DNA Computing Based on Splicing:
Universality Results

Erzsébet CSUHAJ-VARJU!
Computer and Automation Institute, Hungarian Academy of Sciences
Kende u. 13-17, 1111-Budapest, Hungary

Rudolf FREUND?
Institute for Computer Languages, Technical University Wien
Resselgasse 3, 1040 Wien, Austria

Lila KART?
Department of Mathematics and Computer Science,
University of Western Ontario, London, Ontario, N6A 5B7, Canada

Gheorghe PAUN*
Institute of Mathematics of the Romanian Academy

PO Box 1 - 764, 70700 Bucuresti, Romania

Abstract. The paper extends some of the most recently obtained results on
the computational universality of specific variants of H systems (e.g. with
regular sets of rules) and proves that we can construct universal computers
based on various types of H systems with a finite set of splicing rules as well
as a finite set of axioms, i.e. we show the theoretical possibility to design
programmable universal DNA computers based on the splicing operation. For
H systems working in the multiset style (where the numbers of copies of all
available strings are counted) we elaborate how a Turing machine computing
a partial recursive function can be simulated by an equivalent H system com-
puting the same function; in that way, from a universal Turing machine we
obtain a universal H system.

Considering H systems as language generating devices we have to add vari-
ous simple control mechanisms (checking the presence/absence of certain sym-
bols in the spliced strings) to systems with a finite set of splicing rules as well
as with a finite set of axioms in order to obtain the full computational power,
i.e. to get a characterization of the family of recursively enumerable languages.
We also introduce test tube systems, where several H systems work in parallel

!Research supported by grant T 017105 of the Hungarian Scientific Research Fund
"OTKA”.

2All correspondence to this author.

3Research supported by grants OGP0007877 and OGP0000243 of the National Science
and Engineering Research Council of Canada.

*Research supported by the Academy of Finland, project 11281.

in their tubes and from time to time the contents of each tube are redistributed
to all tubes according to certain separation conditions. By the construction of
universal test tube systems we show that also such systems could serve as the
theoretical basis for the development of biological (DNA) computers.

Keywords: DNA splicing, grammar systems, H systems, test tubes, Turing
machines, universal computing

1 Introduction

One of the recently introduced paradigms which promises to have a tremendous
influence on the (theoretical and practical) progress of computer science is DNA
computing. One main step in making it so interesting was the announcement
of solving (a small instance of) the Hamiltonian path problem in a test tube
just by handling DNA sequences [1], yet actually the universality of Adleman’s
way for computing using DNA still seems to be not settled theoretically in a
satisfactory way.

Another trend in DNA computing is based on the recombinant behaviour
of DNA (double stranded) sequences under the influence of restriction enzymes
and lygases. This approach started with [8], where the operation of splicing
was introduced as a model for this phenomenon. One of the important results
in the area of H systems states that H systems with finite sets of axioms and
finite sets of splicing rules can generate only regular languages [11]. However,
if we use a regular set of splicing rules of a very particular type, a maximal
increase of the generative power is obtained: such H systems characterize
the family of recursively enumerable languages [10]. Working with (infinite)
reqular sets of splicing rules is natural from a mathematical point of view, but
unrealistic from a practical point of view. How to obtain H systems with both
the set of axioms and the set of splicing rules being finite, but still being able
to reach the full power of Turing machines? In view of the results in [11],
we have to pay the reduction of the sets of rules from being regular to being
finite: One way (which is well-known from formal language theory [5]) to do
this is to regulate the use of the splicing rules by suitable control mechanisms.
This idea has been explored in [7], where computationally universal classes of
finite H systems are obtained by associating permitting or forbidding context
conditions to the splicing rules: a splicing rule can be used only when a certain
favourizing symbol (a “catalyst”, a “promotor”) is present in the strings to be
spliced, respectively when no “inhibitor” from a specified finite set of symbols
is present.

Another powerful idea able to increase the power of H systems with finite
sets of axioms and finite sets of splicing rules is to count the number of copies

of each used string. In [7] it is proved that extended H systems working in the
multiset style are able to characterize the recursively enumerable languages.
Here we extend this theorem and its proof in a way closer to the computing
framework, 1. e. we consider Turing machines as devices for computing partial
recursive functions. The work of such a Turing machine can be simulated in
a natural way by an H system, for which the string originally written on the
Turing machine tape is supposed to appear in only one copy, whereas all the
other strings are available in arbitrarily many copies. (Moreover, in this way
the obtained H system need not to be extended, due to the working styles
of the Turing machines we consider.) Hence, we here find interesting details
important from practical points of view.

A new idea is to consider a “parallel communicating” architecture as in
grammar system [3]: several test tubes work in parallel (splicing their con-
tents), communicating by redistributing their contents in a way similar to the
operation of separating the contents of a tube [2], [9]: the contents of a tube
are redistributed to all tubes according to certain specified “separation con-
ditions”. Again we obtain a characterization of the recursively enumerable
languages.

From the existence of universal Turing machines [12] and from the proofs
of all the results mentioned above for different types of H systems and for
each of these types we obtain a way to construct a universal H system of the
corresponding type. This can be interpreted as a proof for the (theoretical)
possibility to construct universal programmable DNA computers based on the
splicing operation.

2 Definitions for H systems

We use the following notations: V* is the free monoid generated by the al-
phabet V., A is the empty string, Vt = V* — {A}, FIN, REG, RE are the
families of finite, regular, and recursively enumerable languages, respectively.
For general formal language theory prerequisites we refer to [13], for regulated
rewriting to [5], and for grammar systems to [3].

Definition 1. A splicing scheme (or H scheme) is a pair o = (V, R), where
V is an alphabet and R C V*{#} V*{$} V* {#} V™, #.,§ are special symbols
not in V. (V is the alphabet of o and R is the set of splicing rules). For
Y, z,w € V*and r = uyFusSus#Huy in R we define (v,y) F, (z,w) if and
only if @ = xjujusrse, ¥ = yrusuayz, and z = xjugusys, W = Yiusugxy for
some 1, Tq, Y1, Y2 € V. For a splicing scheme o = (V, R) and for any language
L CV*, we write

o(L)y=H{z€e V" | (2,y) ' (z,w) or (z,y) F, (w,2) for some x,y € L, r € R}

and we define 0*(L) = U;»o 0'(L), where ¢° (L) = L and o'** (L) = o' (L) U
o(o' (L)) for alli >0. O

Definition 2. An H system is a pair v = (0, A), where 0 = (V| R) is a
splicing scheme and A C V* is the set of axioms. An extended H system is a
quadruple p = (V,T, R, A), where v = (V, R, A) is the underlying H system
and T" C V is the terminal alphabet. The language generated by the extended
H system p is defined by L(p) = oc*(A) N T™.

For two families of languages F, F», an extended H system p = (V. T, R, A)
with A € Fy and R € F; is said to be of type (Fi, Fy), and we denote the family
of languages generated by extended H systems of that type by FH(F, F3). O

In the definitions above, after splicing two strings z,y and obtaining two
strings z and w, we may again use x or y (they are not “consumed” by splicing)
as a term of a splicing, possibly the second one being z or w; moreover, also
the new strings are supposed to appear in infinitely many copies. Probably
more realistic is the assumption that at least a part of the strings is available
in a limited number of copies. This leads us to consider multisets, i.e. sets
with multiplicities associated to their elements.

In the style of [6], a multiset over V* is a function M : V* — N U {o0};
M (z) is the number of copies of € V* in the multiset M. All the multisets
we consider are supposed to be defined by recursive mappings M. The set
{w e V*| M(w) > 0} is called the support of M and it is denoted by supp(M).
A usual set S C V*isinterpreted as the multiset defined by S(x) = 1 for x € S,
and S(x) =0 for x ¢ S.

For two multisets My, My we define their union by (MyUMs)(x) = My(x)+
Msy(z), and their difference by (My; — My)(x) = Mi(x) — My(x), v € V7,
provided My (x) > My (x) for all @ € V*. Usually, a multiset with finite
support, M, is presented as a set of pairs (x, M(x)), for « € supp(M).

Definition 3. An extended mH system is a quadruple p = (V,T, R, A),
where V| T, R are as in an extended H system (Definition 2) and A is a multiset
over V™.

For such an mH system and two multisets My, My over V* we define

M, =, M, iff there are z,y, z,w € V* such that
(i) Mi(z)>1, Mi(y)>1, and if x =y, then M; (2) > 2,
(ii) T = T1UU2T, Y = Y1U3U4Y2,
2 = T1Uilql2, W = Y1uUsliaTy,
for xy, 29, y1,y2 € V*, uiH#usSusfuy € R,

(i) My = ((My = {(z,1)}) = {(y;)}) U{(z,1)}) U {(w, 1)}

(At point (iii) we have operations with multisets.)

The language generated by an extended mH system p is
L(p) = {w € T™ | w € supp(M) for some M such that A =7 M},

where =7 is the reflexive and transitive closure of = .
For two families of languages Fi, F5, an extended mH system p =
(V,T, R, A) is said to be of type (mFy, Fy) if supp(A) € Fy and R € Fy;

we denote the family of languages generated by such extended mH systems of

type (mFy, Fy) by EH(mFy, Fy). O
An (extended) H system as in Definition 2 can be interpreted as an mH
system working with multisets of the form M(x) = oo for all « such that

3 Universal computing with mH systems

In this section we show how (even non-extended) H systems with multisets
together with suitable strategies for selecting the final strings can simulate
arbitrary computations with Turing machines. We will assume that the H
system I' = (V, R, A) “really” starts to work only if one additional single
string is added (to A). In the sense of multisets, we take exactly one copy
of this starting string, whereas all the other strings in A are assumed to be
available unboundedly (hence it is sufficient to specify the strings to appear as
axioms without their common multiplicity co).

In this model we now can consider different possibilities for selecting the
result of the computation:

1. We take every string w that is contained in a special regular language
(i.e. we use intersection with regular languages, e.g. T™).

2. We take every string w that cannot be processed any more (we call such
strings terminating).

3. We take every string w not in A that has reached a “steady state”, i.e.
there exist rules in R that can be applied to w, but they all still yield w
again.

We will use the following model of a deterministic Turing machine, which
is equivalent to all the other models appearing in literature as the model of a
mechanism defining computability:

A deterministic Turing machine M is an 8-tuple (@, qo, ¢, V, T, Zo, B,),
where () is the (finite) set of states, qo is the initial state, ¢y is the final state, V'
is the (finite) alphabet of tape symbols, ' C V is the set of terminal symbols,
Zo € V is the left boundary symbol, Vo := V — {Z,}, B € V4 is the blank

symbol, § : Q@ x V — Q x V x {L, R} is the transition function with the
following restrictions (the fact (p,Y, D) € 6 (¢, X) will be expressed by the
relation (¢, X, p, Y, D) € 6):
e (¢, X,p, Y, L)€ implies X € Vo, i.e. X # Zy;
(¢, Z0,p, Y, D) €6, D e {L,R},implies Y = Zy and D = R;
(¢, X,p, Zo, R) € 6 implies X = Zy;
(¢, X,p,Y,D) €6, D e{L, R}, implies ¢ # qs, whereas
for all ¢ € @ — {qs} and all X € V there is some (¢, X,p,Y, D) in é.

The Turing machine M works on a semi-infinite tape with left boundary
marker Zy. An instantaneous description of that tape during a computation
of M is of the form ZyugvB“ with u,v € V* and ¢ €), which describes the
situation that M is in state ¢, the head of the Turing machine looks at the
rightmost symbol of Zyu, and the contents of the tape is Zyuv B, where the
notation B just describes the fact that to the right we find an infinite number
of blank symbols B.

The effect of a transition specified by ¢ on such a configuration ZyuqvB®
is defined as follows:

e Applying (¢, X,p,Y, L) € 6 yields Zou'pY vB* from Zou' X qvB*.
e Applying (¢, X,p,Y, R) € 6 yields Zou'Y Upv' BY from Zou' XqUv'B¥.

It is well-known that such a model for (deterministic) Turing machines as
defined above is one of the general models for computability, i.e.

e for every computable (partial) function f : T* — T there exists a Turing
machine My such that

L. if f(w),w € T*, is defined, M; started with the initial configuration
ZowqoBY computes f(w) by ending up in the final configuration
ZOf(w)Qwav and

2. if w € T™ is not contained in dom (f), the domain of the function f,
then M, started with the initial configuration ZgwgqeB* never halts
(i.e. My never enters the final state ¢y);

o for each alphabet 1" there exists a universal Turing machine My 7, 1. e.
every Turing machine M with terminal alphabet T' can be encoded as
a string C(M) € {cl,c2}+ in such a way that My starting with the
initial configuration ZoC (M)cswgoB“, w € T*, halts in the final state ¢
if and only if fas(w) is defined (where ¢1, ¢3, ¢35 are new symbols and fs
is the partial function induced by the Turing machine M) and moreover
the final configuration is Zg far(w)qsB*.

Theorem 1. Let [: T* — T* be a partial recursive function, and let
My =(Q,q0,q5,V, T, Zo, B,6) be a deterministic Turing machine computing f
(i.e. for every w € T*, starting with the initial configuration ZywqoB*, My
halts with the final configuration Zof(w)qsBY if w € dom(f), and never halts
otherwise). Then we can effectively construct an H system I'y = (V'] A, R)
which also computes [in the following way: For an arbitrary w € T*, the
computation with I'y on w is initialized by the string ZywqoZ1; if w € dom(f),
then finally the string Zof(w)qsZy will be derivable and also be terminating
(no other string can be obtained from this string any more); if w ¢ dom(f),
no terminating string is derivable.

Proof. From M; we construct I'y in the following way: I'y = (V', A, R)
with
V=V U{Z, 22, Z3} U{(r),[r] | r € 8}
and A = A; U Ay, where

Ay = {ZUpZy | for some g € Q (¢, Zo,p, Z0,R) €6, U € Vo, pe Q} U
{(MYUp[r]|r=(¢,X,pY,R) €6, U XY €V, pgeQ}U
{r)pY [r] | r=(¢q, X,p, Y, L) €6, X, Y € Vo, p,g € Q}U
{Z3qBZy | q € Q —{qs}} U{Z3q; 72},

Ay = {ZoqUZ, | for some q € Q (q, Zo,p, Zo, R) €6, U € Vo, p€ Q}U
{(M)XqU[r]|r=1(¢,X,p,Y,R) €6, U XY € Vo, pg € Q}U
{(r) Xqlr] |r=(¢,X,p, Y, L) €6, X,V €Vp, p,g € Q}U
{73971 1 ¢ € Q —{as}} U{ZsqsBZ2} .

The set R contains the following splicing rules:

1. ZoqU#CSZUp# 7, for (¢, Zo, p, Z0, R) € 6, U € Vj,
p,q €Q, CeVU{Zi};

2. DXqU#CS(r)YUp#|[r] forr= (¢, X,p,Y,R) €6, U XY €V,
pg€eQ, CeVyU{Z}, DeV;

3. D#XqU [r]$(r)#YUpC forr = (¢, X,p,Y,R) €6, U, XY €V,
pg€eQ, CeVyU{Z}, DeV;

4. DXq#CS(r)pY # [r] forr= (¢, X,p,Y,L) €6, X,Y €V,
pg€eQ, CeVyU{Z}, DeV;

5. D#Xq[r]$(r)#pY C forr= (¢, X,p,Y,L) €6, X,Y €V,
pg€eQ, CeVyU{Z}, DeV;

6. U#HqZ1$7Z:#qB 7, for g € @ —{qs} and U € V;
7. D#qsBSZs#qs 75 for D e V;

8. Dqs#7:575q; B#C for DeV, Ce{B,Z};

9. wH#SHw for all w € A.

Any configuration ZyuquB“ in M is represented by some finite string
ZouquB™ 7y, for some m > 0, in the H system I'y. The only terminating

7

string not in A obtained by using the rules from R from an initial string
ZowqoZn is the final string Zo f(w)qs 7y provided w € dom(f); because of the
rules in group 9 this final string even is the only string that cannot be derived
any more. For w ¢ dom(f) no terminating string is derivable from the initial
string ZowqoZy. O

It we want to select the final strings via the “steady state” condition, in
the proof of the preceding theorem we only have to replace group 9 by group
9’

9. qH#ZSq# 7

Moreover, we have to add ¢sZ; to A. Then we obtain another method for
selecting the final string (configuration), i.e. by taking exactly those strings
not in A that reach a steady state; obviously, ¢;Z; will be the only string in
A also fulfilling the steady state condition.

Another way to select the final strings (configurations) is to apply the
regular “filter” {Zo} T*{qs71}.

The proof of the preceding theorem could also be extended in such a way
that from the final configuration Zyf(w)qsZ1 we could obtain f(w) itself as
the final string that cannot be processed any more.

The following result proving the universality of H systems (with multisets)
with respect to computability is based on the existence of universal Turing
machines [12] and can be proved by using similar techniques as in the proof of
the previous theorem:

Theorem 2. Let T be an arbitrary alphabet. Then we can effectively con-
struct an H system I', I' = (V, A, R), with T C V such that I' can compute
every partial recursive function f in the following way: Started with the initial
string ZoC(My)eswqoZy where C (My) is the code of a deterministic Turing
machine My realizing f, f:T* — T, ' for w € dom(f) computes the termi-
nating string Zo f(w)qs 71, whereas for w ¢ dom(f) no terminating string (not
in A) is derivable.

The result above can again be obtained for other selection strategies, too,
as already elaborated after the proof of Theorem 1.

4 The generative power of H systems

From the results proved in [11] and in [10] we can deduce

Theorem 3.
l. EH(FIN,FIN)=FEH(F,FIN)= REG
for all F with FIN C F C REG,

2. EH (FIN,REG) = EH(Fy, Fy) = RE
for all Iy, Fy with FIN C Fy C RE, REG C I, C RE.

Theorem 4. [7] EH(mFIN,FIN) = EH(mFy, Fy) = RE, for all fami-
ltes Fy and Fy such that FIN C F, C RE and FIN C F, C RE.

A natural way to regulate the application of the splicing rules is to use
context conditions as in random context grammars: associate sets of sym-
bols/strings to rules and use a rule only when the associated symbols/strings
are present in the currently spliced strings (permitting contexts) respectively
when they are not present (forbidden contexts). These forbidden contexts can
be interpreted as inhibitors of the associated rules (and they can be checked,
manually, as in [1]).

Definition 4. An extended H system with permitting contexls is a qua-
druple p = (V, T, R, A), where V,T, A are as in Definition 2 and R is a set of
triples (we call them rules with permitting contexts) of the form p = (r; Cy, C3)
with r = wyFusSus#Huy, where uyFHusSus#uy is a splicing rule over V' and
Ch,Cy are finite subsets of V. For x,y,z,w € V* and p € R we define
(x,y) Fp (z,w) if and only if (x,y) F, (z,w), every string contained in C4
appears as a substring in z and every string contained in Cy appears as a
substring in y (of course, when C7 = (or Cy =), then this imposes no
restriction on the use of the rule p). The language generated by p is defined
in the natural way, and the family of languages L(p), for p = (V,T, R, A) as
above, with A € Fy and R having the set of strings uy#usSus#usC1Cy in the
rules with permitting contexts in a family F3, is denoted by EH(Fy,cfy). O

Definition 5. An extended H system with forbidden contexts is a qua-
druple p = (V, T, R, A), where V,T, A are as in Definition 2 and R is a set of
triples (we call them rules with forbidden contexts) of the form p = (r; Dy, D3)
with r = wyFusSus#Huy, where uyFHusSus#uy is a splicing rule over V' and
Dy, D, are finite subsets of V*. For x,y,z,w € V* and p € R as above,
we define (z,y) F, (z,w) if and only if (x,y) F, (z,w), no string contained
in Dy appears as a substring in = and no string contained in D, appears as
a substring in y (of course, when D; = () or Dy = 0, then this imposes no
restriction on the use of the rule p). The language generated by p is defined
in the natural way, and the family of languages L(p), for p = (V,T, R, A) as
above, with A € I} and R having the set of strings uy#HusSus#usDi Dy in the
rules with forbidden contexts in a family Fy is denoted by EH(Fy, fFy). O

Theorem 5. [7]) EH(FIN,rFIN)= EH(Fi,rFy) = RE, for all families
Fy, Fy such that FIN C Fy C RE, FIN C F;, C RE, and for each r € {¢, f}.

The results stated above in this section prove that the considered types of
H systems with a finite number of rules as well as a finite number of axioms are

already computationally complete. Yet in order to prove that programmable
computers based on splicing can be constructed, it is necessary to find universal
H systems:

Definition 6. Given an alphabet T and two families of languages Fi, F5,
a construct py = (W, T, Ry, Ay), where V7 is an alphabet, Ay € Fy, and
Ry C Ve {# Vo S}V {#} Vi, Ru € Fy, is said to be a universal H system
of type (Fi, Fy), if for every p = (V. T, R, A) of type (F1, F,) there is a language
A, such that AyUA, € Fy and L(p) = L(py), where p;, = (Vu, T, Ry, AvUA,).
The particularizations of this definition to mH systems or to H systems with
permitting respectively forbidden contexts are obvious. a

Theorem 6. [7] For every given alphabet T there exist mH systems of
type (mFIN, FIN), extended H systems of type (FIN, FIN) with permitting
respectively forbidden contexts that are universal for the class of mH systems
respectively the class of extended H systems with permitting respectively forbid-
den contexts with the terminal alphabet T.

5 Test tube systems

In this section we investigate a new model for biological computers that incor-
porates basic ideas of parallel communicating grammar systems [4].

Definition 7. A test tube (TT for short) scheme of degree n, n > 1, is
a construct ¥ = (V,(Ry, F1), ..., (Ru, F,)), where V is an alphabet, F; C V*
and R, CV*{#} V*{$} V*{#} V*, for each ¢, 1 <7 < n.

FEach pair (R;, F;) is called a component of the scheme, or a tube; R;
is the set of splicing rules of the tube i, F; is the selector of the tube 1.
The pair o; = (V, R;) is the underlying H scheme associated with the com-
ponent ¢ of the system. For arbitrary n-tuples (Li,...,L,), (Li,...,L}),
Li, L C V=, 1 << n, we define ¥ ((Lq,..., L)) = (L, ..., L) if and only if
Ly =Ui (07 (L) N F) forall i, 1 <i < n. O

In words, the contents of each tube are spliced according to the associated
set of rules (we pass from L; to 0™ (L;), 1 < ¢ < n), and the result is re-
distributed among the n tubes according to the selectors I, ..., F,,. When a
string belongs to several languages [}, then copies of it will be distributed to
all tubes ¢ with this property.

Definition 8. A T'T system of degree n, n > 1, is a construct
I'=(V,(Ry, F1) oo, (Rn, F) L (A1, .. A))

where ¥ = (V. (Ry, F1), ..., (Ry, F},)) is the underlying TT scheme and A;, 1 <

i < n, is the set of axioms of the i-th component (i.e. of tube ¢). Considering

10

the iterated application of the scheme ¥ to the initial configuration(Ay, ..., A,),
i.e. ¥¥((Aq,...,A,)), by convention we obtain the language generated by a T'T
system I' as the result of all computations in tube 1, i.e.

L) = {weV*|wée L for some (L4,...,L,), with
(Ly,..., L) = X% ((Ay, ..., A,)) for some k > 0}.

a

In the following we will restrict ourselves to very special selectors F;, i.e.
of the form V*, where the V; C V, 1 <1 < n. In this sense, selecting the results
in the first tube corresponds to the intersection with a terminal alphabet 71" in
extended H systems by choosing V; = T.

Definition 9. Given two families of languages, F; and Fy, a TT system
I' = (V,(Ri, V) oo, (R, V) L (Ag, .., Ay)) with Ay € Fy and R, € £y, for
all ¢, 1 <o < m, is said to be of type (F1, F3). The family of all languages
generated by such TT systems is denoted by T'T, (Fi, F3) . O

Theorem 7. [4] TT. (FIN,FIN) =TT, (Fi, Fy) = RE for all families Fy
and £y such that FIN C Fy C RE and FIN C F, C RE.

Definition 10. A universal TT system for a given alphabet 7' is a construct

Iy = (VU, (Riv, T7), (RQ,U, VQ*U) s (RH,U, V{U) (A, A2, ---7An,U))

with the following property: If we take an arbitrary T'T system I', then there
is a set Ar C Vjy; such that L (I'y) = L(I') for the TT system

'y = Vo, (Rio, T7) (R, Vawr) s ey (R, Var) » (Avw, Asp U Ap, oo A o))

a

Theorem 8. [4] For cvery given alphabet T', there exists a universal TT
system of type (FIN, FIN).

6 Concluding remarks

The most significant of the results we obtained is the existence of universal H
systems of various types. This theoretically proves the feasibility of designing
programmable universal DNA computers, where a program consists of a single
string to be added to the axiom set of the universal computer. In the particular
case of mH systems, these program axioms have multiplicity one, while an
unbounded number of copies of all the other axioms is available.

Although in this paper we have shown the (theoretical) possibility how to
obtain universal biological computers based on the splicing operation, many

11

questions remain open. For instance, from a theoretical point of view, an
interesting problem is to determine the minimal number of test tubes needed
for a universal test tube system with respect to a given alphabet. From a
practical point of view, the real implementation of such test tube systems
or other universal H systems introduced in the preceding sections is a most
challenging task that has to be done in a joint team of theorists, biologists and
practitioners of DNA computing; the presentation of this paper should also be
seen as a starting point for discussions on such topics between formal language
theorists and collegues working in other fields.

References

[1] L. M. Adleman, Molecular computation of solutions to combinatorial problems,
Science, 226 (Nov. 1994), 1021 — 1024.

[2] L. M. Adleman, On constructing a molecular computer, Manuscript in circula-
tion, January 1995.

[3] E. Csuhaj-Varji, J. Dassow, J. Kelemen, Gh. Pdun, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London, 1994.

[4] E. Csuhaj-Varjd, L. Kari, Gh. Piun, Test tube distributed systems based on
splicing, manuscript, 1995.

[5] J. Dassow, Gh. Pdun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

[6] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press,
New York, 1974.

[7] R.Freund, L. Kari, Gh. Pdun, DNA computing based on splicing: The existence
of universal computers. Techn. Report 185-2/FR-2/95, TU Wien, Institute for
Computer Languages, 1995.

[8] T. Head, Formal language theory and DNA: An analysis of the generative
capacity of specific recombinant behaviors, Bull. Math. Biology, 49 (1987), 737
— 759.

[9] R. J. Lipton, Speeding up computations via molecular biology, Manuscript in
circulation, December 1994.

[10] Gh. P&un, Regular extended H systems are computationally universal, .J. In-
form. Process. Clybern., FIK, to appear.

[11] D. Pixton, Regularity of splicing languages, Discrete Appl. Math., 1995.

[12] A. M. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proc. London Math. Soc., Ser. 2, 42 (1936), 230 — 265.
[13] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

12

