
Parallel Discrete Event Simulation
of Lyme Disease

Ewa Deelmany, Thomas Caracoz and Boleslaw K. Szymanskiy
yDepartment of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180

fdeelmane, szymanskg@cs.rpi.edu
zDepartment of Biological Sciences, State University of New York at Albany, NY 12222

Abstract

Our research concerns the dynamic processes underlying the rapid increase
in the geographic distribution of Lyme disease, currently the most frequently re-
ported vector-borne disease of humans in the United States [10, 1]. More specif-
ically, we ask how spatially localized ecological interactions drive the Lyme dis-
ease epidemic at extended spatial and temporal scales. We have developed a par-
allel discrete event simulation system in C++ for the IBM SP2. The simulation
model discussed here models the mouse-tick interaction, an essential element of
the epidemic’s ecology. The main entities of the simulation are ticks in various
stages of development (larval, nymphal, and adult) and mice. We track the be-
havior of mice and the spread of disease over the course of 180 days (late spring,
summer, and early fall). Our goal is to understand patterns in the Lyme disease
epidemic at the regional scale through studying the spread of the pathogen across
a single white-footed mouse deme.

1 Lyme Disease
Lyme disease is a zoonosis. Humans acquire a pathogen, the spirochete Borrelia

burgdorferi, that normally infects small mammals and an insect vector [12, 8, 11, 5].
The blood-feeding vector is the deer tick Ixodes scapularis. Immature ticks (larvae
and nymphs) usually feed on the white-footed mouse Peromyscus leucopus. How-
ever, immature ticks also may bite a variety of mammals and birds. Humans inadver-
tently bitten by an infectious nymph may subsequently develop Lyme disease [15].
Adult ticks are less generalized; they feed on white-tailed deer, Odocoileus virgini-
anus [16, 11].

The Lyme disease phenomenon is driven, at its ecological basis, by the cycle of in-
fection passing from tick to mouse to the next generation of ticks. Larval I. scapularis
hatch during summer. The larvae that obtain a blood meal from a mouse then overwin-
ter as inactive nymphs. The following spring these nymphs quest for a second blood
meal. Those nymphs successfully attacking a mouse advance to the adult stage. The

adults soon attack deer, where they feed again and also mate. Gravid females drop off
the deer they have parasitized and lay their eggs, completing the two-year life cycle
[1, 5]. The “inverted” seasonal abundance of the immature-tick stages maintains the
spirochete. Nymphs infected transmit the pathogen to susceptible mice in the spring.
When summer arrives, newly hatched larvae feed on the same mice, acquire the spiro-
chete, and so complete the cycle of infection.

The Lyme disease epidemic is ordinarily depicted at the regional geographic (i.e.,
spatial) scale and among-year temporal scale [15]. Local spatial scale implies an area
occupied by a single deme of the white-footed mouse. In our model individual mice
shift their home range within the local area [17]. As they disperse, mice can experi-
ence heterogeneity in numbers of infectious ticks. Furthermore, dispersing mice may
carry attached ticks between sites within the local area. Either the mice or the ticks
parasitizing the mice may carry the pathogen. Our simulations extend over the part
of the year during which the cycle of infection occurs, the 180 days elapsing between
the appearance of questing nymphs and the completion of feeding by the next gener-
ation’s larvae.

Our computational model is termed “individual-based” [7]. Our mouse population
is an ensemble of different individuals. We track each individual according to its age,
its spatial location on a rectangular lattice, its load of parasitic ticks, and its infection
status (susceptible or infected). At each lattice node we count susceptible and infected
ticks in each of the three developmental stages. The individual-based model treats
population descriptions, such as frequency of infection among mice and the spread
of infected ticks across the lattice, as consequences of events occurring at the level
of individual mice [9]. A single simulation includes mortality and dispersal, but not
reproduction. However, the output of one simulation can be mapped through natality
functions to produce the initial condition for the next simulation.

2 Individual-Based Modeling
Ecological modeling often involves simulating differential equations which describe

various species’ rates of population growth. Increasing system complexity, however,
requires more complex equations; the resulting model may be hard to understand or
analyze. Individual-based modeling may be an attractive alternative. One can es-
tablish relatively simple rules for events that affect individual organisms. Simula-
tion of the individual-based model allows different individuals to experience differ-
ent events; system behavior summarizes the ensemble of individual demographic his-
tories. Differential equations represent “homogeneous” behavior of a mass of indi-
viduals and require a significant number of individuals at each grid point; therefore,
each grid point represents a relatively large space which is treated homogeneously.
Since individual-based models proceed from simpler assumptions and avoid the de-

mographic averaging of differential equations, they offer important advantages for
theoretical ecology.

Our simulations advance time in units of days. Therefore, each event’s occurrence
is assigned to a specific day. This choice of time unit introduces some reasonable con-
straints on simulation structure. For example, a dispersing individual never occupies
two different locations during a single day; the location changes on the dispersal date
and cannot change again that same day. The simulation system can, however, accom-
modate a finer temporal granularity if the need arises.

The space where mice and ticks reside has a toroidal shape (wrapped in both di-
rections). This eliminates edge effects. The mice are treated as individuals. Ticks,
because of their density (as many as 700 larvae/400m�), cannot be treated as indi-
viduals. This means that every node of the spatial lattice will contain a “Tick Blob”,
which consists of several categories of ticks: questing larvae, questing nymphs, non-
questing nymphs (nymphs that have transformed from larvae and are in an inactive
state), and adult ticks (adults that have transformed from nymphs and are in an inac-
tive state). We subdivide each tick category according to the presence/absence of the
spirochete infection. We assume no transovarial infection; all larvae hatch uninfected.
Larvae may acquire the spirochete during their first meal.

The mice can disperse in the environment. They can be bitten by ticks, infected
with the spirochete, or infect the feeding ticks with the parasite. The mice can also
die, either as a result of failing to find an open site (lattice node) during dispersal, or
due to some other causes.

3 Discrete Event Simulation
The general components of the simulation system are simulation objects (in the case

of Lyme disease these would be mice), events (birth, move, death, getting bitten by
ticks, or ticks dropping off an animal), and a simulation engine, consisting of state
variables, an event queue, and a clock [2]. Events are kept in a priority queue, where
the event with the lower scheduled time has higher priority. The simulation is started
by introducing some initial events, which are inserted into the event queue. The simu-
lation progresses as events are first removed from the event queue and then processed.
The simulation clock is advanced to the time of the event’s occurrence. When an event
is processed, the system changes from one state to another.

Individual-based modeling does not require discrete event simulation; discrete time
simulation is more common. A discrete time simulation inspects each location in the
environment at each time tick, and must often perform random draws for highly im-
probable events. If the number of locations is large and the time tick is small, dis-
crete time simulation may be relatively slow. In comparison, discrete event simula-

tion does not inspect empty locations (consider the advantage in a large environment
with a sparse population). Furthermore, discrete event simulation need not contin-
ually re-evaluate locations where transitions are rare. Consequently, discrete event
simulation should prove faster for models of the type we analyze.

A population model often envisions a large number of individuals inhabiting a large
area. The size of the problem might make sequential simulation too slow. Simulation
speed is limited by processor speed as well as the cache and virtual memory perfor-
mance. The memory needed by a simulation grows with problem size, so the limited
memory and cache size on a single processor may severely degrade simulation perfor-
mance for large problems. In such cases, an attractive alternative is to use a parallel or
a distributed machine. Such a machine possesses the sum of memory and cache on all
processors to fulfill the memory requirements, and the combined processing power to
speed up the simulation. Our preliminary results were produced using an IBM SP2.

The general concept of Parallel Discrete Event Simulation (PDES) is similar to
the sequential version; however, each processor has at least one simulation engine
(termed a Logical Process (LP)), each of which has its own clock, event queue, and
state variables. LPs communicate via messages. Consider the example of a space
defined by two sub-lattices of sites l� and l�, populated by mice, and two processors
assigned to them. The process LP� simulates the behavior of mice in l� and LP� sim-
ulates the behavior of mice in l�. When a mouse m� moves from l� to l� at time t�,
LP� sends a message to LP� containing the event of arrival of a mouse m� at time t�.
The event is received and eventually processed by LP�.

The problem that arises is that each LP advances at its own pace. Some LPs may
be early in the simulation, some farther along. For example, in the considered pair of
processors, LP� could be at logical time t� when it receives a message from LP� with
a timestamp (event’s scheduled time) t� � t�. Such a situation is called a causality
error, and it can invalidate the simulation if the event happening at t� can affect the
event at time t�.

There are two main approaches dealing with causality errors[4]: avoiding them, or
undoing the potentially incorrect computation, and restarting the simulation. The first
approach, known as conservative, was developed by Chandy and Misra [3].

The general idea behind the conservative approach is that LPs do not process any
new events until there is a certainty that no event with a lower timestamp can arrive.
The messages sent between LPs are assumed to be sent in chronological order. The
receiving LP has preallocated buffers for each LP that can send it a message, and it
reads off messages from each buffer in a FIFO manner. In order for the LP to process
a message from the event queue, it has to check all incoming buffers. If all buffers
contain messages with timestamps larger than the timestamp of the event in the event

queue, then it is safe to process that event. Conservative simulations derive their good
performance from lookahead, the ability to predict when an event will occur. In the
case of Lyme disease simulation, lookahead results from the fact that mice move only
one lattice node at a time. If a mouse is four lattice nodes distant from the processor
boundary it is safe to move the mouse if neighboring processors are behind no more
than three days. If, however, the mouse is on the processor boundary, the neighbor-
ing processors must be practically synchronized. This lookahead is further shortened
when deer are present because they move faster than mice. This tight synchroniza-
tion at the processor boundaries required by the conservative methods prompted us to
investigate the optimistic approach in the parallel simulation.

The second protocol, known as optimistic, deals with causality errors differently.
Each LP processes events according to their timestamp, and when an event es with a
timestamp (ts) smaller than the local clock arrives (that event is also known as a strag-
gler), the computation is rolled back to time ts. The computation is then restarted,
and the event es is processed. Time Warp [6] is the best known optimistic protocol.
There are several aspects to the rollback. The first one is the need to restore the sys-
tem state to that just before the time of the straggler. Another aspect is the need to
restore the queue of incoming messages. This entails saving all the states of the com-
putation leading up to the causality error, as well as all the messages that have been
received. Finally, the messages that have been sent since the time of the straggler
have to be cancelled, since they might become invalid through the restarted compu-
tation. The messages cancelling the original messages are known as antimessages.
When an LP receives an antimessage, it must roll back the computation to the time
before the corresponding original message was processed. The original message then
has to be cancelled.

To see the rollback mechanism in action consider the following causality error ex-
ample (see fig.1). The mouse m� moves to location y at time t� � ��� (assume that
the mouse already had four unsuccessful attempts to find a free space and that after
five unsuccessful attempts it must die). The mouse survives dispersal and occupies
location y. The logical process (LP�) that processed the move event is now at time
t� � ���. On LP� there is a mouse m� at location z. LP� processes a move event
from location z to location y for mouse m� at time t� � ��. Since LP� is not respon-
sible for location y, it sends a message to LP� containing the move event of m�. LP�

receives the message, and since the timestamp of the message is lower than the log-
ical time of LP�, the message is a straggler. The state of LP� has to be restored to
that at the time t� � ��. The simulation on LP� is then restarted, the first event will
be the move of mouse m� to location y. Next the move of mouse m� to location y
is processed, and under our assumptions (maximum of five steps for dispersal), the
mouse m� dies and is removed from the simulation. The situation after the rollback
is shown in fig.2.

LP at time 1001

m2m1m

y

2LP at time 70

z

LP at time 1001

m1m
m2

y

2

z

LP at time 80

Figure 1: Optimistic simulation before rollback.

m2

y z

1 2LP at time 80LP at time 100

Figure 2: Optimistic simulation after rollback.

The disadvantage of the optimistic method is obviously the amount of memory it
consumes by keeping track of all computed states and messages received and sent.
In order to minimize the amount of information which needs to be saved, the global
virtual time (gvt) is calculated. The gvt is the minimum virtual (simulation) time of
all the LPs and the timestamps of all messages present in the system. By definition,
the computation cannot be rolled back beyond the gvt, since there are no events with
a timestamp smaller than the gvt in the system. The gvt calculation is an important
part of reducing the simulation’s memory usage, because any states and messages that
happened before the gvt will never be referred to and can be therefore removed from
memory. The process of memory reclaiming is known as fossil collection.

4 Computational Model
We have decided to model Lyme disease using the optimistic protocol. The main

reason, besides the small lookahead, is that the ecological simulation has a lot of inher-
ent parallelism, which can be exploited in an optimistic way. The basic components of
the simulation are the space inhabited by individuals and the individuals themselves.
The space is divided equally among the processors, and, for prototyping purposes, we
have used strip decomposition in the dominant (larger) direction, i.e., this direction is
equally subdivided between processors. For four processors, if the space is ���x��,
each processor will receive a ���x�� strip. There is one LP per processor, and each
LP (which we call a SpaceManager) is responsible for the part of the space on that
processor and all the objects assigned to that space. The parallelism is derived from
the fact that several independent events can occur at the same time. For example,
events associated with mice getting infected by ticks or mice dying are independent;
therefore, they can be processed in parallel.

Since we deal with large areas and large numbers of individuals, it is prohibitively
expensive to save all the states needed for rollback; therefore, we have turned to an

(a) day 1 (b) day 180 (a) day 1 (b) day 180
Figure 3: Even distribution. Figure 4: Band distribution.

approach similar to that used in SPEEDES [13], which uses incremental state saving.
In our system, when an event is processed, it is placed at the head of the processed
event list. When a rollback occurs, the events are removed from the head of the list
and are “undone”. The events are removed from the list until an event with a smaller
timestamp than the timestamp of the event that caused the rollback is found at the
head of the list. The method of course assumes that an event can be undone given the
information contained in the original event. This is the case in our system. There is
another structure necessary to support incremental state saving, namely the ghost list,
which contains objects that have been deleted from the simulation or objects that have
been sent to another processor due to a Move Event.

Our gvt calculation might take more than one round of synchronization messages
in order to flush out all messages that are in transit, so, in order to make the computa-
tion efficient, it is important to overlap computation and communication [14]. In our
system, when an LP initiates a gvt calculation or receives a gvt calculation message,
it enters a quiet mode. In that state the LP receives antimessages and event messages
and processes events. The LP might also roll back, and, as a result, send out antimes-
sages. It does not, however, send any positive messages resulting from processing
events. The LP puts these messages on the withheld messages list. When the gvt
calculation is completed, and the new gvt has been broadcast by the processor who
initiated the gvt calculation, all LPs release the messages that were withheld.

5 Simulation
Mouse movements are modeled as follows: the mouse enters the dispersal state

drawn from a geometric distribution function with expectation ���d. If the mouse
is to disperse, the animal randomly selects one of eight directions for dispersal. It
moves in that direction with a waiting time derived from the exponential distribution
with expectation ���m. If the first site the animal encounters is open (no mouse), the
mouse stops and survives dispersal with certainty. If the first site is occupied by an-
other mouse, we update the number of steps (ns) the mouse has taken since dispersal.
The mouse then dies with probability �ns���

�. If it survives, it attempts to disperse to
the next site in the same direction. After five unsuccessful steps (ns � �) the mouse
dies with certainty.

Fig.(3) shows mice movements in an environment where the mice are evenly dis-
tributed, with free space available between the nodes occupied by the mice. We have
placed more mice at the boundaries of processors to show where the strip-wise space
decomposition occurs (the darker vertical lines in part a of the figure). The simulation
starts with 1,560 mice and ends after 180 days with 52.4% of mice dead due to natural
causes, and 0.32% dead due to lack of space. Fig.(4) shows the mice movements in
an environment where each of the nodes in a “populated region” is occupied. On the
first day there are 1,500 mice in the simulation, and by the last day 22.2% of the mice
die due of lack of space, and another 41.7% die by other causes.

5.1 Mice Simulation Events
Several events can affect a mouse. There are several object functions that create

events, which are in turn inserted into the event queue. The following object func-
tions are related solely to the mouse. Disperse creates a new Disperse Event and en-
queues it. The event time is derived from an exponential distribution with a mean of
20 days. Start moving puts the mouse in a dispersal state (sets dispersal flag), resets
the direction of move, and calls move. Move picks a new direction (if it is not defined
yet), figures out when to move (dictated by an exponential distribution), creates a cor-
responding Move Event, and enqueues it. Next move “flips a coin”. If the number is
within the death probability, the function makes a new Kill Event (instantaneous) and
enqueues it; if, on the other hand, the mouse survives, move is called.

The SpaceManager dequeues the events from the event queue and processes them
according to the following rules defined for each event type. Move Event: Check if
the object being moved belongs to the processor executing the SpaceManager. If so,
remove the object from the location where the object resides. If the object is going
out of bounds, and if the LP is processing in quiet mode, put the message on the with-
held list. If the object is going out of bounds and the LP is not in a quiet mode, send
the event message to the processor to which the object is moving. If the object is not
going out of bounds, put the object at the new location, check if that location is al-
ready occupied. If it is, increase the number of steps that object has taken and call
next move, described above. If the site is empty, reset the number of steps that the
object has taken to zero, change the object’s dispersal status to non-dispersing, and
call disperse, mentioned above. Disperse Event: call start moving. Kill Event: find
the space where the object is located, and remove the object from that location. Now
all other events that have been scheduled in the future for that object are impossible
and are removed from the event list and put along with the object on the ghost list.
When an event is processed, it is inserted into the processed event list.

5.2 Ticks
Although ticks are not modeled as individuals, their densities are updated at the

time mouse events occur. We do not count all individual tick bites, since studies show

that there can be as many as five individual larval bites per day. Accordingly, we
decided to combine multiple bites into one: 10 larval bites or five nymphal bites at
one time. At the beginning of the simulation we only have nymphs that have over-
wintered. They are then questing nymphs. At about the ��th day eggs hatch, larval
ticks enter the simulation, and the Tick Blobs at each spatial node are updated. Right
now, we are using 90 days as a constant, but in the final version of the simulation lar-
vae will hatch within some interval around the 90th day. When a mouse is bitten by
a Tick Blob, the number of ticks at the lattice node where the mouse is located is de-
creased by the number that bit the mouse. When the Tick Blob drops off the animal,
tick densities at the lattice node are increased. We also make the assumption that when
the mouse dies, the Tick Blob (if any) present on the mouse dies. We assume that mice
are bitten by a Tick Blob as long as there are enough questing ticks on the node of the
lattice. This assumption implies that there is a threshold for both larval and nymphal
ticks beyond which we do not “notice” any new bites. We have two types of bites:
a nymphal bite and a larval bite. They are treated independently, because they are
temporally independent for most of the simulation. The events involving ticks are
Tick Bite and Tick Drop. These involve decreasing/increasing the number of ticks at
the space object. In case of a bite a Tick Blob is created and placed on the mouse, in
case of a drop, the Tick Blob is removed form the mouse. Undoing the events entails
restoring the Tick blob at the node and restoring the infection status of the mouse. It
can be seen that the tick densities at lattice nodes will be updated only when a mouse
is present in the area, but ticks die even in an area where no mice are present. The
solution we use is to update the tick densities at empty (mice-free) locations during
the fossil collection stage (right after the new gvt calculation).

6 Preliminary Results
We wanted to see if our simulations show that the spread of Lyme disease is directly

related to the dispersal of mice. The simulation was run on an IBM SP2, a distributed
memory MIMD machine. Each of the four processors we used had about 400 mice
and a ���x	� lattice. We assumed each lattice node to be 400m�. Initially all mice
are uninfected by the spirochete. We have used the distributions of mice depicted in
fig.3 and fig.4. The following figures represent the presence of the disease in a given
location; if there is at least one infected tick in the Tick Blob at a given location, the
figure will show a data point. The infected ticks can be either questing ticks or ticks
that have had their blood meal. Mice are not explicitly depicted in the figures. The
figures depict simulations at different points in time.

Fig.5(a) shows the initial configuration of infected nymphs. The uninfected nymphs
are placed similarly and the larvae will be added to the simulation on the ��th day
in the same pattern. Notice that the larvae will not be infected, since we assume no
transovarial transmission of disease. The mice are distributed evenly as in fig.3. In

fig.5(b) we see that the disease is dying out due to the nymphal mortality. It is sus-
tained in places where the nymphs have fed on mice and dropped off as adult ticks.
Fig.5(c) shows the presence of the disease at the end of the ���th day. We can see that
initially uninfected larvae fed on infected mice, received the pathogen, and dropped
off as non-questing nymphs.

We wondered if the spread of the disease is correlated with the mouse dispersal rate;
therefore we increased the dispersal rate by a factor of four. The results are depicted in
fig.6. We see that the disease spreads faster among both the questing nymphs (fig.6(a))
and the questing larvae (fig.6(b)). In comparing the final configurations (fig.5(c) and
fig.6(c)), we notice that the density of the disease-carrying ticks is much higher when
mice are dispersing faster. This is because the faster the mice disperse, the more area
they can cover. The points present at the bottom of the figures represent the infected
mice that carried ticks from the area at the top of the figures and dropped them off at
the bottom (the lattice, as previously mentioned, wraps around).

We also wanted to see how the distribution of mice affects the spread of the disease.
The mice were distributed band-wise as depicted in fig.4, and the initial configuration
of nymphal and larval ticks remains the same (fig.7(a)). We can see that the disease
dies off in the area where no mice are present (fig.7(b)). This is of course because the
questing nymphs fail to find a blood meal and therefore die. The final configuration
(fig.7(c)) shows that the spread of the disease is increased by the presence of non-
infected larvae.

The next set of figures shows the same configuration for ticks and mice, but the
mice are dispersing four times faster. We notice that the disease spreads farther and
that the spatial density is higher for faster dispersing mice. The results, although pre-
liminary, correspond to our understanding of the spread of the disease. In fig.10. we
present a graph of the spread of the disease through the ticks; the decomposition is
band-wise and mice disperse fast. The first two bars represent the total number of
questing nymphs and the number of infected questing nymphs at the beginning of the
simulation. The next two bars depict these nymphs after they took a blood meal and
molted into non-questing adults. The fifth and sixth bars represent the larvae on day
90, and the last two bars represent these larvae after they have transformed into non-
questing nymphs. The infection ratio might seem high, but the parameters that were
chosen for the model are the most favorable for the spread of the disease.

Although our system is only in its early stages, we were able to obtain significant
speedups as depicted in fig.9. The decline in performance with two processors reflects
the combined cost of the optimistic approach and the communication overhead. With
the use of four processors, we can overcome this overhead.

(a) day 1 (b) before larvae (c) day 180

Figure 5: Distribution of infected ticks. The mice are distributed evenly and disperse slowly.

(a) before larvae (b) after larvae (c) day 180

Figure 6: Distribution of infected ticks. The mice are distributed evenly and disperse fast.

(a) day 1 (b) before larvae (c) day 180

Figure 7: Distribution of infected ticks. The mice are distributed band-wise and disperse
slowly.

(a) before larvae (b) after larvae (c) day 180

Figure 8: Distribution of infected ticks. The mice are distributed band-wise and disperse fast.

0

2

4

6

8

10

0 2 4 6 8 10

sp
ee

du
p

number of processors

actual speedup

ideal speedup

Figure 9: Speedup for 2,4,8 processors. Figure 10: Spread of disease in various tick types.

7 Future Work
Taking the simulation from 180 to 365 days is one of our goals. Parallel Discrete

Event Simulation paradigm seems to fit well such an extension because winter months
when nothing happens will be “skipped over” and the simulation time will move to the
spring thanks to the events at the head of the event list having timestamps correspond-
ing to the spring months. The main point is that, unlike the time-step simulation, we
are not wasting computation by checking for events every time step or making calcu-
lations that do not affect the state of the system.

An important aspect of the spread of Lyme disease is the presence of deer in the
environment. Including deers in the simulation will enable us to model the life cycle
of adult ticks. The cycle will include taking a blood meal on a deer, dropping off a
deer, laying eggs, and will end in death. Our Tick Blob will have to be expanded to
accommodate the new categories. Finally, we would like to model reproduction for
both mice and deer.

Acknowledgments This material is based upon work supported by the National Science Foun-
dation under Grant BIR-9320264 and by the Office of Naval Research under Contract N00014-93-1-
0076. The content of this paper does not necessarily reflect the position or policy of the U.S. Govern-
ment – no official endorsement should be inferred or implied.

References
[1] A. Barbour and D. Fish. Science, 260:1610–1616, 1993.
[2] C.G. Cassandras. Discrete Event Systems: Modeling and Performance Analysis. 1993.
[3] K.M. Chandy and J. Misra. IEEE Transactions on Software Engineering, 5:440–452, 1979.
[4] Richard M. Fujimoto. Comm. of the ACM, 33(10):31–53, 1990.
[5] H.S. Ginsberg. Ecology and Environmental Management of Lyme Disease, 1993.
[6] D.R. Jefferson. Trans. Prog. Lang. and Syst., 7:404–425, 1985.
[7] O.P. Judson. Trends in Ecology and Evolution, 9:9–14, 1994.
[8] R.S. Lane, J. Piesman, and W. Burgdorfer. Annual Review of Entomology, 36:587–609, 1991.
[9] E. McCauley, W.G. Wilson, and A.M. deRoos. American Naturalist, 142:412–442, 1993.

[10] G.L. Miller, R.B. Craven, R.E. Bailey, and T.F. Tsai. Laboratory Medicine, 21:285–289, 1990.
[11] S. Sandberg, T.E. Awerbuch, and A. Spielman. J. Theor. Biol., 157:203–220, 1992.
[12] A. Spielman, M.L. Wilson, J.F. Levine, and J. Piesman. Annual Rev. Entomology, 30:439–460,

1985.
[13] J. S. Steinman. Winter Simulation Conference, pages 687–696, 1993.
[14] J. S. Steinman, C. A. Lee, L. F. Wilson, and D. M. Nicol. Workshop on Parallel and Distributed

Simulation pages 139–148. 1995.
[15] D.J. White, H.G. Chang, J.L. Benach, E.M. Bosler, S.C. Meldrum, R.G. Means, J.G. Debbie,

G.S. Birkhead, and D.L. Morse. Journal of the American Medical Association, 266:1230–1236,
1991.

[16] M.L. Wilson, A.M. Ducey, T.S. Litwin, T.A. Gavin, and A. Spielman. Medical and Veterinary
Entomology, 4:151–159, 1990.

[17] J.O. Wolff, K.I. Lundy, and R. Baccus. Animal Behavior, 36:456–465, 1988.

