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Abstract

A model based on intersections of stochastic context free grammars is presented to
allow for the modeling of RNA pseudoknot structures� The model runs relatively
fast� having the same order running time as stochastic context free grammar parsers�
The model is shown to be able to perform database searches and 	nd RNA sequences
which resemble RNA pseudoknots which bind biotin� The problem domain of RNA
biotin binders has signi	cance in the support of the RNA world model of early life
on earth�

� Introduction

In light of the enormous generation of sequence data by projects such as the
human genome project� the task of searching sequence databases has become
increasingly important� The 	elds of computer science and biology have col

laborated to design highly sensitive 	lters which can be used to sieve through
this massive collection of data and return only those precious sequences for
which the 	lters are designed�

The pseudoknot is an important structure of RNA that occurs in virtually
all classes of RNA and has shown to be important in many biological func

tions ���
� Unfortunately� programs used to search large sequence databases
for these pseudoknot structures in their general form seem to require run

ning times that are prohibitive computationally� Examples are David Searls
modeling of DNA repeats in any form ���
 and Mamitsuka and Abe modeling
beta sheets using Stochastic Ranked Node Rewriting Grammars ���
�

This paper presents a model based on intersections of stochastic con

text free grammars which allows highly sensitive and relatively fast database
searching for pseudoknotted RNA structures� It is shown that this model can

�



AAA
G

CGGGUUU
A

A
CCC

AAAGCGGGUUUAACCC

(  (  (      [  [  [  ) ) )        ] ] ]

Figure �� A pseudoknot�

discriminate RNA sequences containing a pseudoknotted structure for bind

ing biotin from random RNA sequences which do not contain this structure
and therefore can perform database searching�

The RNA pseudoknot is the representative problem domain for which
our models provide a solution� A RNA pseudoknot is formed when bases
outside a hairpin structure pair with bases within the hairpin loop to create
a second stem and loop structure ��
� See 	gure �� Pseudoknots have been
found in small subunit ribosomal RNA and seem to be very important in its
functioning� Pseudoknots have been observed in many structures including
telemerases� �SL RNA� U� snRNA� group I introns� and viral RNA� Pseudo

knots seem to have importance in messenger RNA�s with frame shifts in gene
expression and suppressors ���
� Pseudoknotted RNA also frequently occurs
in in vitro RNA selection experiments� Recent examples include a RNA
pseudoknot inhibitor to HIV
� reverse transcriptase ���
 and a pseudoknot
binder of biotin ���
�

Stochastic Context Free Grammars �SCFG�s� form the basis of our mod

eling� Stochastic Context Free Grammars are an extension of Hidden Markov
Models �HMM�s� ���� ��
 which have enjoyed much success in the modeling
biological sequence structure ���� ��� �� �� �� ��� ��� ��� �
� Stochastic Con

text Free Grammars have been used to model mainly RNA structure� Recent
examples include modeling tRNA ��� ��� �� ��
 and spliceosomal snRNA ���
�
Both SCFG�s and HMM�s models are grounded in a rigorous probabilistic
framework which captures in a cohesive framework aspects of sequence sim

ilarity such as sequence mutation� deletion� and insertion�
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� Methods

��� Stochastic Context Free Grammars

Stochastic Context Free Grammars are a probabilistic extension of Context
Free Grammars from formal language theory� Formal language theory deals
with sets of strings called languages and di�erent mechanisms for generating
and recognizing them ���
� A context free grammar� G� is de	ned as a �

tuple� G � �V��� P� S� ���
� where V is a set of nonterminals� � is the
terminal alphabet� S is the start symbol� and P is a set of productions of the
form A� � where A � V and � � �V � ����

A context free grammar generates strings through a rewrite process in
which productions are used to rewrite nonterminal symbols with strings of
nonterminal and terminal symbols starting from the start symbol� The se

quence of rewrite productions used to derive a terminal string from the start
symbol is called the string�s derivation� A context free grammar can rec

ognize a string using a parsing algorithm� The parsing algorithm given a
context free grammar� G� and a string will return true if the string can be
derived with G and false otherwise�

A SCFG extends the de	nition of context free grammars by associating a
probability to every production in the grammar� Consequently every string
that the grammar can generate is assigned a probability which is equal to the
product of the probabilities of the productions used in the string�s derivation�

Finding the probability of a observation sequence� O� given a SCFG� G
can be done with an extension of the CYK parsing algorithm ���
� The CYK
algorithm uses a table� T �s� i� j
� which stores the probability of nonterminal
s deriving the subsequence� Oi � � �Oj � A dynamic programming algorithm
can be used to 	nd the probability of the start symbol deriving the entire
string in O�n�� time where n is the length of the observation sequence�

A correspondence can be made between a derivation in a SCFG and RNA
secondary structure ���
� See 	gure �� As the 	gure shows� there are nonter

minals that generate basepairs� loop positions� and branch productions�

David Searls was the 	rst to fully develop the connection between formal
language theory and biosequence analysis ���� ��� ��
� Searls uses grammars
that capture the linguistics of DNA such as start and stop codons� introns�
and splice sites� Grammars give the �exibility to economically express the
complex machinery of DNA�
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a� Productions

P � f S� � S�� S� � G S��

S� � C S� G� S� � G�

S� � A S� U� S� � A S�� U�

S� � S� S�� S�� � G S�� C�

S� � U S� A� S�� � A S�� U�

S� � C S	 G� S�� � U S���

S	 � A S�� S�� � C g

b� Derivation

S� � S� � CS�G � CAS�UG � CAS�S�UG

� CAUS�AS�UG � CAUCS	GAS�UG

� CAUCAS�GAS�UG � CAUCAGS�GAS�UG

� CAUCAGGGAS�UG � CAUCAGGGAAS��UUG

� CAUCAGGGAAGS��CUUG

� CAUCAGGGAAGAS��UCUUG

� CAUCAGGGAAGAUS��UCUUG

� CAUCAGGGAAGAUCUCUUG�

c� Parse tree

C A U C A GAAGGG UA C U C U U G

1S

S

S

4S 9S

5S

6

7S

8S

S

10S

11
S

12S

13S

S 0

2

3

d� Secondary Structure
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Figure �� A simple CFG which may be used to derive a set of RNA molecules
including the speci	c example illustrated here� CAUCAGGGAAGAUCUCUUG� a� A
set of productions P which generates RNA sequences with a certain restricted
structure� S� �start symbol�� S�� � � � � S�� are nonterminals� A� U� G and
C are terminals representing the four nucleotides� b� Application of the
productions P could generate the given sequence by the derivation indicated�
For example� if the production S� � CS�G is selected� the string CS�G

replaces S� and the derivation step is written S� � CS�G� c� The derivation
in b may be arranged in a tree structure called a parse or derivation tree� d�
The physical secondary structure of the RNA sequence is a re�ection of the
parse tree �or syntactic structure��
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��� Pseudoknot Modeling Problem and Solution

There are problems with modeling pseudoknots� The basic structure of a
pseudoknot can be represented abstractly by the language� fwjw has the form �i�j
i�jg
�� Here �� 
 and �� � denote abstract base
paired residues� This language is not
context free by the pumping lemma ���
� There is NO context free grammar
that can generate this language� However� consider the following language�

fwjw has the form �i��
i��g � fvjv has the form ���j
��jg

The intersection of these two languages is exactly the pseudoknot language�
Note that this argument uses context free languages without a stochas


tic component� When modeling RNA� we do not have the alphabet� �� 
� �� �
but rather the symbols� A�U�G�C which may either basepair or not� To
see how this argument relates to stochastic context free grammars with the
alphabet� A�U�G�C consider the language� fwjw has the form AiG�U iC�g�
fvjv has the form A�GjU�Cjg� This language is the same except the alpha

bet has been changed� This can be interpreted as the language describing
pseudoknots in which one helix is composed entirely of A�U basepairs and
the other helix is composed entirely of G�C basepairs� The stochastic con

text free grammars which make up this intersection would have probability
one for A � U basepairs in one grammar and probability one for G � C

basepairs in the other� Obviously� in nature� there will rarely be instances
in which a basepair will be G�C with probability one� To make the model
more realistic� relax the distribution on basepairs to allow for any basepair
�each having its own respective probability�� Now a sequence can be classi

	ed as a pseudoknot if it can be identi	ed as having one helix which has high
probability under one statistical model and simultaneously having the other
helix which has high probability under the other statistical model�

This intersection argument is important for e�ciency reasons� Consider
designing a non
context free pseudoknot grammar that could generate the
pseudoknot language� Normally� in a context free grammar� a nonterminal
derives a subword� i � � � j� However� in pseudoknots� the derivations overlap
because the helices are not properly nested and a nonterminal must derive
the �subword�� �B � � � b��e � � � E� where B � � � b and e � � � E are not contiguous
in the string� In order to determine the running time of a CYK
like parser for

�The terminology �i represents the symbol� � repeated i times� �� �����
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such a language consider the running time of context free grammar parser�
The context free grammar parser must 	ll in a table� T �s� i� j
� which is
the probability of the nonterminal s deriving the subword i � � � j� Assume
that there are T nonterminals and the length of the string to be parsed is
N � There are order �TN�� entries to be 	lled� The pseudoknot grammar
parser� on the other hand� must 	ll in a table� T �s�B� b� e� E
� in which there
are order �TN�� entries� Assuming that T � N then the running time
is at least O�N��� This is prohibitive computationally� However� because
of the intersection argument used above� the pseudoknot language can be
approximated by using four O�n�� context free parsing operations� The sense
of this approximation is described below�

��� Approximating a Pseudoknot

Consider a pseudoknot with two helixes� S� and S�� and three loops� L�� L�� L��
placed between the helixes� See 	gure �� Note that this paper deals with
problems in which L�� L�� and L� are simple loops� However� in general�
L�� L�� and L� can be arbitrarily complex stochastic context free grammars
containing multiple stem loop complexes� A full pseudoknot grammar can
be decomposed into two di�erent context free grammars which will be called
the �� grammar and the �� grammar� The �� grammar breaks the helix clos

est to the �� end� keeping the �� helix intact� The �� grammar breaks the
helix closest to the �� end� keeping the �� helix intact� See 	gure �� Break

ing a helix involves converting a basepairing production like s � AU into
two productions like g � A and h � U in which the two halves of the
basepair are derived independently� If the probabilities on basepairs for the
nonterminal s is given in P �i� j
 where i� j � fA�U�G�Cg� then the probabil

ities for g and h should be marginal distributions� Probabilities for g will
be given by P �i
 �

P
j P �i� j
 while the probabilities for h will be given by

P �j
 �
P

i P �i� j
�
In this way� the pseudoknot grammar can be decomposed into two SCFG�s

and allow O�n�� parsing algorithms to be used to align the model instead of
the O�n�� operation which would be required if the full pseudoknot grammar
were used�
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Figure �� A pseudoknot� Rounded boxes represent loops and rectangles
represent helixes�
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Figure �� A pseudoknot broken into two grammars�
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��� Finding Probabilities and Predicted Structures of

Sequences

In order to perform a database search� a probability for each of the sequences
must be computed given the model� The true probability of the sequence
under the full pseudoknot grammar still appears to be di�cult to compute
exactly in O�n�� time� Therefore we compute a Viterbi
like approximation
to this true probability� This approximate probability is computed in a seven
stage process�

�� Compute the probability of the sequence under the �� grammar storing
that probability and the location of the �� helix�

�� Compute the probability of the sequence under the �� grammar storing
that probability and the location of the �� helix�

�� Compute the conditional probability of the sequence under the �� gram

mar given that the �� broken helix approximation is forced to be in the
position speci	ed by the �� grammar parse� Store the location of the
�� helix under this constrained parse�

�� Compute the 	nal �� conditional probability by using the the locations
of the �� and �� helixes to compute the probability under the full pseu

doknot grammar�

�� Compute the conditional probability of the sequence under the �� gram

mar given that the �� broken helix approximation is forced to be in the
position speci	ed by the �� grammar parse� Store the location of the
�� helix under this constrained parse�

�� Compute the 	nal �� conditional probability by using the the locations
of the �� and �� helixes to compute the probability under the full pseu

doknot grammar�

�� Return the largest of the 	nal �� and �� conditional probabilities as the
true probability of the sequence under the pseudoknot grammar�

Note that this procedure uses the �e�cient� SCFG parses to place the
constituent grammar features and then uses these placements to score the
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sequence under the full pseudoknot grammar� The predicted structure of the
sequence can be easily constructed once parsing has 	nished� Simply take
the parse of the most likely grammar and record where the helixes and loops
are placed� This gives the complete predicted structure of the pseudoknot�

��� Database Searching Using the Pseudoknot Model

In order to perform a database search for pseudoknots we must� for each
sequence in the database� classify the sequence as being generated by the
pseudoknot model or as being generated by a competing NULL model ��� ��
�

This classi	cation can be done using Bayes decision theory by considering
the following function�

g�sequence� � log P 
sequencejpseudoknot�
P 
sequencejNULL�

� log P 
pseudoknot�
P 
NULL�

where P �sequencejpseudoknot� is the probability of the sequence under the
pseudoknot model as approximated in the procedure described in the pre

vious section� P �sequencejNULL� is the probability of the sequence un

der the null model which is simply a uniform multinomial distribution over
residues� P �pseudoknot� is the prior probability of the pseudoknot model�
and P �NULL� is the prior probability of the null model�

If the function g is bigger than zero then the pseudoknot model is the
�best� hypothesis otherwise the NULL model is �better�� For 	xed priors�
this reduces to computing the 	rst term� log P 
sequencejpseudoknot�

P 
sequencejNULL�
which is equal

to �� logP �sequencejNULL� � logP �sequencejpseudoknot���
This is interpreted as the savings in bits of the pseudoknot model over

the NULL model in encoding the sequence� This savings in bits in encoding
a sequence will be called the score of the sequence� High scores imply the
sequence was more likely generated by the pseudoknot model while low scores
imply the sequence was more likely generated by the NULL model�

If we knew� a priori� the probability of the pseudoknot model and of the
NULL model� we could use g�sequence� to perform a database search by
calculating the 	rst term by computing the probabilities using the models�
	nding the second term which is a cuto� value using prior information� and
then adding them to see how their sum compares to zero� Unfortunately
our prior knowledge does not allow us to 	nd the second term accurately�
Instead� we use an empirical method which estimates the second term� This
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estimation is done by computing the scores of many random sequences� We
estimate the cuto� value used in the function g as the savings in bits such
that all the random sequences have scores less than that number�

Therefore to perform a database search on a long string �or even an entire
genome�� the string is broken into overlapping windows� For our software� a
window size of ��� runs the fastest� As described above� a score is computed
for each of these windows and a cuto� value is applied so that only those
windows which have a high enough score are accepted� After this cuto� is
made� the predicted structure for all accepted sequences is generated and
analyzed�

��� Parameter Estimation of the Pseudoknot Model

Estimating parameters of a pseudoknot grammar using intersections of SCFG�s
involves combining the estimates from the two constituent SCFG�s into es

timates for the pseudoknot grammar and then generating two SCFG�s from
these combined counts� These estimates are based on frequencies of occur

rence of various events� such as the number of times a certain production was
used�

Computing these estimates for SCFG�s can be performed with an algo

rithm called the inside�outside algorithm ���
� Both the inside and outside
variables can be computed in O�n�� time� These variables can be used to
estimate the probability of a production being used� A more computation

ally e�cient SCFG parameter estimation technique has been developed ���
�
This algorithm is called the Tree
Grammar EM training algorithm� This al

gorithm uses labeled trees as input rather than observation sequences� These
labeled trees represent �folded� sequences which are a set of trees in which
the frontier� or leaves� of the tree are known but the internal nodes are not�
The algorithm is able to estimate parameters of a grammar given the trees
in O�n�� time�

Once these estimates are computed for the constituent SCFG�s� the ques

tion is how to combine the counts� One heuristic that is used is as follows� For
loop regions� simply combine the counts for the respective loop regions from
the two SCFG�s� The loop regions should coincide between the two SCFG�s
so they should share parameters and therefore the estimates are added� For
broken helixes� counts from the broken helix grammar and marginal counts
from the full helix are combined� The broken helix is represented as a broken
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helix in one grammar and as one half of a full helix in the other grammar�
Therefore the full counts from the broken helix and the marginal counts from
the full helix are combined� For full helixes� the counts for the full helix are
used while the counts for broken helix are not� For full helixes� we found
that the broken helix approximation did not produce as good estimates as
the full helix representation and therefore estimates from the broken helix
approximation are not used� Once estimate counts have been combined� two
SCFG�s are produced� each of which approximates one of the helixes in the
pseudoknot with independently derived helix approximations� This heuristic
has been implemented as an extension to the Tree
Grammar EM training
algorithm�

� Results

��� Biotin Binder Pseudoknot

Our methods were 	rst tested on modeling RNA sequences which contained
pseudoknots which bind biotin ���
� These sequences are important be

cause of their potential support of the �RNA World� model ��
� The RNA
World model proposes that much of modern metabolism evolved prior to the
evolution of encoded protein synthesis� and that early ribozyme
catalyzed
metabolic transformations form the basis of our present protein
catalyzed
metabolism� This proposal requires that ribozymes should be able to catalyze
a broad range of chemical transformations� The search for �new� ribozymes
leads us to the biotin binder RNA sequences� These sequences were gener

ated from in vitro selection experiments� A pool of approximately � � ����

di�erent random sequence RNA�s was generated by in vitro transcription of
a DNA template containing a central ��
nucleotide random sequence region�
�anked at both ends by ��
nucleotide constant regions� On average� any
given �� nucleotide sequence has a �� � probability of being represented
in a pool of this complexity� This pool was applied to an agarose column
derivatized with �
� mM biotin and then washed with �� column volumes of
binding bu�er� Speci	cally
bound RNA�s were then eluted by washing the
column with binding bu�er containing � mM biotin� Reverse transcription
of the speci	cally eluted RNA� followed by PCR ampli	cation and in vitro

transcription yielded and enriched pool of RNA for subsequent re
selection�
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GGCACCGACCATAGGCTCGGGTTGCCAGAGGTTCCACACTTTCATCGAAAAGCCTATGCTA

Figure �� A pseudoknot for binding biotin�

After several rounds of selection� the RNA was sequenced� The biotin
binder structure is short and contains one pseudoknot� See 	gure � for a
representative sequence�

A model for the biotin binder was constructed by analyzing the sequences
derived from the in vitro selection experiments and several mutational exper

iments� This data was used to construct the overall structure of the model�
The biotin binder sequences were then used as a training set and parameters
of the model were estimated using an extension of the Tree
Grammar EM
training algorithm ���
� This model was then hand tuned using biological
knowledge to capture the structure of the biotin binder sequence without
over
	tting the biases which were present in the training sequences�

In order to judge signi	cance of sequence scores� the model was used to
compute the scores of ���� random sequences which had lengths uniformly
distributed over �� � � � �� and had a uniform distribution over bases� The
average score of these random sequences was 
������� with a variance of
������� The highest score of a random sequence was ����������

The model�s discriminative power was 	rst tested by computing the scores
of the biotin binding sequences which were generated by the in vitro selection
experiments� The highest score of a biotin binder was ���������� The lowest
score was ���������� See 	gure � for a histogram of scores for both the
random and biotin binding sequences� This 	gure shows that choosing a
cuto� between ����� and ����� �almost � bits of separation between random
and biotin binding sequences� will discriminate between biotin binders and
random sequences� This cuto� would correspond to the a priori belief that
there is approximately one biotin binder for every ��� sequences in a database
search�

Our database search involved searching through all GenBank database
sequences which had the keyword �biotin�� These sequences were broken
into overlapping windows of length �� yielding ���� windows� Scores were
computed for each of the windows and a cuto� of ����� was chosen� Only
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Figure �� A histogram showing number of sequences having a certain se

quence score� Dark areas are biotin binders� Light areas are random se

quences�

one window had a score above this cuto�� The score of this window is
���������� This window corresponded to the sequence for the gene for bi

otin carboxyl carrier protein in Mycobacterium leprae �EMBL� MLBCCPG�
Accession� X�������

The pseudoknotted structure started at position ��� in this sequence �the
position of the �� base in the 	rst basepair� and has the following predicted
structure�

���� �������� ����

cacaatcgatccgcgacctcggcgacaaggtcaccgc

This sequence�s predicted structure is similar to other biotin binding
RNA� To test whether this sequence could bind biotin� an experiment similar
to the in vitro selection process described above was performed� A pool made
up of this sequence was applied to a column derivatized with biotin and then
washed with binding bu�er� Then the column was washed with biding bu�er
containing biotin to elute the speci	cally
bound RNA� Unfortunately there
was not any signi	cant binding of the RNA and attempts to optimize the
experiment by changing temperature and Mg concentration did not yield
any more promising results�
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��� Importance of Intersected SCFG�s

The pseudoknot structure cannot be modeled by one SCFG alone� The
processes of constraining the parses in the intersection yields discriminative
power� In order to show this� the �� and �� grammars were not intersected but
were used alone to perform discrimination� Again� as with the intersected
model� a cuto� value must be chosen� This was done by scoring random
sequences described in the previous section and recording the highest scor

ing sequences� For the �� grammar the highest scoring random sequence
was ���������� For the �� grammar the highest scoring random sequence
was ���������� These two numbers serve as the cuto� values for the two
respective grammars�

The biotin binding sequences derived from in vitro selection were then an

alyzed� Whereas the intersected model was able to completely discriminate
these sequences from random by choosing a cuto� anywhere between �����
and ����� �as much as a � bit di�erence�� the �� and �� models alone could
not completely discriminate these sequences� The �� model had ten sequences
below the cuto�� The highest scoring of these was ��������� ���� bit below
cuto��� The �� model did much better having only one sequence with a score
below the cuto�� That score was ��������� ���� bit below cuto��� This shows
that the �� model contains much of the information as captured by the inter

sected model� but not enough to discriminate true biotin binding sequences�
The intersection process must be used to get maximum discrimination�

� Conclusion

A new method for modeling RNA pseudoknots using intersections of stochas

tic context free grammars has been presented� This method is novel in it�s
use of intersected SCFG�s for approximating the location of the pseudoknot�
The model has successfully discriminated biotin binding RNA from random
RNA sequences and has found in a database search a sequence which closely
resembles biotin binders derived from in vitro selection experiments� The
pseudoknot model gives discriminative power which is greater than simple
stochastic context free grammars when modeling pseudoknots�

��



References

��
 P� Baldi� S� Brunak� Y� Chauvin� J� Engelbrecht� and A� Krogh� Hidden
Markov models of human genes� In J�Cowan� G� Tesauro� and J� Al

spector� editors� Advances in Neural Information Processing Systems�
volume �� pages �������� Morgan Kaufmann� �����

��
 P� Baldi and Y� Chauvin� Smooth on
line learning algorithms for hidden
Markov models� Neural Computation� ������������� �����

��
 P� Baldi� Y� Chauvin� T� Hunkapillar� and M� McClure� Hidden Markov
models of biological primary sequence information� PNAS� ��������
����� �����

��
 S� Benner� A� Ellington� and A� Tauer� Modern metabolism as a
palimpsest of the rna world� Proc� of the Nat� Acad� of Sci�� ����������
�����

��
 J�
H� Chen� S�
Y� Le� and J� V� Maizel� A procedure for rna pseudoknot
prediction� CABIOS� ���������� �����

��
 R� O� Duda and P� E� Hart� Pattern Classi�cation and Scene Analysis�
Wiley� New York� �����

��
 S� R� Eddy and R� Durbin� RNA sequence analysis using covariance
models� NAR� ������������� �����

��
 Y� Fujiwara� M� Asogawa� and A� Konagaya� Stochastic motif extraction
using hidden markov model� In ISMB���� pages �������� �����

��
 L� Grate� M� Herbster� R� Hughey� I� Mian� H� Noller� and D� Haus

sler� RNA modeling using Gibbs sampling and stochastic context free
grammars� In ISMB���� Menlo Park� CA� Aug� ����� AAAI�MIT Press�

���
 L� Green� S� Waugh� J� Binkley� Z� Hostomska� Z� Hostomsky� and
C� Tuerk� Comprehensive chemical modi	cation interference and nu

cleotide substitution analysis of an rna pseudoknot inhibitor to hiv
�
reverse transcriptase� JMB� ���������� �����

��



���
 M� A� Harrison� Introduction to Formal Language Theory� Addison
Wesley� �����

���
 J� Hopcroft and J� Ullman� Introduction to Automata Theory� Languages

and Computation� Addison
Wesley� �����

���
 K� Karplus� Using Markov models and hidden Markov models to 	nd
repetitive extragenic palindromic sequences in Escherichia coli� Techni

cal Report UCSC
CRL
��
��� UCSC� July �����

���
 A� Krogh� M� Brown� I� S� Mian� K� Sj olander� and D� Haussler� Hid

den Markov models in computational biology� Applications to protein
modeling� JMB� �������������� Feb� �����

���
 A� Krogh� I� S� Mian� and D� Haussler� A Hidden Markov Model that
	nds genes in E� coli DNA� NAR� ������������� �����

���
 K� Lari and S� J� Young� The estimation of stochastic context
free gram

mars using the inside
outside algorithm� Comp� Speech and Lang�� �����
��� �����

���
 F� Lefebvre� An optimized parsing algorithm well suited to rna folding�
In ISMB������ �����

���
 H� Mamitsuka and N� Abe� Predicting location and structure of beta

sheet regions using stochastic tree grammars� In ISMB���� pages ����
���� �����

���
 L� R� Rabiner� A tutorial on hidden Markov models and selected ap

plications in speech recognition� Proc� of the IEEE� �������������� Feb�
�����

���
 L� R� Rabiner and B� H� Juang� An introduction to hidden Markov
models� IEEE ASSP Magazine� ���������� Jan� �����

���
 R� Raman and C� Overton� Application of hidden Markov modeling to
the characterization of transcription factor binding sites� In Proc� �	th

Hawaii Int� Conf� on System Sciences� pages �������� IEEE Computer
Society Press� �����

��



���
 J� Rissanen� Stochastic Complexity in Statistical Inquiry� World Scien

ti	c� �����

���
 Y� Sakakibara� M� Brown� R� Hughey� I� S� Mian� K� Sj olander� R� C� Un

derwood� and D� Haussler� Stochastic context
free grammars for tRNA
modeling� NAR� ������������� �����

���
 Y� Sakakibara� M� Brown� R� Hughey� I� S� Mian� K� Sj olander� R� C�
Underwood� and D� Haussler� Recent methods for RNA modeling using
stochastic context
free grammars� In Proc� Asilomar Conf� on Combi�

natorial Pattern Matching� New York� NY� ����� Springer
Verlag�

���
 D� B� Searls� The linguistics of DNA� American Scientist� �����������
Nov��Dec� �����

���
 D� B� Searls� The computational linguistics of biological sequences� In
L� Hunter� editor� Arti�cial Intelligence and Molecular Biology� chap

ter �� pages ������� AAAI Press� �����

���
 D� B� Searls and S� Dong� A syntactic pattern recognition system for
DNA sequences� In H� A� Lim� J� Fickett� C� R� Cantor� and R� J� Rob

bins� editors� Proc� of the �nd Int� Conf� on Bioinformatics� Supercom�

puting� and Complex Genome Analysis� pages ������� World Scienti	c�
�����

���
 H� Tanaka� M� Ishikawa� K� Asai� and A� Konagaya� Hidden Markov
models and iterative aligners� In ISMB��
� pages �������� Menlo Park�
����� AAAI Press�

���
 E� ten Dam� K� Pleij� and D� Draper� Structural and functional aspects
of rna pseudoknots� Biochemistry� ��������������� �����

���
 R� C� Underwood� Stochastic context
free grammars for modeling three
spliceosomal small nuclear ribonucleic acids� Master�s thesis� University
of California� Santa Cruz� �����

���
 C� Wilson and J� Szostak� In vitro evolution of a self
alkylating ri

bozyme� Nature� ������������ �����

��


