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Abstract

1.

2.

Given the correct backbone coordinates of a globular protein, side-chain
packing methods can be generally expected to predict the side-chain coordinates of
the buried core residues accurately. In the context of a study in modeling a family
of bacteriophage DNA-binding proteins, we observed that when the coordinates of
the actual perfect backbone are not available, the side-chain packing methods are
still of predictive value using homologous but imperfect backbones. This is the
situation in practical homology modeling where a target protein sequence is
modeled from template structures of known protein homologs. In order to assess
the quality and degree of accuracy of such predictions and their dependence on the
extent of homology, we have now extended these studies to a well characterized
family of globin structures that span a much wider range of sequence-structure
similarity. The collective results show a clear relationship that is independent of
protein family between side-chain prediction accuracy and the level of similarity
between the template and target proteins. We judge this similarity in terms of
sequence identity and the backbone r.m.s. deviation of the template structure used
for modeling and the actual target structure in cases where the target structures are
available. In summary, as sequence identity drops from 100% to about 50%, or
when the backbope r.m.s. deyiation between template and target structures
increases from 0 A to about 1 A, the overall average r.m.s. error for the buried-

core residues rises from 1.2 Ato 1.5 Awhile the X1 prediction accuracy drops

from 85% to 70-75% and the X2 prediction accuracy drops from 80% to 60-65%.
When the sequence identity drops below 50% or the backbone r.m.s. deviation
rises above 1 A, all 3 measures of prediction accuracy decrease rapidly. When the
sequence identity edges to the so-called twilight zone of sequepce similarity at
around 22%, or when the backbone r.m.s. deviation exceeds 2 A, the prediction
accuracy approaches the values to be expected for random predictions, namely, 3.1

Afor average r.m.s. error, 22% and 29% for accuracy of X1 and X2 prediction.
These observations provide a practical evaluation of the side-chain packing
methods and are of value to the homology-modeler. The extent and degree to
which the backbone topology of a protein fold can constrain internal side-chain
orientation gives insight into the plasticity of the sequence-structure relationship
found in the architecture of proteins.
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1) Introduction

It is now well established that given a perfect protein backbone, the rotamer
orientation of buried side-chain atoms can be accurately predicted by 'packing
considerations' alone (1). By virtue of the constraining environment provided by
the backbone, the conformations of the buried side-chains are practically uniquely
defined. The question of how effectively such backbone constraints can allow
prediction of side-chain orientation in the event where only imperfect but similar
template backbones are available has been recently explored (2). By systematically
homology modeling proteins from two structurally well-studied families - the
bacteriophage repressor and cro proteins and the oxygen-binding globins - over a
wide range of pair-wise sequence identities (13% to 100%) and pair-wise
backbone r.m.s.(root-mean- square) deviation (0 Ato 1.99 A), we illustrate the
influence of this constraining effect of the backbone on prediction accuracy as a
function of increasing r.m.s. deviation between the template and target backbones
(target/template Lm.S. deviation). Since the backbone Lm.S. deviation is known to
increase with decreasing sequence identity (3), we also consider the relationship
between side-chain prediction accuracy and decreasing sequence identity between
target and template. From such considerations, we find that when the sequence
identity is above -22% or when the target/template r.m.s. deviation is below -2 A,
the assumption of a fixed, even if imperfect, backbone template against which to
enumerate side-chain packing possibilities is useful. Beyond these limits, it is clear
that this assumption, and by extension any method that relies on the same
assumption, is not of sufficient predictive value to result in a homology model that
could be of use to the experimental biologist. In particular, when the target/template
r.m.s. deviation is in the range of 1 to 2 A, typically corresponding to some 20% to
50% sequence identity (3-5), packing calculations can result in useful homology
models with correct predictions of the buried core residues. These evaluations and
other related guidelines for homology modeling success are derived by the
systematic modeling and analysis described in the remainder of this manuscript.

Starting with our original work on side-chain packing optimization, many
other methods have been used to demonstrate repeatedly that the side-chain
coordinates of the residues in the buried core, corresponding roughly to between a
third and a half of all the residues in a globular protein, can be predicted quite
accurately by computational means if the accurate coordinates of the backbone
atoms of a protein is given (6-15). In test case studies, the prediction accuracy at
buried positions is typically about 1.2 Ar.m.s. deviation for the side-chain atoms
of all predicted residues (15). Measured in terms of the absolute difference in the
torsional side-chain X angles, where similarity is judged on whether two angles are

less than 40 degrees different, the success rate is around 82% for Xl and 78% for

X2. More recently, in the context of an initial study involving the modeling of the
DNA-binding repressor and cro proteins of bacteriophages 434 and P22, we have
demonstrated that even when the available template backbone is less than perfect,
significant levels of prediction accuracy approaching that for the perfect test-case
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studies quoted above can be attained (2). The cross-modeling studies between the
known X- ray structures of the 434 cro and 434 repressor structures and the NMR
structure of P22 repressor suggested some intriguing reference points for prediction
accuracy measured as a function of both the sequence identity and the
target/template structural similarity. Nevertheless, by virtue of the familial
similarity particular to these DNA-binding proteins, these reference points do not
span a wide enough range of sequence or structure space to reflect adequately the
general behavior of prediction accuracy as a function of sequence-structure
similarity. We now rectify this by exploring a more standard family for which the
structures of proteins with a wider range of sequence similarity exist in the
database; namely, the globin family, myoglobins and hemoglobins, which is very
well characterized with more than a dozen different high-resolution crystal
structures of varying degree of sequence similarity available (16). Additionally,
several hundred easily-aligned globin protein sequences with no corresponding
crystal structures are also known (17). We have cross-modeled a selected series of
these structures that have sequence-structure similarity levels complement to those
from our previous cross-modeling of the bacteriophage repressor and cro proteins
(2). Combining this data with the previous data has allowed us to ascertain some
general rules-of-thumb regarding the suitability of employing side-chain packing
methods that assume a fixed template backbone to practical homology modeling
problems.

2) Materials and Methods

Modeling of the globin structures was carried out in a manner similar to our
previous work with bacteriophage repressors (2). Altogether, 8 structures from the
globin family were obtained from the Brookhaven database of protein structures
(18-26). The sperm whale myoglobin structure, IMBC (19), was always used as
the target for cross-modeling the other 7 template structures, as well as for self-
modeling itself from its own backbone. For each modeling exercise, the biological
source of the proteins, their size, their sequence identity with the target sequence,
and the Lm.S. deviation between the target/template backbones are tabulated in
Table 1. This table also contains similar information for the proteins modeled in
previous studies of the cro and repressor protein family of bacteriophage 434 and
P22 (2, 27-29). There is little or no ambiguity in the sequence alignment of highly
similar globin sequences and unique sequence alignments can be obtained using
standard sequence alignment programs. When, as in our case, the structures of
both proteins are known, these sequence alignments are typically almost identical to
that derived from a structural alignment of the pair of backbones. However, as the
sequence identity decreases, a sequence alignment derived from sequence
information alone is fairly ambiguous, particularly in loop regions. Our previous
work shows that the correct sequence alignment is absolutely critical to the success
of homology modeling based on side-chain packing considerations (2). Our chief
concern here is to assess how poor a template model can be for side-chain
prediction by packing optimization and is not on sequence alignment, per se. So
we have elected to use the sequence alignment derived from structural alignment of
a given template structure with the target IMBC structure, as the ideal starting point
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Table 1. Modeling Globin and DNA-binding Protein Families

Template pdb entry Template molecule Target Target! Target!
(number of residues) template template

main-chain sequence
r.m.s.d. identity
(A) (%)

Imbc (153 aa) Sperm whale Imbc 0 100
myoglobin

2mml (153 aa) Human myoglobin Imbc 0.51 86
mutant

lymb (153 aa) Horse myoglobin Imbc 0.9 84

llhs (153 aa) Loggerhead sea Imbc 0.94 65
turtle myoglobin

Imyt ( 146 aa) Yellowfin tuna Imbc 1.25 42
myoglobin

Imba (146aa) Sea hare myoglobin Imbc 1.92 23

3sdh ( 146 aa) Ark clam Imbc 1.88 20
hemoglobin I

lith (141 aa) Innkeeper warm Imbc 1.99 13
hemoglobin I

lr69 ( 63 aa ) 434 repressor lr69 0 100

2cro ( 65 aa ) 434 cro 2cro 0 100

lr69 ( 63aa ) 434 repressor 2cro 0.78 53

2cro (65 aa) 434 cro lr69 0.78 53

ladr (68 aa) P22 repressor ladr 0.00 100

ladr (68 aa) P22 repressor lr69 1.70 33

ladr (68 aa) P22 repressor 2cro 1.80 32
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for the modeling process. We performed the structural alignment using our
program Structal, which automatically aligns equivalent Ca atoms (5). The Structal
program ignores the prosthetic heme group. The backbone r.m.s. deviations
reported in Table 1 as the 'target/template r.m.s. deviation' are based on the
structural superpositions obtained in this manner. The values for the percentage
sequence identity are also based on these structurally derived sequence alignments.

Each of the seven cross-modeling exercises started with knowing only the
template backbone coordinates, the coordinates of the template heme group, and the
structurally-derived sequence alignment of the target globin sequence (Table 1).
Relative insertions and deletions in the sequence-structure alignment were treated as
follows. Target residues that were not aligned to the template structure were not
modeled and simply ignored. Residues in the template structure that had no target
sequence aligned with them were left in a sidechain-Iess state at all times. Outside
of a few residues inserted or deleted at loops only one significant insertion/deletion
was encountered in all 8 modeling exercises. Relative to other globins in the set,
the yellow fin tuna myoglobin lacks an entire short D helix (23).

Modeling was performed using the program Look (Molecular Application
Group, 1995), which contains an implementation of side-chain packing methods
(6,12). Based on the sequence alignment, at each residue position the target residue
was added to the backbone in a completely random side- chain conformation (i.e.

selected random torsion X angles). The side-chain packing method performs a
self-consistent ensemble optimization in a coarsely sampled side-chain torsion
space and only considers a simple van der Waals constraint. This constraint is
effectively provided by the fixed template backbone and by the side-chain-side-
chain stearic exclusion between side-chain atoms from the moving residues. No
other energy terms are considered explicitly. Unlike other methods, no database-
derived rotamer libraries are used, and so the method is truly ab initio. Solvent
effects are ignored. Since the packing criterion is strong for the fully or partially
buried core residues, the method can typically predict such buried confonnations to
1.2 Ar.m.s. error (6). Conversely, since there is nothing to pack against at the
surface, the surface exposed residues are poorly predicted, with typical Lm.s. error
approaching the 3.1 A value, the expected r.m.s. error averaging over all amino
acid types for completely random side-chain predictions (6).

When self-modeling, the side-chain coordinates of the known structure
were stripped off, and the amino acid sequence was modeled using the remaining
backbone coordinates and the prosthetic heme group jointly as a template. Both the
main-chain and the heme group were held rigid at all times. The initial side-chain
coordinates were chosen randomly by Look. In cross-modeling, the coordinates of
the side-chain heavy atoms were predicted using the main-chain atomic coordinates
from a different but homologous protein. Again, both this backbone and its
accompanying prosthetic heme group were jointly used as a rigid template. Since
the buried residues of the predicted models are more reliably predicted, the burial
analysis calculation implemented in Look was carried out to rank order all residues
in terms of their burial. Look calculates the percentage of burial by employing a
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fine grid of points over atoms of each side-chain, and then assesses at each grid-
point whether the point is within van der Waals reach of another protein atom, or
not. For the purposes of this study two different cutoff values for burial were
considered. The first set included the 50 most buried residues. Since the typical
globin has about 150 residues, this corresponds to a stringent classification where a
third of the protein (buried 1/3 residues in Fig. 1) is defined to be the buried core
(30). A more lenient cutoff that includes the 80 most buried residues,
corresponding to about half the protein (buried 1/2 residues in Fig. 1) being
classified as a less-buried core residue set, was also used.

Comparison of the predicted model with the known reference X-ray
structure was done after superposition of the two structures using Structal (5). The
prediction accuracy was quantified in three different ways. Side-chain r.m.s.
deviations were computed for each compared residue and then averaged to give a
non-linear measure of overall prediction accuracy. To put the non-linearity into
context, while a value of around 1 Ashould be considered as exceptionally good,
as stated earlier, if all the side-chain conformations of a typical protein are
completely randomly predicted with no attention Raid to stearic clashes, the side-
chain r.m.s. error can be expected to be about 3.1 'A averaging over all amino acid
types (6).

Quantitative differences in the side-chain torsional X angles (X1 and X2)
between the modeled structure and the reference structure were calculated at each
residue position. As only absolute differences were considered, the maximum
possible difference is 180 degrees. Since electrostatic effects are not considered by
Look, amino-acids like Arg, Tyr, Phe, Asp, Asn, Glu, and GIn can be just as
well-packed in two different, but symmetry-related, conformations. For such
residues, this was taken into account by selecting the lower of the two possible

values for both the side-chain Lm.S. deviation and the absolute difference in X2

angle. Two X angles were judged to be similar if the absolute difference was less

than 40 degrees. The X1 prediction accuracy was simply defined to be the

percentage of buried-core X1 angles that were similar between model and reference
for all residues other than Ala, Gly and Pro. A baseline for measuring prediction
success can be obtained by crudely estimating the percentage similarity that could be

expected for a completely random prediction of X1 angles. An absolute difference
of 40 degrees allows a 80 degree window for defining success, while the total

range for prediction is 360 degrees. Thus, random prediction of X1 angles can

result in a success rate of ( 80/360) x 100 =22%. The X2 angle similarity was also
judged in the same manner using a 40 degree cutoff over the 13residue-types that
have Xangles. The estimate for the success rate for random Xprediction is a little
higher than 22%, since 4 residues - Tyr, Phe, Asp, Asn - are from the packing
method point of view symmetric about their X2 angles and so have their range
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restricted from 360 to 180 degrees. Therefore, the adjusted computation, (4(
80/180) + 9( 80/360) ) x 100, gives 29%.

3) Results and Discussion

Prediction accuracy was assessed as a function of sequence identity over the
sequence alignment corresponding to the correct structural alignment. It was also
assessed as a function of the r.m.s. deviation between the backbones of the
template being used to model the target sequence and the known target structure
itself (i.e. the target/template r.m.s. deviation described earlier). The prediction
accuracy itself was measured in three different ways: a) the r.m.s. deviation of all
buried side-chain atoms for which coordinates had been predicted, b) the
percentage of predicted side-chains for which the model- derived XI angles were
within 40 degrees of the known structure, and c) an analogous percentage for the
X2 angle. These three measures of accuracy, when analyzed as a function of the
two measures of similarity, result in six plots. All calculations were conducted for
two different sets of buried-core residues, the most-buried third (Fig. lA-IF) and
the most-buried half (Fig. IG-IL) of all residues, resulting in 12 plots in Fig. 1.
The data points themselves come from two sources. Three data points come from
our recent work on the homology modeling of bacteriophage DNA-binding
proteins (2) and are summarized in Table I. One of these comes from the mean
results for the cross-modeling of the 434 repressor using the 434 cro template and
the 434 cro using the 434 repressor template. Another comes from the mean for the
modeling of P22 repressor based on the 434 repressor template and the modeling of
the P22 repressor based on the 434 cro template. The last data point comes from
the mean of all the self-modeling predictions for P22 repressor on itself, 434 cro on
itself and 434 repressor on itself. As there are approximately 60-residues in each
of these proteins, 20 residues were selected to define the most-buried third and 30-
residues to define the most-buried half of each protein. The 8 modeling exercises, I
self-modeling and 7 cross- modeling, conducted here on the globin family
constitutes the second source of data points.

All plots in Fig. I display a smooth, monotonic decrease in prediction
accuracy with decreasing similarity between the template and the target reference
structures. Overall, the data points from the modeling of both the DNA-binding
protein family and the globin family independently confirm the same general trend
in all plots. That is, eliminating the data points from either family would leave
essentially the same generally smooth, monotonic relationships. Nevertheless, in
each plot, against the backdrop of the overall trend, the three DNA-binding protein
data points display greater variation than the globin data points. Presumably, this
reflects familial variation, particularly those relating to the inherent statistical noise
associated with the modeling of the much smaller number of residues in the DNA-
binding proteins (20 or 30 buried residues) as compared to the globins (50 or 80
buried residues). All other things being equal, with the exception of the side- chain
r.m.s. measure of prediction accuracy (Fig. lA, IB, IG, IH), the 6 plots (Fig.
lA-IF) corresponding to the prediction of the smaller set of more-buried residues
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Fig. 1. Summary of sidechain r.m.s. errors and accuracy of torsional Xl and X2
angle predictions of the buried residues as function of sequence identity and
backbone r.m.s. deviation for target/template protein pairs in modeling
studies (Table 1).

(A-F) is for the more buried residue set (1/3) and (G-L) is for the less
buried residue set (1/2). The open boxes represent globin modeling data
points and the filled boxes represent the average values of the repressor
modeling data points. The horizontal dotted line in each panel indicates the

corresponding r.m.s. error or X angle accuracy that can be expected for
completely random prediction ( i.e., 3.1 A, for side-chain Lm.S. error,

22% for Xl accuracy, and 29% for X2 accuracy). In all plots, the two
arrows indicates the two regions of particular interests discussed in the text.
The first arrow, at either 22% sequence identity or at 2 Atarget/template
main-chain Lm.S. error, corresponds to the 'twilight zone' of protein
sequence homology. The second arrow, at about 50% sequence identity or
at 1 Atarget/template r.m.s. error, corresponds roughly to the intermediate
transitional zone where the side-chain packing methods give either reliable
or only moderately reliable predictions.
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(buried 1/3 residues) are generally very similar to their 6 counterparts for the less-
buried set (buried 1/2 residues, Fig. IG-IL). This is not surprising, since the

other measures of prediction accuracy, that of X1 and X2, are designed on the basis
of a single, somewhat arbitrarily selected cutoff of 40 degrees for judging
similarity, while the side-chain Lm.S. deviation measure is a more continuous one.
Thus, on the basis of a single cutoff value, both X 1 and X2 are predicted about as
well for the more-buried set as the less-buried one (Fig. lC-IF, lI-IL). This is
true over all ranges of both sequence identity and target-template r.m.s. deviation
similarity. In contrast, the side-chain r.m.s. error, particularly when the target-
template similarity is relatively high, clearly suggests that the more-buried residues
are better predicted (Fig. lA, IB, IG, IH). For the more-buried residue set
(buried 1/3 residues), side- chain r.m.s. error increases from about 1.2 Awhen the
available template is perfect, to about 1.5 A when the target-template sequence
identity decreases to 50% (Fig. lA). The same range of side-chain Lm.S. error,
1.2 Ato 1.5 A, is traversed when the target-template similarity measured in terms
of the target-template backbone r.m.s. deviation increases from 0 Ato about 1 A
(Fig. IB). For the less-buried residue set (buried 1/2 residues), side-chain Lm.S.
error is generally higher, and rises from about 1.4 Ato about 1.75 Afor the same
decrease in sequence identity from a 100% to 50% (Fig. IG). This relatively
poorer range in side-chain r.m.s. prediction accuracy for the less- buried residue
set is, as before, a result of the template models becoming progressively poorer
from 0 Ato 1 A(Fig. IH). However, when the similarity between template and
target decreases further, the side-chain r.m.s. error for both the more-buried and
the less-buried residue sets steadily approaches the same random expectation of 3.1
A, and accordingly, the difference in prediction quality between the two sets
vanishes. This value of 3.1 A is exceeded when the sequence identity reaches
about 22%. It is worth noting that the 20-25% sequence identity range is the so-
called 'twilight zone' of sequence alignment below which the level of sequence
identity is insufficient to unambiguously reflect an evolutionary relationship
between a pair of sequences (31, 32). While there are some well-known cases
where significant structural homology (backbone Lm.S. deviation < 1.5 A) is seen
for a sequence identity as low as 1%, in the main and particularly below 10%, these
do not reflect divergent evolution but rather convergent evolution (5, 33). Thus,
the twilight zone is an empirically observed region where the case for divergent
evolution is unclear and in the absence of other biologically relevant information,
the case for convergent evolution is plausible. So it is intriguing that the inability
for the template backbone to constrain the side-chains and so result in a random
prediction should occur precisely in this twilight zone of sequence homology. As
can be seen from the plot of sequence identity against backbone r.m.s. deviation for
our protein families (Fig. 2), this twilightzone value corresponds to a little less than
2 ALm.S. deviation in the backbone coordinates. Interestingly, an intermediate
sequence identity value of 50% corresponds to an intermediate backbone r.m.s. of
about 1 A. Both these specific sequence identity /backbone Lm.S. deviation
correspondences, as well as the overall curve for the repressor/globin families, are
very similar to the same plot using a much larger number of protein families (3-4).
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Fig. 2. Relationship between sequence identity and backbone r.m.s. deviation for
the target/template protein pairs in modeling studies (Table 1).

The open boxes represent globin modeling data points and the filled boxes
represent the average values of the repressor modeling data points. The two
vertical dotted lines indicates the two regions of particular interests
discussed in the text. The 'twilight zone' of protein sequence homology is
shown by the fIrst vertical dotted line at 22% sequence identity,
corresponding to about 2 Atarget/template main-chain r.m.s. error. The
second vertical line, at about 50% sequence identity, corresponding to about
1 Atarget/template r.m.s. error, reflects roughly to the transitional region
where the sidechain packing methods give either reliable or only moderately
reliable predictions.
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Turning to the X angle measures, as stated before, there is no significant
difference in results between the two sets of buried residues considered. Therefore,

all further discussion of X 1 angle prediction accuracy will implicitly refer to values

that have been averaged over the two burial sets. Prediction accuracy for the Xl
angles range from 85% when the template is perfect to about 50% when the
sequence identity is at the twilight zone of 22% or when the target-template r.m.s.
is about 2 A. (Fig. IC, 10, 11, 11). At the intermediate value of 50% sequence
identity, the prediction accuracy is about 70%; this similar to the 75% accuracy that
can be obtained with the intermediate target-template Lm.S. of about 1 A..

Similarly, the X2 angles can be predicted to some 80% accuracy with perfect
templates, but when the sequence identity approaches the twilight zone, it can only
be predicted to about 30%, which is virtually identical to the 29% that can be
expected for a random prediction (Fig. IE, IF, IK, IL). When the target-template
Lm.S. deviation is 2 A., the prediction accuracy of 35% is not quite at this random
level, suggesting that the backbone is only truly insufficient to constrain the side-
chains when it deviates a little more than 2 A.. At the intermediate sequence identity

of 50% the X2 prediction accuracy is 60%. At the intermediate level of target-
template similarityof 1 A., the prediction accuracy is a shade better at 65%. Overall,
and perhaps not surprisingly, the X1 angles are better predicted than the X2 angles
for similar levels of dissimilarity between the target and template. Interestingly,
while Xl is better predicted by 5% for perfect templates, it is better predicted by
some 10% at the intermediate levels of similarity between target and template ( i.e.
at 50% sequence identity or 1 A. target-template Lm.s.).o By the time the twilight
zone is reached or target-template deviation exceeds 2 A r.m.s., this discrepancy
widens to some 20%. This trend suggests that relative to X2 the Xl prediction
accuracy is more resilient to progressive mutation and increasing distortion of the
backbone. This would imply that the template backbone places stronger constraints

on the X 1 angle compared to the X2 angle. Obviously, this could have been
expected, since it is well known that the close proximity of the backbone restricts

the range of side-chain rotamer choice of X 1 more than X2. This observation

explains the relative difference in behavior of X 1 and X2 at the twilight zone in

which Xl, unlike X2 or the side-chain Lm.S. error, is significantly better predicted

than random. Having accounted for the X1 accuracy at the twilight zone in terms of

a local constraining effect of the backbone, it is highly noteworthy that X2, like the
side-chain r.m.s. error, converges to its random expectation at precisely the
twilight zone of sequence identity. This is particularly curious, since any

constraining effects of the backbone on both X2 and the side-chain Lm.S. deviation

would involve interactions that are more tertiary in nature than that between X 1 and
its proximal backbone.
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In summary, our modeling studies coJ;lductedover a set of proteins that vary
in function, size, and sequence. Other structural variations included the presence
and absence of large prosthetic groups and relative deletions and insertions of
secondary structure. Despite these variations, our results clearly establishes an
approximately smooth, monotonic decrease in side-chain prediction accuracy with
decreasing similarity between the template structure and the target that is to be
modeled. The quality, consistency and general predictability of this relationship
allow us to generalize some guidelines for the homology-modeler hoping to use
side-chain packing methods to attain reliable models. Given that one wants to
obtain a structural model of a target sequence using the sequence and structure of a
homologous template protein these rules are:

1) When sequence identity is at least 5Q% or when there is reason to believe
the backbones will not differ by more than 1 A r.m.s., the buried side- chains can
be predicted relatively accurately. The most buried third of residues can be predicted
to better than 1.5 Ar.m.s. and the most-buried half to better than 1.75 A. For both

levels of burial at least 70-75% of Xl angles and 60-65% of X2 angles can be
predicted correctly.

2) When sequence identity is below 50% or when there is reason to believe
the backbones will differ by greater than 1 Ar.m.s., the side-chain predictions are
still better than random and only reach randomness (i.e. 3.1 Aside-chain r.m.s.

error, 22% accuracy on Xl and 29% accuracy on X2) when sequence identity drops
to 22% (the twilight zone) or the backbones differ by more than 2 Ar.m.s. Thus,
even if somewhat limited, homology modeling in this range could prove useful to
the experimentalist.

3) In general, the relationship is not linear. When the target-template
similarity is relatively high (i.e. greater than 50 % sequence identity or less than 1 A
for the target/template r.ID.S. deviation) decreasing similarity does not hurt
modeling accuracy as much as when the target-template similarity is relatively low
(i.e. less than 50 % sequence identity or greater than 1 A target/template r.m.s.
deviation).

4) When sequence id~ntity is less than 22% or if the expected backbone
difference is greater than 2 A, there is little point in using side-chain packing
methods that enforce a fixed template backbone to produce homology models since
such backbone templates are insufficient to constrain the packing orientations of the
buried side-chains. Other homology modeling approaches could be used (34-36)
or new packing methods that allow the backbone template to move could be
developed.
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