
DNA Computing Based on Splicing�
Universality Results

Erzs�ebet CSUHAJ�VARJ�U�

Computer and Automation Institute� Hungarian Academy of Sciences
Kende u� ������ �����Budapest� Hungary

Rudolf FREUND�

Institute for Computer Languages� Technical University Wien
Resselgasse �� ���� Wien� Austria

Lila KARI�

Department of Mathematics and Computer Science�
University of Western Ontario� London� Ontario� N	A
B�� Canada

Gheorghe P�AUN�

Institute of Mathematics of the Romanian Academy
PO Box � � �	�� ����� Bucure�sti� Romania

Abstract� The paper extends some of the most recently obtained results on
the computational universality of specic variants of H systems �e� g� with
regular sets of rules� and proves that we can construct universal computers
based on various types of H systems with a nite set of splicing rules as well
as a nite set of axioms� i� e� we show the theoretical possibility to design
programmable universal DNA computers based on the splicing operation� For
H systems working in the multiset style �where the numbers of copies of all
available strings are counted� we elaborate how a Turing machine computing
a partial recursive function can be simulated by an equivalent H system com�
puting the same function� in that way� from a universal Turing machine we
obtain a universal H system�
Considering H systems as language generating devices we have to add vari�

ous simple control mechanisms �checking the presence�absence of certain sym�
bols in the spliced strings� to systems with a nite set of splicing rules as well
as with a nite set of axioms in order to obtain the full computational power�
i� e� to get a characterization of the family of recursively enumerable languages�
We also introduce test tube systems� where several H systems work in parallel

�Research supported by grant T ������ of the Hungarian Scienti�c Research Fund

�OTKA��
�All correspondence to this author�
�Research supported by grants OGP������� and OGP�����	
 of the National Science

and Engineering Research Council of Canada�
�Research supported by the Academy of Finland� project ������

�

in their tubes and from time to time the contents of each tube are redistributed
to all tubes according to certain separation conditions� By the construction of
universal test tube systems we show that also such systems could serve as the
theoretical basis for the development of biological �DNA� computers�

Keywords� DNA splicing� grammar systems� H systems� test tubes� Turing
machines� universal computing

� Introduction

One of the recently introduced paradigms which promises to have a tremendous
in�uence on the �theoretical and practical� progress of computer science isDNA
computing� One main step in making it so interesting was the announcement
of solving �a small instance of� the Hamiltonian path problem in a test tube
just by handling DNA sequences ���� yet actually the universality of Adleman�s
way for computing using DNA still seems to be not settled theoretically in a
satisfactory way�
Another trend in DNA computing is based on the recombinant behaviour

of DNA �double stranded� sequences under the in�uence of restriction enzymes
and lygases� This approach started with ���� where the operation of splicing
was introduced as a model for this phenomenon� One of the important results
in the area of H systems states that H systems with nite sets of axioms and
nite sets of splicing rules can generate only regular languages ����� However�
if we use a regular set of splicing rules of a very particular type� a maximal
increase of the generative power is obtained� such H systems characterize
the family of recursively enumerable languages ����� Working with �innite�
regular sets of splicing rules is natural from a mathematical point of view� but
unrealistic from a practical point of view� How to obtain H systems with both
the set of axioms and the set of splicing rules being �nite� but still being able
to reach the full power of Turing machines� In view of the results in �����
we have to pay the reduction of the sets of rules from being regular to being
nite� One way �which is well�known from formal language theory �
�� to do
this is to regulate the use of the splicing rules by suitable control mechanisms�
This idea has been explored in ���� where computationally universal classes of
nite H systems are obtained by associating permitting or forbidding context
conditions to the splicing rules� a splicing rule can be used only when a certain
favourizing symbol �a �catalyst�� a �promotor�� is present in the strings to be
spliced� respectively when no �inhibitor� from a specied nite set of symbols
is present�
Another powerful idea able to increase the power of H systems with nite

sets of axioms and nite sets of splicing rules is to count the number of copies

�

of each used string� In ��� it is proved that extended H systems working in the
multiset style are able to characterize the recursively enumerable languages�
Here we extend this theorem and its proof in a way closer to the computing
framework� i� e� we consider Turing machines as devices for computing partial
recursive functions� The work of such a Turing machine can be simulated in
a natural way by an H system� for which the string originally written on the
Turing machine tape is supposed to appear in only one copy� whereas all the
other strings are available in arbitrarily many copies� �Moreover� in this way
the obtained H system need not to be extended� due to the working styles
of the Turing machines we consider�� Hence� we here nd interesting details
important from practical points of view�
A new idea is to consider a �parallel communicating� architecture as in

grammar system ���� several test tubes work in parallel �splicing their con�
tents�� communicating by redistributing their contents in a way similar to the
operation of separating the contents of a tube ���� ���� the contents of a tube
are redistributed to all tubes according to certain specied �separation con�
ditions�� Again we obtain a characterization of the recursively enumerable
languages�
From the existence of universal Turing machines ���� and from the proofs

of all the results mentioned above for di�erent types of H systems and for
each of these types we obtain a way to construct a universal H system of the
corresponding type� This can be interpreted as a proof for the �theoretical�
possibility to construct universal programmable DNA computers based on the
splicing operation�

� De�nitions for H systems

We use the following notations� V � is the free monoid generated by the al�
phabet V � � is the empty string� V � � V � � f�g� FIN�REG�RE are the
families of nite� regular� and recursively enumerable languages� respectively�
For general formal language theory prerequisites we refer to ����� for regulated
rewriting to �
�� and for grammar systems to ����

De�nition �� A splicing scheme �or H scheme� is a pair � � �V�R�� where
V is an alphabet and R � V � f�gV � f�gV � f�gV �� �� � are special symbols
not in V � �V is the alphabet of � and R is the set of splicing rules�� For
x� y� z� w � V � and r � u��u��u��u� in R we dene �x� y� �r �z�w� if and
only if x � x�u�u�x�� y � y�u�u�y�� and z � x�u�u�y�� w � y�u�u�x� for
some x�� x�� y�� y� � V �� For a splicing scheme � � �V�R� and for any language
L � V �� we write

��L� � fz � V � j �x� y� �r �z�w� or �x� y� �r �w� z� for some x� y � L� r � Rg

�

and we dene ���L� �
S
i�� �

i�L�� where �� �L� � L and �i�� �L� � �i �L� �
� ��i �L�� for all i � �� �

De�nition �� An H system is a pair � � ���A� � where � � �V�R� is a
splicing scheme and A � V � is the set of axioms� An extended H system is a
quadruple � � �V� T�R�A� � where � � �V�R�A� is the underlying H system
and T � V is the terminal alphabet� The language generated by the extended
H system � is dened by L��� � ���A� � T ��
For two families of languages F�� F�� an extended H system � � �V� T�R�A�

with A � F� and R � F� is said to be of type �F�� F�� � and we denote the family
of languages generated by extended H systems of that type by EH�F�� F����

In the denitions above� after splicing two strings x� y and obtaining two
strings z and w� we may again use x or y �they are not �consumed� by splicing�
as a term of a splicing� possibly the second one being z or w� moreover� also
the new strings are supposed to appear in innitely many copies� Probably
more realistic is the assumption that at least a part of the strings is available
in a limited number of copies� This leads us to consider multisets� i� e� sets
with multiplicities associated to their elements�
In the style of �	�� a multiset over V � is a function M � V � �� N � f�g�

M�x� is the number of copies of x � V � in the multisetM � All the multisets
we consider are supposed to be dened by recursive mappings M � The set
fw � V � jM�w� � �g is called the support ofM and it is denoted by supp�M��
A usual set S � V � is interpreted as the multiset dened by S�x� � � for x � S�
and S�x� � � for x �� S�
For two multisetsM��M� we dene their union by �M��M���x� �M��x�

M��x�� and their di�erence by �M� � M���x� � M��x� � M��x�� x � V ��
provided M� �x� � M� �x� for all x � V �� Usually� a multiset with nite
support� M � is presented as a set of pairs �x�M�x��� for x � supp�M��

De�nition �� An extended mH system is a quadruple � � �V� T�R�A��
where V� T�R are as in an extended H system �Denition �� and A is a multiset
over V ��
For such an mH system and two multisetsM��M� over V � we dene

M� �	� M� i� there are x� y� z� w � V � such that
�i� M� �x� � �� M� �y� � �� and if x � y� then M� �x� � ��
�ii� x � x�u�u�x�� y � y�u�u�y��

z � x�u�u�y�� w � y�u�u�x��
for x�� x�� y�� y� � V �� u��u��u��u� � R�

�iii� M� � ���M� � f�x� ��g�� f�y� ��g� � f�z� ��g� � f�w� ��g

�At point �iii� we have operations with multisets��

�

The language generated by an extended mH system � is

L��� � fw � T � j w � supp�M� for some M such that A �	�
� Mg�

where �	�
� is the re�exive and transitive closure of �	��

For two families of languages F�� F�� an extended mH system � �
�V� T�R�A� is said to be of type �mF�� F�� if supp �A� � F� and R � F��
we denote the family of languages generated by such extended mH systems of
type �mF�� F�� by EH�mF�� F��� �

An �extended� H system as in Denition � can be interpreted as an mH
system working with multisets of the form M�x� � � for all x such that
M�x�
� ��

� Universal computing with mH systems

In this section we show how �even non�extended� H systems with multisets
together with suitable strategies for selecting the nal strings can simulate
arbitrary computations with Turing machines� We will assume that the H
system ! � �V�R�A� �really� starts to work only if one additional single
string is added �to A�� In the sense of multisets� we take exactly one copy
of this starting string� whereas all the other strings in A are assumed to be
available unboundedly �hence it is su"cient to specify the strings to appear as
axioms without their common multiplicity���

In this model we now can consider di�erent possibilities for selecting the
result of the computation�

�� We take every string w that is contained in a special regular language
�i� e� we use intersection with regular languages� e� g� T ���

�� We take every string w that cannot be processed any more �we call such
strings terminating��

�� We take every string w not in A that has reached a �steady state�� i� e�
there exist rules in R that can be applied to w� but they all still yield w
again�

We will use the following model of a deterministic Turing machine� which
is equivalent to all the other models appearing in literature as the model of a
mechanism dening computability�
A deterministic Turing machine M is an ��tuple �Q� q�� qf � V� T� Z�� B� �� �

where Q is the �nite� set of states� q� is the initial state� qf is the nal state� V
is the �nite� alphabet of tape symbols� T � V is the set of terminal symbols�
Z� � V is the left boundary symbol� V� �� V � fZ�g� B � V� is the blank

symbol� � � Q � V � Q � V � fL�Rg is the transition function with the
following restrictions �the fact �p� Y�D� � � �q�X� will be expressed by the
relation �q�X� p� Y�D� � ���

� �q�X� p� Y� L� � � implies X � V�� i� e� X
� Z��

� �q� Z�� p� Y�D� � �� D � fL�Rg � implies Y � Z� and D � R�

� �q�X� p� Z�� R� � � implies X � Z��

� �q�X� p� Y�D� � �� D � fL�Rg � implies q
� qf � whereas

� for all q � Q� fqfg and all X � V there is some �q�X� p� Y�D� in ��

The Turing machine M works on a semi�innite tape with left boundary
marker Z�� An instantaneous description of that tape during a computation
of M is of the form Z�uqvB

� with u� v � V � and q � Q� which describes the
situation that M is in state q� the head of the Turing machine looks at the
rightmost symbol of Z�u� and the contents of the tape is Z�uvB�� where the
notation B� just describes the fact that to the right we nd an innite number
of blank symbols B�
The e�ect of a transition specied by � on such a con�guration Z�uqvB

�

is dened as follows�

� Applying �q�X� p� Y� L� � � yields Z�u�pY vB� from Z�u
�XqvB��

� Applying �q�X� p� Y�R� � � yields Z�u
�Y Upv�B� from Z�u

�XqUv�B��

It is well�known that such a model for �deterministic� Turing machines as
dened above is one of the general models for computability� i� e�

� for every computable �partial� function f � T � � T � there exists a Turing
machineMf such that

�� if f �w� � w � T �� is dened�Mf started with the initial conguration
Z�wq�B

� computes f�w� by ending up in the nal conguration
Z�f�w�qfB

�� and
�� if w � T � is not contained in dom �f�� the domain of the function f �
thenMf started with the initial conguration Z�wq�B� never halts
�i� e� Mf never enters the nal state qf ��

� for each alphabet T there exists a universal Turing machine MU�T � i� e�
every Turing machine M with terminal alphabet T can be encoded as
a string C�M� � fc�� c�g

� in such a way that MU�T starting with the
initial conguration Z�C�M�c�wq�B�� w � T �� halts in the nal state qf
if and only if fM�w� is dened �where c�� c�� c� are new symbols and fM
is the partial function induced by the Turing machineM� and moreover
the nal conguration is Z�fM �w�qfB��

	

Theorem �� Let f � T � � T � be a partial recursive function� and let
Mf � �Q� q�� qf � V� T� Z�� B� �� be a deterministic Turing machine computing f
�i� e� for every w � T �� starting with the initial con�guration Z�wq�B

�� Mf

halts with the �nal con�guration Z�f�w�qfB� if w � dom�f�� and never halts
otherwise�� Then we can e�ectively construct an H system !f � �V �� A�R�
which also computes f in the following way� For an arbitrary w � T �� the
computation with !f on w is initialized by the string Z�wq�Z�� if w � dom�f��
then �nally the string Z�f�w�qfZ� will be derivable and also be terminating
�no other string can be obtained from this string any more�� if w �� dom�f��
no terminating string is derivable�

Proof� From Mf we construct !f in the following way� !f � �V �� A�R�
with

V � � V � fZ�� Z�� Z�g � f�r� � �r� j r � �g

and A � A� �A�� where

A� � fZ�UpZ� j for some q � Q �q� Z�� p� Z�� R� � �� U � V�� p � Qg�
f�r� Y Up �r� j r � �q�X� p� Y�R� � �� U�X� Y � V�� p� q � Qg�
f�r� pY �r� j r � �q�X� p� Y� L� � �� X� Y � V�� p� q � Qg�
fZ�qBZ� j q � Q� fqfgg � fZ�qfZ�g �

A� � fZ�qUZ� j for some q � Q �q� Z�� p� Z�� R� � �� U � V�� p � Qg�
f�r�XqU �r� j r � �q�X� p� Y�R� � �� U�X� Y � V�� p� q � Qg�
f�r�Xq �r� j r � �q�X� p� Y� L� � �� X� Y � V�� p� q � Qg�
fZ�qZ� j q � Q� fqfgg � fZ�qfBZ�g �

The set R contains the following splicing rules�

�� Z�qU�C�Z�Up�Z� for �q� Z�� p� Z�� R� � �� U � V��
p� q � Q� C � V� � fZ�g �

�� DXqU�C��r�Y Up��r� for r � �q�X� p� Y�R� � �� U�X� Y � V��
p� q � Q� C � V� � fZ�g � D � V �

�� D�XqU �r� ��r��Y UpC for r � �q�X� p� Y�R� � �� U�X� Y � V��
p� q � Q� C � V� � fZ�g � D � V �

�� DXq�C��r�pY��r� for r � �q�X� p� Y� L� � �� X� Y � V��
p� q � Q� C � V� � fZ�g � D � V �

� D�Xq �r� ��r��pY C for r � �q�X� p� Y� L� � �� X� Y � V��
p� q � Q� C � V� � fZ�g � D � V �

	� U�qZ��Z��qBZ� for q � Q� fqfg and U � V �
�� D�qfB�Z��qfZ� for D � V �
�� Dqf�Z��Z�qfB�C for D � V� C � fB�Z�g �
�� w���w for all w � A�

Any conguration Z�uqvB
� in M is represented by some nite string

Z�uqvB
mZ�� for some m � �� in the H system !f � The only terminating

�

string not in A obtained by using the rules from R from an initial string
Z�wq�Z� is the nal string Z�f�w�qfZ� provided w � dom�f�� because of the
rules in group � this nal string even is the only string that cannot be derived
any more� For w �� dom�f� no terminating string is derivable from the initial
string Z�wq�Z�� �

If we want to select the nal strings via the �steady state� condition� in
the proof of the preceding theorem we only have to replace group � by group
���

��� qf�Z��qf�Z�

Moreover� we have to add qfZ� to A� Then we obtain another method for
selecting the nal string �conguration�� i� e� by taking exactly those strings
not in A that reach a steady state� obviously� qfZ� will be the only string in
A also fullling the steady state condition�
Another way to select the nal strings �congurations� is to apply the

regular �lter� fZ�gT � fqfZ�g�
The proof of the preceding theorem could also be extended in such a way

that from the nal conguration Z�f�w�qfZ� we could obtain f�w� itself as
the nal string that cannot be processed any more�

The following result proving the universality of H systems �with multisets�
with respect to computability is based on the existence of universal Turing
machines ���� and can be proved by using similar techniques as in the proof of
the previous theorem�

Theorem �� Let T be an arbitrary alphabet� Then we can e�ectively con	
struct an H system !� ! � �V�A�R�� with T � V such that ! can compute
every partial recursive function f in the following way� Started with the initial
string Z�C�Mf �c�wq�Z� where C �Mf� is the code of a deterministic Turing
machine Mf realizing f � f � T � � T �� ! for w � dom�f� computes the termi	
nating string Z�f�w�qfZ�� whereas for w �� dom�f� no terminating string �not
in A� is derivable�

The result above can again be obtained for other selection strategies� too�
as already elaborated after the proof of Theorem ��

� The generative power of H systems

From the results proved in ���� and in ���� we can deduce

Theorem ��

�� EH�FIN�FIN� � EH�F�FIN� � REG

for all F with FIN � F � REG�

�

�� EH �FIN�REG� � EH�F�� F�� � RE

for all F�� F� with FIN � F� � RE� REG � F� � RE�

Theorem �� ��� EH�mFIN�FIN� � EH�mF�� F�� � RE� for all fami	
lies F� and F� such that FIN � F� � RE and FIN � F� � RE�

A natural way to regulate the application of the splicing rules is to use
context conditions as in random context grammars� associate sets of sym�
bols�strings to rules and use a rule only when the associated symbols�strings
are present in the currently spliced strings �permitting contexts� respectively
when they are not present �forbidden contexts�� These forbidden contexts can
be interpreted as inhibitors of the associated rules �and they can be checked�
manually� as in �����

De�nition �� An extended H system with permitting contexts is a qua�
druple � � �V� T�R�A�� where V� T�A are as in Denition � and R is a set of
triples �we call them rules with permitting contexts� of the form p � �r� C�� C��
with r � u��u��u��u�� where u��u��u��u� is a splicing rule over V and
C�� C� are nite subsets of V �� For x� y� z� w � V � and p � R we dene
�x� y� �p �z�w� if and only if �x� y� �r �z�w�� every string contained in C�

appears as a substring in x and every string contained in C� appears as a
substring in y �of course� when C� � or C� � � then this imposes no
restriction on the use of the rule p�� The language generated by � is dened
in the natural way� and the family of languages L���� for � � �V� T�R�A� as
above� with A � F� and R having the set of strings u��u��u��u�C�C� in the
rules with permitting contexts in a family F�� is denoted by EH�F�� cF��� �

De�nition �� An extended H system with forbidden contexts is a qua�
druple � � �V� T�R�A�� where V� T�A are as in Denition � and R is a set of
triples �we call them rules with forbidden contexts� of the form p � �r� D��D��
with r � u��u��u��u�� where u��u��u��u� is a splicing rule over V and
D��D� are nite subsets of V �� For x� y� z� w � V � and p � R as above�
we dene �x� y� �p �z�w� if and only if �x� y� �r �z�w�� no string contained
in D� appears as a substring in x and no string contained in D� appears as
a substring in y �of course� when D� � or D� � � then this imposes no
restriction on the use of the rule p�� The language generated by � is dened
in the natural way� and the family of languages L���� for � � �V� T�R�A� as
above� with A � F� and R having the set of strings u��u��u��u�D�D� in the
rules with forbidden contexts in a family F� is denoted by EH�F�� fF��� �

Theorem �� ��� EH�FIN� rFIN� � EH�F�� rF�� � RE� for all families
F�� F� such that FIN � F� � RE� FIN � F� � RE� and for each r � fc� fg �

The results stated above in this section prove that the considered types of
H systems with a nite number of rules as well as a nite number of axioms are

�

already computationally complete� Yet in order to prove that programmable
computers based on splicing can be constructed� it is necessary to nd universal
H systems�

De�nition �� Given an alphabet T and two families of languages F�� F��
a construct �U � �VU � T�RU � AU�� where VU is an alphabet� AU � F�� and
RU � V �

U f�gV
�
U f�gV

�
U f�gV

�
U � RU � F�� is said to be a universal H system

of type �F�� F��� if for every � � �V� T�R�A� of type �F�� F�� there is a language
A� such that AU�A� � F� and L��� � L���U �� where �

�
U � �VU � T�RU � AU�A���

The particularizations of this denition to mH systems or to H systems with
permitting respectively forbidden contexts are obvious� �

Theorem �� ��� For every given alphabet T there exist mH systems of
type �mFIN�FIN�� extended H systems of type �FIN�FIN� with permitting
respectively forbidden contexts that are universal for the class of mH systems
respectively the class of extended H systems with permitting respectively forbid	
den contexts with the terminal alphabet T �

� Test tube systems

In this section we investigate a new model for biological computers that incor�
porates basic ideas of parallel communicating grammar systems ����

De�nition 	� A test tube �TT for short� scheme of degree n� n � �� is
a construct # � �V� �R�� F�� � ���� �Rn� Fn�� � where V is an alphabet� Fi � V �

and Ri � V � f�gV � f�g V � f�gV �� for each i� � � i � n�
Each pair �Ri� Fi� is called a component of the scheme� or a tube� Ri

is the set of splicing rules of the tube i� Fi is the selector of the tube i�
The pair �i � �V�Ri� is the underlying H scheme associated with the com�
ponent i of the system� For arbitrary n�tuples �L�� ���� Ln� � �L�

�� ���� L
�
n� �

Li� L
�
i � V �� � � i � n� we dene # ��L�� ���� Ln�� � �L�

�� ���� L
�
n� if and only if

L�
i �

Sn
j��

�
��j �Lj� � Fi

�
for all i� � � i � n� �

In words� the contents of each tube are spliced according to the associated
set of rules �we pass from Li to �

� �Li� � � � i � n�� and the result is re�
distributed among the n tubes according to the selectors F�� ���� Fn� When a
string belongs to several languages Fi� then copies of it will be distributed to
all tubes i with this property�

De�nition
� A TT system of degree n� n � �� is a construct

! � �V� �R�� F�� � ���� �Rn� Fn� � �A�� ���� An�� �

where # � �V� �R�� F�� � ���� �Rn� Fn�� is the underlying TT scheme and Ai� � �
i � n� is the set of axioms of the i�th component �i� e� of tube i�� Considering

��

the iterated application of the scheme # to the initial conguration�A�� ���� An� �
i� e� #k ��A�� ���� An�� � by convention we obtain the language generated by a TT
system ! as the result of all computations in tube �� i� e�

L �!� � fw � V � j w � L� for some �L�� ���� Ln� � with

�L�� ���� Ln� � #k ��A�� ���� An�� for some k � �
o
�

�

In the following we will restrict ourselves to very special selectors Fi� i� e�
of the form V �

i � where the Vi � V� � � i � n� In this sense� selecting the results
in the rst tube corresponds to the intersection with a terminal alphabet T in
extended H systems by choosing V� � T�

De�nition �� Given two families of languages� F� and F�� a TT system
! � �V� �R�� V

�
� � � ���� �Rm� V

�
m� � �A�� ���� An�� with Ai � F� and Ri � F�� for

all i� � � i � m� is said to be of type �F�� F�� � The family of all languages
generated by such TT systems is denoted by TT� �F�� F�� � �

Theorem 	� ��� TT� �FIN�FIN� � TT� �F�� F�� � RE for all families F�
and F� such that FIN � F� � RE and FIN � F� � RE�

De�nition ��� A universal TT system for a given alphabet T is a construct

!U �
�
VU � �R��U � T

�� �
�
R��U � V

�
��U

�
� ����

�
Rn�U � V

�
n�U

�
� �A��U � A��U� ���� An�U�

�

with the following property� If we take an arbitrary TT system !� then there
is a set A� � V �

��U such that L �!
�
U � � L �!� for the TT system

!�U � �VU � �R��U � T
�� � �R��U � V��U� � ���� �Rn�U � Vn�U � � �A��U � A��U � A�� ���� An�U�� �

�

Theorem
� ��� For every given alphabet T � there exists a universal TT
system of type �FIN�FIN��

� Concluding remarks

The most signicant of the results we obtained is the existence of universal H
systems of various types� This theoretically proves the feasibility of designing
programmable universal DNA computers� where a program consists of a single
string to be added to the axiom set of the universal computer� In the particular
case of mH systems� these program axioms have multiplicity one� while an
unbounded number of copies of all the other axioms is available�
Although in this paper we have shown the �theoretical� possibility how to

obtain universal biological computers based on the splicing operation� many

��

questions remain open� For instance� from a theoretical point of view� an
interesting problem is to determine the minimal number of test tubes needed
for a universal test tube system with respect to a given alphabet� From a
practical point of view� the real implementation of such test tube systems
or other universal H systems introduced in the preceding sections is a most
challenging task that has to be done in a joint team of theorists� biologists and
practitioners of DNA computing� the presentation of this paper should also be
seen as a starting point for discussions on such topics between formal language
theorists and collegues working in other elds�

References

��� L� M� Adleman� Molecular computation of solutions to combinatorial problems�

Science� ��� �Nov� ������ �	��
 �	���

��� L� M� Adleman� On constructing a molecular computer� Manuscript in circula�

tion� January �����

��� E� Csuhaj�Varju� J� Dassow� J� Kelemen� Gh� P�aun� Grammar Systems� A

Grammatical Approach to Distribution and Cooperation� Gordon and Breach�

London� �����

��� E� Csuhaj�Varju� L� Kari� Gh� P�aun� Test tube distributed systems based on

splicing� manuscript� �����

�
� J� Dassow� Gh� P�aun� Regulated Rewriting in Formal Language Theory�

Springer�Verlag� Berlin� Heidelberg� �����

�	� S� Eilenberg� Automata� Languages and Machines� Vol� A� Academic Press�

New York� �����

��� R� Freund� L� Kari� Gh� P�aun� DNA computing based on splicing� The existence

of universal computers� Techn� Report ������FR������ TU Wien� Institute for

Computer Languages� �����

��� T� Head� Formal language theory and DNA� An analysis of the generative

capacity of speci�c recombinant behaviors� Bull� Math� Biology� �� ������� ���

 ����

��� R� J� Lipton� Speeding up computations via molecular biology� Manuscript in

circulation� December �����

���� Gh� P�aun� Regular extended H systems are computationally universal� J� In�

form� Process� Cybern�� EIK� to appear�

���� D� Pixton� Regularity of splicing languages� Discrete Appl� Math�� �����

���� A� M� Turing� On computable numbers� with an application to the Entschei�

dungsproblem� Proc� London Math� Soc�� Ser� �� �� ������� ��	
 ����

���� A� Salomaa� Formal Languages� Academic Press� New York� �����

��

