS, 6 distance
and 6 sequence separations).

Angle-dependent CCP (ACCP): A more detailed version of CCP could
be introduced via division of each distance interval into 6 segments, depending
on the orientation of the contacting residue (figure 2). The total number of
parameters for each amino acid with a certain number of contacts in this case
is 3*6*6*6=648 (3 types of SS, 6 distance and 6 sequence separations, 6 angle
segments).

2.2 Assessing Potentials and Threading Methods

To assess the performance of our simple potentials and the associated optimiza-
tion procedures for fold recognition, we employ the following tests proposed in
the literature:



Figure 2: 2-dimensional picture of the contact region, divided into four areas
of contacts. The position of the areas of contacts depends on the coordinates
of the backbone atoms. In 3D we use 6 areas of contacts.

shuffle-test [3]: The most naive and simple test is a standard statistical test:
Given some 'native’ score of an optimization procedure, compute the optimal
score of many randomized/rotated /permutated inputs, which are required to
have the same amino acid composition, and calculate the native score in terms
of standard deviations of the resulting randomized scores.

Sippl-test [17]: Sippl proposed and used the following test: Given a sequence
S of length n and a database of structures, mount the sequence onto all pos-
sible structures of length at least n without gaps, i.e. cutting fragments of
length n out of all longer structures and assuming their sequence to be S.
Evaluate the potential score for all of these combinations, assume a normal
distribution of the scores, and calculate the score of the native combination
in terms of standard deviations.  For this test keep in mind that only one
sequence-structure pair corresponds to the native combination, all the other
combinations are simply wrong structures for the sequence or even incomplete
protein structures. Sippl claims that this test could be reasonably interpreted:
The sequence is a 'real” physical system, which tends to adopt the minimum
energy conformation. Therefore, it makes sense to look through conforma-
tional space and select those conformations which minimize the free energy of
the respective sequence-structure pair.

Threading—test [2, 3, 5]: This test is considered to be the most realistic one:
Using the respective method and potential try to align a given sequence as well
as possible to any fold of a fold database, evaluate, score and rank the resulting
alignments. The native (identity) threading should be the best alignment of
the sequence onto its native fold, and the score of this combination should
be better than the score of all non-native combinations. Also, similar folds
should be ranked quite high in the list and dissimilar ones ranked low.



2.3 Aligning using Contact Capacity Potentials and Sequence In-
formation

2.3.1 Alignments: Modes and Algorithms

For doing threading with contact capacity potentials we use modifications of
various alignment procedures implemented in ToPLign [11]. ToPLign pro-
vides procedures to compute several MODES of alignments, global, local, and
so called free—shift alignments. The latter do not penalize gaps at the begin-
ning and the end of the resulting alignment and prove to be most useful for
threading as the involved sequences often have quite different lengths. De-
pending on the gap scoring function different ALGORITHMs are used for the
optimization: for general gap penalties the ALGORITHM of Needleman and
Wunsch [13] requires a quadratic number of memory cells and cubic number
of execution steps, for linear gap penalty functions there is a simple algorithm
having quadratic time complexity, and for affine gap penalties with costs for
opening (gap insertion) and for extending a gap (gap elongation) proposed by
Fitch and Smith [7] we use the quadratic time Gotoh—type algorithm [9].

All combinations of MODES and ALGORITHMS mentioned above are imple-
mented in ToPLign as slight variations of the following recurrence:

Di,j = MAX(DZ'_L]‘_l —|— match(i,j), Ri,ja Ci,j)

o 1
R;; = Maxpe;(D;jr — gr(2,5,k)) (1)
Cij = Maxpci(Diogj — gc (2,5, k)

This recursion defines the maximal score of the alignments of the :— and ;-
prefixes of two sequences R and C. The element D, ; is the maximum of the
optimal alignment score of the (i — 1) and (5 — 1) prefixes plus the additional
cost match(z, j) for (mis)matching ¢ with j, and the score for the ¢, (j — k) and
(1 — k), j prefixes decreased by the cost of a gap of length k in the respective
sequences. The cost of a gap of length k£ in the sequences R or C at position
(¢,7) is denoted gr(z,J, k) or go(i,7, k), respectively.

2.3.2 Path and Confidence Contour Maps

In order to evaluate an alignment, ToPLign allows for the computation of a
so called path contour map P. Such a map is an n X m matrix labeled with
the strings to be aligned and contains at position (¢, j) the score of an optimal
alignment passing through this particular match.

The path contour accounts at position (¢, j) not only for the value of an optimal
¢ and j prefix alignment, but also for an optimal continuation of this path up
to the end of both (global), of one of the sequences (free—shift), or as far as



the score stays above zero (local alignment). By definition, all positions on the
optimal path carry the same (optimal) alignment score.

In ToPLign, extending an idea of Goad&Kanehisa [8] for nucleotid sequences,
the path contour matrix is computed from two dynamic programming matri-
ces F' ("Forward”) and B (”Backward”) by applying the dynamic program-
ming process twice — first, for the original strings and second, for the reversed
strings.

Intuitively, not reliable alignment positions will be surrounded in a path con-
tour map by high—scoring values. Alternatively, there may be parts of the
optimal alignment where any alignment that chooses an alternative route but
the optimal one would result in a much smaller score. The latter regions of
the optimal alignment tend to be biologically more reliable than the alignment
positions mentioned first. Therefore, a reliability or confidence of a specific
match on the optimal path, or if we like of any match, can be defined as
the score difference of an optimal alignment containing the match and the
best alignment not containing this particular match. It is obvious that only
matches on optimal alignment paths take positive reliability values.

Again the computation of such a confidence matrix €' can be accomplished
via the dynamic programming machinery accounting for all paths explicitly
avoiding the match (7, j) via standard ToPLign procedures.

2.4 Using Contact Capacity Score
2.4.1 Match score

The score defined by the contact capacity potential can easily be figured into
the computation of optimal alignments with the dynamic programming recur-
rence. We modify the term for single matches in the recurrences (1) as follows
to be a weighted sum of sequence, local structure preferences and contact
capacity potential contributions:

matchg(i,j) = a*s(i,J) + S+ 1(¢,7) + v *ce(i, g)

where s(z, j) is the sequence score of substituting amino acid j of the structure
by the i~th amino acid of the sequence according to Dayhoff [6] type substitu-
tion matrix D, i.e. s(¢,5) = D;j;. I(i,7) scores the local preference of the i—th
amino acid of the sequence to be in the structural environment class s(j) of
structure position j according to the assignment described in section 2.1.1, i.e.
[(¢,7) = Pss(e,8(7)). cc(i,j) denotes the contact capacity score of mapping ¢
to position j, i.e. the energy assigned to amino acid ¢ to have ne(j) contacts, if
ne(y) is the number of actual contacts of the amino acid at structure position

J, ie. ec(i, g) = Pec(i,ne(j)).



a, 3,7 are weighting factors relating the different contributions of the scoring
system with respect to each other. For the fold recognition experiments with
contact capacity potentials (7 = 1) reported below, we do not use sequence
information at all (« = 0) and where secondary structure preference is used
its weighting 3 is 1 and 0 otherwise.

The averaging over a window of length 2w+1 centered at the match in question
is also easily accomplished via:

S, matchy(i + &k, j + k)
20+ 1

match(z, ) =

2.4.2 Gap Penalty

To control gap penalties in conserved structural environments we introduce
a parameter o weighting the contribution of gaps in these regions. To be
precise, affine gap costs with gap insertion costs g¢ and gap elongation costs
ge are scored — with gr(7,J, k) = go(2, 75, k) = g(k) = g1 + ge * k (see equation
(1) in section 2.3.1) — as:

*
Goli, j, k) = Gr(i,j, k) :{ 7 zgg ftflgzviie{a'pha’beta}
For the results presented below we use the following parameter settings: o is
either 1 or 10 depending on whether gap weighting for secondary structures
is used or not, the gap insertion parameters used with the different potentials
are gi = 10 (CCP), 20 (SCCP), 40 (DCCP), 80 (ACCP), respectively, gap
elongation ge is set to ¢¢/10, and the window size w for averaging match
scores is always 3.
These values are tuned such that gaps are reasonably penalized: in almost all
cases identity alignments are obtained for native combinations and gaps are
introduced in non—native combinations. Until 'optimal’ settings are unravelled
by parametric analysis the above heuristic reflects the setting of gap penalty
values used for sequence alignment with Dayhoff match scores (taking into
account the respective potential and window averaging).

3 Results

3.1 Importance of Terms in Potential

Not all the terms in our potential function are equally important for protein
fold recognition. One can evaluate the quality of the potential function and
the importance of each term with the so called Sippl-test, where sequences are
threaded through a set of structures without gaps.
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A first analysis compares fold recognition rates of the various forms of our
contact capacity potentials. Table 5 shows, that the most detailed contact ca-
pacity potential gives the best results in the Sippl-test. The difference, though,
between the simple contact capacity (plus secondary structure preference) and
the most involved angle dependent potential (ACCP) is minor: The improve-
ment is both for all 167 chains and for 139 chains of > 60 residues less than
3% from 86.8% to 89.2% and 94.2% to 97.1%, respectively.

I [ SSCCP+5SP | CCCP | DCCP | ACCP ||

all 167 chains (%correct) 86.8 84.9 83.8 89.2
139 chains > 60 residues (Y%correct) 94.2 92.8 93.5 97.1

Table 5: Results of the Sippl-test for different kinds of CCP: SSCCP+SSP:
Secondary structure dependent CCP plus SS preference; CCCP: Conditional
CCP; DCCP: Distance dependent CCP; ACCP: Angle dependent CCP.

Another analysis comparing different types of potentials, — summarized in
table 6 — shows that the most important term is the contact capacity poten-
tial. This conclusion is consistent with the general concept that hydrophobic
forces are the major factor in protein stability. Bryant and Lawrence [3] also
noted that in their potential the main contribution to the recognition comes
from the hydrophobic term. Russell and Barton [16] computed the energy of
common contacts in similar structures and found that the number of stabiliz-
ing common contacts in similar structures is almost random, thus neglecting
the contribution of the specific pairwise contact potentials. This observation
encouraged us to try to use various kinds of contact capacity potentials alone
for doing the following fold recognition and alignment experiments.

I [ [ SSP+CP+CCP [ SSP | CPL [ CP_| CCP [ SSP+CCP [ SSP+CP ||

all 167 Z-score 6.87 2.66 3.10 3.46 5.27 5.55 4.31
chains Y%correct 90.4 24.7 | 27.1 34.9 | 76.5 81.9 50.6
139 chains Z-score 7.30 2.89 | 2.93 3.42 | 5.67 6.02 4.43
> 60 residues | %correct 95.7 29.5 | 27.3 36.0 | 84.9 91.4 55.4

Table 6: Native Fold Recognition in Sippl-test by different energy functions:
SS+CP+CCP: consider all the terms (secondary structure, pairwise contact
potentials, and contact capacity potentials); CPL: only long-range pairwise
contact potentials; CP: only pairwise contact potentials; CCP: only contact
capacity potentials; SS+CCP: without pairwise contact potentials; SS+CP:
without contact capacity potentials.
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3.2 Fold Recognition Experiments

For the simple shuffle-test (both rotation and random permutation) the native
(identity) combination is always recognised with standard deviations of more
than 3 (data not shown).

Recognition of a globin sequence (3mba) and in a set of 167 structures
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Recognition of a tim barrel sequence (1ald) in a set of 167 structures

Figure 3: Recognition capability of secondary structure dependent contact
capacity potentials (SSCCP)

To perform the most realistic and — from an application point of view — most
important threading—test, we wrote a fast program 123D (1-dimensional se-
quence to 3-D structure), which is now available through the WWW at the
URL pages http://www-1lmmb.ncifcrf.gov/ " nicka/123D.html and
http://cartan.gmd.de/ToPLign.html. In this paper we show the results of
two threading experiments: the first with the globin sequence of PDB structure
3mba.pdb, the second with the TIM barrel sequence of lald.pdb.

Figure 3 shows some distributions of scores and standard deviations from the
average score for 3mba and lald for the secondary structure dependent con-
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recognition of globin sequence 3mba recognition of tim barrel sequence 1ald
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Figure 4: Recognition capability of different potentials: The left column con-
tains the results for 3mba, the right one for lald. The upper row shows the
distribution of pure sequence alignment scores, which shows a very good dis-
crimation of the native sequence from all the others, i.e. there are no other
similar sequences. Some of the next best scores in the distribution do not
belong to other globins or TIM barrels and the lowest scoring globin and TIM
barrel sequences are at rank 19 and 42, respectively. The middle row contains
the distribution of the SS dependent contact capacity scores plus additional
sequence score and the lower row the corresponding scores for the conditional
contact capacity plus sequence score. Both show that the native combination
is not as pronounced as above, but now the related folds, globins or TIM bar-
rels, appear at the top of the list, the globins somewhat separated from the
rest of the distribution.
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tact capacity potential alone. The native fold is clearly identified and both
the other globins (positions 1, 2, 3, 4, 6 and 7, colicin 1colA at position 8) as
well as the other TIM barrels (positions 1, 2, 3, 4, and 9) are at the top of
the distribution though not separated from the rest. Figure 4 shows the dis-
tributions of standard deviations for the same examples for different types of
potentials. For these examples the performance of both potentials is compara-
ble. It remains to be shown, whether the more involved conditional potentials
can overall improve on the simple CCP’s. The most detailed angle depen-
dent potentials (ACCP) show even worse results, which can be explained by
the fact that distantly related sequences having the same fold do not preserve
such detailed contacts, whereas the contact capacity is much more conserved
among similar folds.

We plan to evaluate the performance of the different contact capacity po-
tentials for other recurrent structural motifs and investigate their respective
contributions for fold recognition.

3.3 Sequence—Structure Alignments

The use of structural information in the simple and efficiently optimizable form
of contact capacity potentials shows significant improvements on alignments of
sequences with detectable sequence similarity as well as no significant similarity
at all.

Here we discuss two examples of visualizations of optimal and near optimal
alignments with path and confidence contour matrices [11] introduced in sec-
tion 2.3.2. They show that not only the ‘correct” alignment can almost perfectly
be reproduced but also the number of alternative alignments of similar score
is significantly reduced.

Figure ba shows the path contour matrix for the threading of a globin sequence
onto another globin fold using the SS—dependent contact capacity potential
without any sequence information. The colour of entries (¢,7) in this matrix
codes for the score of an optimal threading path passing through this point,
i.e. optimal threading alignments containing the match of sequence ¢ onto
structural position j. The optimal threading path is shown as white dots.
Figure 5b shows the same path contour matrix superposed with the path of
the structural alignment, which almost perfectly coincides with the optimal
threading alignment shown in black.

Figures 5¢c and 5d show the reliability contour of the optimal threading, where
lighter colours represent higher confidence in the particular match to belong
to the optimal alignment. In figure 5d the structural alignment again almost
blacks out the optimal path, missing only regions with smaller confidence. The
large part in the middle of the matrix with third lowest confidence is actually
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a helix, which is displaced one turn in the sequence-structure mapping as
compared to the structural superposition. Most probably, in this case, even
the structural alignment is wrong.

Figure 6 shows path contour matrices comparing sequence alignment scores
with threading scores of the two p—trefoil structures trypsin inhibitor (PDB
code ltie.pdb) and fibroblast growth factor (4fgf.pdb). It can be seen from
figures 6a and b that both the local and shift alignments show a quite distorted
landscape with the optimal alignments quite far from the structural one. Near
the structural alignment path there are no regions which are promising for
giving good scores in a sequence alignment.

This situation is greatly improved for the threading scores: The global thread-
ing alignment (figure 6¢) shows an almost perfect coincidence of the structural
with the optimal alignment, however, there is a quite broad area of alignments
with almost the same score, i.e. there can be no confidence in this particular
optimal alignment even for the threading score. For the shift threading (figure
6d) the optimal regions are much narrower resulting in three different align-
ment classes with almost the same score reflecting the structural symmetry of
the fold. The structural alignment is contained in the quite pronounced second
best region, whereas, in this case, it is different from the optimal threading,
shown as the region containing the white path.

Figure 7 shows distance maps of these f—trefoil structures (upper left: 4fgf,
lower right: 1tie). The corresponding ’aligned distance map’, i.e. the rear-
rangement of rows and columns of the original distance map (top) according
to the alignment is shown at the bottom and indicates the quality of the
threading alignment.

4 Conclusion

We have derived and tested several modifications of the Contact Capacity Po-
tentials, which reflect the ability of different amino acids to form a certain
number of contacts with other residues. The more detailed the potential, the
better is the recognition of native folds with Sippl-test, where gaps are disal-
lowed. On the other hand, when gaps are allowed, which is the “real” thread-
ing case in modeling protein structures, the detailed potential functions, taking
into account either small differences in inter-residue distances, or the distri-
butions of their angular positionings, do not necessarily perform adequately.
Investigations of our contact capacity potentials indicates that, compared to
pair-wise contact potentials, contact capacity potentials are much more im-
portant for the identification of native folds in Sippl-test, which constitutes
the standard way for the evaluation of the quality of potential functions. This
observation supports developing and applying a fast program for mapping a
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1-D sequence to 3-D structure for protein fold recognition, such as the one
presented here (123D)'. Our program is able to successfully recognize similar
structures as demonstrated here in two examples, where the contact capac-
ity score optimized via dynamic programming gives good discrimination in
threading with gaps. We have shown that we can improve sequence alignment
by using contact capacity potentials almost perfectly reproducing alignments
derived from optimal superposition of the associated structures for two ex-
amples: two globins with about 20 % sequence similarity and two (—trefoils
without significant sequence similarity.
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Figure 5a and 5b: Path contour matrix + comparison with structural alignment
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Figure 5¢ and 5d: Reliability contour matrix 4+ comparison with structural alignment

Figure 5: Contour matrices for the threading of two globins: myoglobin (sperm

whale , Imbd) and leghemoglobin (lupin, 11h3)

18



1tie

1tie

0 0 40 0 60 0 80 90 100 0

Fig. 6¢: ’glof;g'al’ threadings

o

o

1tie

3020
26.43-
22.66-
18.89-
15.12-
11.35-
7.58-
381-
0.04-
-373-
-7.50-

Fig.

1tie

110.66

30.20
26.43
22.66
1889
1512
1135
758
381
0.04
-3.73

68.24 - 110.66

25.82-
-16.58 -
59,00 -
-101.42 -
-143.83-
-186.25 -
-228.66 -
-271.08-
-313.50 -

19

68.24
25.82

-16.58

-59.00

-101.42
-143.83
-186.25
-228.66
-271.08

Fig. 6d: ‘freeshift’ threadings
Figure 6: Path contour matrices with structural alignments for the compari-

son of sequence alignments with threadings alignments of f—trefoils (trypsin

inhibitor (1tie) and fibroblast growth factor (4fgf))
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tures (trypsin inhibitor (1tie) and fibroblast growth factor (4fgf))
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