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Abstract

Ordering clones from a genomic library into physical maps of whole chromosomes
presents a central computational problem in genetics. Chromosome reconstruction via
clone ordering is shown to be isomorphic to the NP-complete Optimal Linear Ordering
problem. Massively parallel algorithms for simulated annealing based on Markov
chain distribution are proposed and applied to this problem. Perturbation methods
and problem-specific annealing heuristics are proposed and described. Experimental
results on a 2048 processor MasPar MP-2 system are presented. Convergence, speedup
and scalability characteristics of the various algorithms are analyzed and discussed.

1 Introduction

A central problem in genetics is that of creating maps of entire chromosomes which
could then be used to reconstruct the chromosome’s DNA sequence. These chromoso-
mal maps fall into two broad categories - genetic maps and physical maps. A physical
map is defined as a partial ordering of distinguishable DNA fragments or clones by
their position along the entire chromosome. The specific technique discussed in this
paper for generating a chromosomal physical map is one based on clone ordering][7].
The clones in a clonal library or contig library are to be ordered with respect to their
position along a chromosome in order to generate a chromosomal physical map.

1.1 The Physical Mapping Problem

Our approach to the physical mapping problem is based on the generation of a hy-
bridization profile for each clone in the contig library[7]. Each clone is scored for the
presence or absence of specific probes resulting in the assignment of a digital signature
to each clone. A [in a specific position in the clonal signature indicates hybridization
to a specific probe whereas a 0 indicates absence of hybridization to a specific probe.



We formulate the problem of chromosome reconstruction as one of computing a clone
ordering that minimizes the sum of differences between successive clonal signatures:
(1) The Hamming distance d(C;, C;) between two clone signatures C; and C} is defined
to be the measure of dissimilarity between their signatures.

(2) The total linking distance D for an ordering is defined as the sum of the Hamming
distances between all pairs of successive clones: D = Z?:_ll d(Ci,Cit1).

(3) The desired ordering is deemed to be that which results in minimization of D.
Let D,, denote the minimum linking distance associated with the space of all possible
clonal orderings and Dy the linking distance associated with the true ordering. It can
be shown that lim,—c prob(| D, — Dg| > €) = 0, i.e. D,, converges in probability to
Dy as the number of probes m in the clonal library grows[21].

The problem of coming up with an optimal ordering can be shown to be iso-
morphic to the classical NP-complete Optimal Linear Ordering (OLO) problem for
which no polynomial-time algorithm for determining the optimal solution is known.
Stochastic optimization algorithms such as simulated annealing[13] are capable of
avoiding local optima in the solution space and producing solutions that are close to
the global optimum in average polynomial time. In fact, our previous research showed
simulated annealing to be very successful in generating high quality physical maps
from hybridized clonal data[7].

1.2 Simulated Annealing

A typical simulated annealing algorithm (Figure 1) consists of three phases (1) Perturb
Phase or Move Phase (2) Evaluate Phase and (3) Decide Phase as described below:
(1) Perturb Phase: Given an n-variable objective function of the form f(x) =
f(z1,22,...,2,) to be minimized and a candidate solution x;, x; is systematically
perturbed to yield another candidate solution x;.
(2) Evaluate Phase: x; is evaluated i.e. f(x;)is computed. In our case, the total
linking distance associated with the new candidate solution (i.e. new clone ordering)
is computed.
(3) Decide Phase: If f(x;) < f(x;) then x; is accepted as the new candidate
solution. If f(x;) > f(x;) then x; is accepted as the new candidate solution with
probability p given by the Metropolis function: p = exp (— (f(x;) — f(x;)) /T;) for a
given value of temperature 7; whereas x; is retained with probability (1 — p). The
parameter T is referred to as the temperature of the system. The perturb-evaluate-
decide cycle which constitutes a single iteration of the simulated annealing algorithm
is carried out a fixed number of times for a given value of T" which is then systemati-
cally reduced. A sequence of monotonically decreasing positive values for T denoted
by {T%} is called a temperature schedule and the generating function for this se-
quence is called the annealing function. At sufficiently high temperatures, simulated
annealing resembles a random search whereas at lower temperatures it acquires the
characteristics of conventional hill-climbing search.

One of the drawbacks of a serial implementation of simulated annealing is that
the annealing schedule necessary to obtain a solution close to the global optimum, is



const float T_min, T_max;

const int START_COUNT, COUNT_DELTA;
int COUNT_LIMIT, count;

float T;

COUNT_LIMIT = START_COUNT;

T

= T_max;

while (T »>= T_min)

{

for (count=1; count <= COUNT_LIMIT; count = count + 1)
{
1. Phase One - Perturb
(a) Randomly perturb the existing solution to generate a
new candidate solution;

2. Phase Two - Evaluate
(a) Compute the cost associated with the new candidate solution;
(b) Compute f_delta, the change in cost function that would
result if the new candidate solution were to replace the
existing solution;

3. Phase Three - Decide

(a) Accept the new candidate solution if it causes the cost
function to decrease;

(b) accept the new candidate solution with probability
P_T(f_delta) computed using the Metropolis function if
it causes the cost function to increase;

b

COUNT_LIMIT = COUNT_LIMIT + COUNT_DELTA;

Update the temperature using the annealing function
T = A(T);

Figure 1: Outline of a typical simulated annealing algorithm



computationally intensive resulting in excessive run times. Parallel processing is one
of the ways in which this drawback can be alleviated.

2 Parallel Processing

Parallel processing entails the utilization of multiple processors simultaneously to
solve a given problem, thus reducing the time required to solve the problem when
compared to serial processing. Parallel processing has emerged only very recently in
the context of problems in computational biology, such as sequence comparison[9, 12,
14, 16], sequence alignment[8, 10], genetic mapping[17] and physical mapping[4].

2.1 Data Parallel Processing on the MasPar MP-2

Massively parallel systems such as the MasPar MP-2 can run an application several
times faster than most serial systems provided that the application fits well in the
massively parallel paradigm. This has prompted us to consider the MasPar MP-2 as
a candidate multiprocessor platform for the design and implementation of a massively
parallel simulated annealing (MPSA) algorithm. The MasPar MP-2 is a massively
parallel distributed memory SIMD computer with the processing elements (PE’s)
interconnected in a toroidal 2-D mesh topology[5].

The MPL language[15] on the MasPar MP-2 is an extension of ANSI C with con-
structs that allow data parallel programming. Particularly, the plural data construct
allows a variable to be replicated (with possibly different values) in the local memory
of each PE. Since each PE has its own copy of a plural variable, updates to a plural
variable can be accomplished with a single data parallel statement. Data parallelism
in MPL stems from operations on plural variables. The MasPar MP-2 system offers
extensive nearest neighbor communication on the 2-D toroidal mesh using the znet
primitive.

2.2 Parallel Simulated Annealing (PSA) Algorithms

Parallelization of simulated annealing has been attempted by several researchers espe-
cially in the area of computer-aided design, image processing and operations research.
Parallel simulated annealing (PSA) algorithms have been implemented on a variety of
multiprocessor platforms — SIMD, MIMD, shared memory and distributed memory.
Several parallelization strategies for simulated annealing have been well documented
in the literature:

(A) Functional parallelism[20],

(B) Control parallelism with (i) speculative computation[19], (ii) parallel Markov
chain generation using a systolic algorithm[1, 2], and (iii) multiple independent or
periodically interacting searches[2].

(C) Data parallelism with (i) parallel evaluation of multiple moves with acceptance
of a single move[6], (ii) parallel evaluation of multiple moves with acceptance of non-
interacting multiple moves[11], and (iii) parallel evaluation and acceptance of multiple



moves[3].

Of the aforementioned parallelization strategies, we deemed the ones based on
multiple searches (i.e. B(ii)) and parallel evaluation and acceptance of multiple moves
(i.e. C(iii)) to be the most promising from the viewpoint of parallelizing simulated
annealing on the MasPar MP-2 system.

3 MPSA on the MasPar MP-2

A candidate solution in the serial simulated annealing algorithm can be considered
to be an element of an asymptotically ergodic first-order Markov chain of solution
states. Consequently, we have formulated and implemented four models of a massively
parallel simulated annealing (MPSA) algorithm based on the distribution of Markov
chains on the MasPar MP-2 PFE array and the synchronization method used. These
models incorporate the parallelization strategies B(ii) and C(iii) discussed in Section
2.2 and are described below:

(a) Non-Interacting Local Markov chain (NILM) MPSA algorithm.

(b) Periodically Interacting Local Markov chain (PILM) MPSA algorithm.

(c) Periodically Interacting Distributed Markov chain (PIDM) MPSA algorithm.

(d) Non-Interacting Distributed Markov chain (NIDM) MPSA algorithm.

In the NILM MPSA algorithm, each PE runs an independent version of the sim-
ulated annealing algorithm. Thus there are as many Markov chains of solution states
as there are PE’s in the multiprocessor architecture. Each Markov chain is local to a
given PE and at any instant of time each PE maintains a candidate solution which is
an element of its local Markov chain. The serial simulated annealing algorithm (Fig-
ure 1) is run synchronously on each PE. At each temperature value each PE iterates
through the perturb—evaluate—accept cycle COUNT LIMIT number of times concurrently
along with all the other PE’s. Two perturbation strategies were implemented and
tested in the context of the NILM MPSA algorithm:

(1) Pairwise Clone Exchange: In a given ordering (i.e. permutation) oy, the posi-
tions of two randomly chosen clones are interchanged to generate a new permutation
g9.

(2) Clone Block Reversal: Let (Cq, C3, ....C,) be the current clone ordering
o1. Two clones C; and C; (where 7 < j and ¢,j7 < n ) are chosen at random, and
the clone ordering in the block between C; and € is reversed. The resulting clone
ordering oy is (Cq,...,C5-1,C;, Ci_1, ..., Ciy1,Cs, Cj4q, ...C). This strategy preserves
any pre-existing ordering within the reversed block.

The perturbation function uses a parallel random number generator with distinct
seeds for each PE in order to ensure the independence of the resulting parallel Markov
chains of solution states. The evaluation function and the Metropolis decision function
are concurrently executed on each PE until 7" = T,,;,. The best solution is selected
from among all the candidate solutions on the individual PE’s. The NILM MPSA
model is essentially that of multiple independent searches.

In the PILM MPSA algorithm proceeds in a manner identical to the NILM MPSA
algorithm. The only difference is that just before the parameter T is updated using



the annealing function, the best solution from among those in all the PE’s is selected
and duplicated on all the other PE’s. The PILM MPSA model is essentially that of
multiple periodically interacting searches.

In the NIDM MPSA algorithm, the candidate solution, i.e. a single Markov chain
is distributed over a group of neighboring processors, i.e. a PE cluster. The PE
clusters are non-overlapping rectangular submeshes of equal size with dimensions
Xouidgsn and Yyiqi5. The perturbations in the NIDM MPSA algorithm are carried out
in 3 distinct phases as described below:

(A) Intra—PE Perturbations: All the PE’s concurrently perform the perturb—
evaluate—accept cycle on their individual portions of the candidate solution as in the
case of the NILM MPSA model.

(B) Inter—PE Perturbations along the Cluster Rows: The PE’s are paired
along the rows in each PE cluster. The evaluation of the perturbation is carried out
concurrently by each PE in the PE pair. The result of the evaluation is collected in
one of the PE’s in each PE pair which designated as the master. The master PE
in each pair decides whether or not to accept the proposed perturbation using the
Metropolis function.

(C) Inter—PE Perturbations along the Cluster Columuns: This phase is iden-
tical to phase (B) except that the PE’s are paired along the columns in each PE
cluster.

The NIDM MPSA model is a combination of multiple independent searches and par-
allel evaluation and acceptance of multiple moves. The PIDM MPSA algorithm is
similar to the NIDM MPSA algorithm except that before each update of the temper-
ature parameter T, the best candidate solution is selected from among the available
solutions in the various PE clusters and duplicated in all the PE clusters. The PIDM
MPSA model is a combination of multiple periodically interacting searches and par-
allel evaluation and acceptance of multiple moves. The control structure of the PIDM
MPSA algorithm is the most general of the four MPSA models for the MasPar MP-2
described in this paper. The PIDM MPSA algorithm is outlined in Figure 2. Deletion
of Phase 5 in Figure 2 would result in the NIDM MPSA algorithm. The NILM MPSA
algorithm and the PILM MPSA algorithm are special cases of the NIDM MPSA al-
gorithm and the PIDM MPSA algorithm respectively wherein the PI cluster reduces
to a single PE i.e. X,0n = 1 and Yyiqp = 1.

3.1 Heuristic Enhancements

(A) Annealing Schedule: The algorithms outlined in Figures 1 and 2 implicitly
assume a fixed-length annealing schedule where the total number of iterations of
the perturb—evaluate—decide cycle are determined a priori. We have found that an
adaptive annealing schedule yields better results. In the adaptive annealing schedule,
the temperature T is updated if either of the following conditions holds:

(i) The total number of perturbations at a given temperature equals COUNT_LIMIT.
(ii) The total number of successful perturbations equals a predefined percentage (typ-
ically 0.1% - 0.2%) of COUNT_LIMIT. A perturbation is deemed successful if it results



const float T_min, T_max;

const int START_COUNT, COUNT_DELTA;
int COUNT_LIMIT, count;

float T;

T = T_max;

COUNT_LIMIT = START_COUNT;

while (T >= T_min)

{
for (count=1; count <= COUNT_LIMIT; count = count + 1)
{

Phase 1. Perturb existing solution(s) where each solution is distributed
over a PE cluster to generate multiple candidate solutions
concurrently:

(a) Intra-Node Perturbations: Randomly perturb the existing

within each PE;

(b) Inter-Node Perturbations along the PE cluster rows:
Swap clone blocks between disjoint PE pairs along the
cluster rows;

(c) Inter-Node Perturbations along the PE cluster columns:
Swap clone blocks between disjoint PE pairs along the
cluster columns;

Phase 2. Evaluate Candidate Solution(s):
Compute f_delta, the change in cost for each candidate
solution concurrently in each PE cluster using the
pre-defined objective function f;

Phase 3. Parallel Accept:
Concurrently accept the perturbed candidate solutions in
each PE cluster with probability P_T(f_delta) computed
using the Metropolis function;

Phase 4. Determine the best candidate solution based on its total cost
at the current temperature, using a parallel reduction
mechanism;

Phase 5. Duplicate the best candidate solution determined in Phase 4
amongst all the PE clusters;

Phase 6. Update the maximum number of iterations at each temperature:
COUNT_LIMIT = COUNT_LIMIT + COUNT_DELTA;

Phase 7. Update the temperature using the annealing function:
T = A(T);

Figure 2: The PIDM MPSA algorithm



in a decrease in the cost function.

In spite of the overhead, the adaptive annealing schedule is more efficient. The total
number of iterations at higher T" values are reduced to only 0.1% - 0.2% of the maxi-
mum number of iterations at a given value of T i.e. COUNT_LIMIT, thus speeding up
the algorithm. At lower T values, since there are typically very few successful pertur-
bations, the total number of iterations at a given temperature is closer to COUNT_LIMIT
thus increasing the chances of finding a globally optimal solution.

If the same linking distance repeats for a certain number of consecutive tempera-
ture values (typically 3) in the adaptive annealing schedule, the algorithm is assumed
to have reached a global optimum. The algorithm is terminated, thus preventing it
from having to run (somewhat needlessly) until the final temperature value is reached.

(B) Stochastic Synchronization: The synchronization process can be made stochas-
tic by using the Boltzmann decision function. The best solution with linking D is
duplicated on the ith PE/PE cluster containing a solution with linking distance D;
with a probability Pg, where Pg = 1/(1+exp((D — D;)/T)).

4 Experimental Results

The massively parallel simulated annealing algorithms with various combinations of
perturbation methods and heuristic enhancements were implemented on a 2048 pro-
cessor MasPar MP-2 system at the University of Georgia, Athens, Georgia. Due to
the limited PE memory, on—the—fly computation of inter-clonal distances instead of a
distance matrix look-up was resorted to. Note that the memory requirements of the
distance matrix scale as O(N?) for N clones. In order to obtain a fair comparison
between the various algorithms, the product (denoted by A) of the number of PE’s
utilized and COUNT _LIMIT was kept constant.

The various MPSA algorithms were run on a real clone data set derived from
chromosome IV of the fungus Aspergilus Nidulans[18] and also a synthetic clone data
set. The real data set consisted of 592 clones with a clonal signature length of 115 bits
whereas the synthetic clone data set consisted of 225 clones with a clonal signature
length of 50 bits. On comparison between the various MPSA algorithms we observed
the following;:

(1) The PILM MPSA algorithm showed the best convergence characteristics and also
yielded a clone ordering with the least overall linking distance. Figure 3 shows the
linking distance of the real clone data set as a function of execution time of the
PILM MPSA algorithm (plotted on a logarithmic scale) with the number of PE’s as a
variable parameter. Figure 4 shows the logarithm of the speedup of the PILM MPSA
algorithm as a function of linking distance for the real clone data set. With 2048
processors the speedup obtained was approximately 1000 for linking distances close
to the optimal linking distance.

(2) In contrast, the PIDM MPSA algorithm and NIDM MPSA algorithm exhibited a
tendency to get trapped in a local minimum. This could be attributed to the fact that
the distribution of data across a PE cluster alters the state transition probabilities
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Figure 3: Linking distance as a function of the log of execution time for varying no.
of PE’s, real data set, A = 1,024, 000

associated with the Markov chain of solution states generated by the serial simulated
annealing algorithm.

(3) The intra-PE perturbation strategy based on clone block reversal performed better
than the one based on clone exchange for all the four MPSA algorithms that we
evaluated (Table 1). In the case of inter-PE perturbations, the exchange of clone
blocks was found to result in better performance than exchange of single clones.

(4) The use of stochastic synchronization with the Boltzmann decision function did
not substantially improve the convergence characteristics of either the PILM MPSA
algorithm or the PIDM MPSA algorithm. In fact, in the case of the PILM MPSA
algorithm, a slight degradation of performance was noticed when deterministic syn-
chronization was replaced by stochastic synchronization (Table 2).

5 Conclusions

In this paper, we have designed and analyzed four different models for a massively
parallel simulated annealing (MPSA) algorithm for chromosome reconstruction via
clone ordering. The algorithms were implemented on a 2048 processor MasPar MP-2
at the University of Georgia. Of the four MPSA algorithms that were implemented,
the PILM MPSA model achieved the best performance in terms of rate of convergence
and the final linking distance. The PILM MPSA algorithm when implemented on the
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Figure 4: Logarithm of speedup as a function of linking distance for varying no. of
PE’s, real data set, A = 1,024,000

Table 1: PILM MPSA Algorithm: Comparison of pairwise clone exchange and clone
block reversal perturbation methods, No. of PE’s used = 2048

D: Final Linking Distance
Data Set Perturbation Strategy A
204,800 | 409,600 | 819,200
Real Pairwise Clone Exchange 583 556 529
Clone Block Reversal 560 531 504
Artificial | Pairwise Clone Exchange 1520 1466 1432
Clone Block Reversal 1419 1308 1292

Table 2: Comparison of synchronization methods for the PILM MPSA algorithm with
2048 PE’s, T: execution time in secs., D: Final Linking Distance

Data Set | Synchronization Method A T D
Real Deterministic 409,600 | 1418.0 | 583
2,048,000 | 5094.0 | 507

Stochastic 409,600 | 1583.0 | 632

2,048,000 | 5551.0 | 523

Artificial Deterministic 409,600 | 1223.0 | 1308
2,048,000 | 6015.0 | 1289

Stochastic 409,600 | 1395.0 | 1403

2,048,000 | 6506.0 | 1334




2048 processor MasPar MP-2 system exhibited a speedup of approximately 1000. Our
results have shown that distribution of clonal data across the PE’s in the MasPar MP-
2 leads to degradation in performance. However, as clonal data sets increase in size,
MPSA models that work with distributed data might be the only feasible alternative
and hence merit further investigation.

Owing to the limited local PE memory, the MPSA algorithms presented here
had to incorporate on-the-fly computation of inter-clonal distances. Distance matrix
lookup techniques could have improved the execution times of our algorithms by an
order of magnitude if sufficient local PE memory was available. Although computa-
tionally efficient, straightforward distance matrix lookup techniques are not scalable
in terms of memory since the memory requirements grow quadratically with respect
to the clonal data size. Data structures that are scalable in terms of memory and
simultaneously allow time-efficient retrieval need to be explored. Also, the clonal
data set is typically sparse; characterized by a large number of 0’s and very few 1’s
in the clonal signature. Sparse matrix representation techniques in the context of
representation of clonal data need to be explored to allow for more efficient storage
and consequently more scalable MPSA algorithms.
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