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Abstract
A variety of statistical methods have been developed to explore

correlations in protein and nucleic acid sequences. Such correlations
have important implications for the evolution and stability of these
macromolecules. Recently, a number of fractal analyses of sequence
data have been developed. These analyses have considerable appeal as
they are extremely sensitive to long range correlations and to
hierarchical structures. One such analysis decodes sequence
information into a random walk and the statistics of the resulting
random walk is investigated. Anomalous scaling of such walks has
been interpreted as indicative of a fractal structure. Alternatively, a
generalized box counting analysis of decoded sequences can be used to
establish multifractal properties. In this work, the connection between
these two seemingly disparate approaches is established. This
connection is exploited to investigate correlations in protein sequences.
An ensemble consisting of a comprehensive data set of  representative
protein sequences is analyzed to establish the ergodicity of protein
sequences. The implications of this ergodicity for information
theoretical approaches to protein structure prediction is explored.

1: Introduction
The statistical analysis of sequence data has generated ongoing

interest. There has been a number of studies on the statistical
properties of nucleic acid and protein sequence [for reviews see 1, 2]
and such information has important implications for both the
evolution and the thermodynamic stability of biomacromolecules. In
addition to conventional statistical approaches [cf. 3, 4], a number of
fractal methods have been recently developed to investigate sequence
correlations [5-10].  In one of these methods, sequence information is
mapped into a random walk problem.  The encoded walk results from
assigning a specific numerical value and spatial direction to a property
of the members in the sequence.  For instance, in DNA problems it is
common to give purines a +1 step on a 1-dimensional lattice and
pyrimidines a -1 step [5-7].  Similar walks have been studied in
protein sequences and have been based on specific chemical or physical
property of the monomeric unit [8]. The resulting trajectories of these



encoded walks can be analyzed as diffusion problems. Deviations of
the encoded walk from random behavior provides evidence for long-
range correlations. Significant controversy has surrounded encoded
walks for DNA sequences, particularly with regard to correlations in
non-coding or "junk" DNA [cf. 11].

In a seemingly very different approach, the encoded data
sequence can be analyzed with a generalized box counting procedure to
obtain a multifractal spectra [10].   The multifractal formalism was
developed in an attempt to generalize fractal concepts to encompass
complicated probability densities (for reviews see [12-14]).   Density
distributions can be  characterized through their moment distributions
and can give rise to an infinite number of fractal dimensions, hence
the terminology, multifractal.   The multifractal formalism has been
used as a descriptor for a variety of physical and chemical phenomena
such as:  diffusion-limited aggregation [15], percolating clusters [16],
energy dissipation in fully developed turbulent flows [17],
configuration of Ising spins at critical points [18], and the
characterization of strange attractors [19].    Recently the multifractal
approach has been extended to the description of  helix-coil transitions
in biopolymers [20, 21] and to the analysis of the solvent accessibility
profile of proteins [10].  It was seen that the  multifractal spectrum of
the solvent accessibility provides a signature for correlations in
properly folded proteins.

In this work we relate scaling laws determined from trajectories
of  the encoded walk to generalized fractal dimensions determined
from the multifractal analysis (Section 2).  These results are exploited
to examine correlations in the hydrophilicity of a large data base of
protein sequences (Section 3).  The multifractal approach allows
correlations within individual protein sequences to be accurately
determined.  This provides a significant advantage over the analysis of
encoded walks as the trajectory of an individual protein is too "noisy"
to obtain good statistics.  Consequently, this latter approach has been
restricted to the study of "ensembles" of many protein sequences.
Using the multifractal approach we examine the ergodicity of protein
sequence correlation (Section 3).   For a comprehensive, non-redundant
data set of protein sequences it is seen that sequence correlations
within individual proteins are the same as correlations within the
ensemble of sequence.  By establishing the ergodicity (in the
information theory sense), the information content of protein sequence
can be statistically related to the number of probable sequences.  From
a k-tuplet analysis of the information content (Section 4), it is seen
that the number of probable sequences is significantly smaller than
the number of possible sequences.



2:  Encoded Walks and Multifractals
An encoded walk is generated from a protein sequence using a

numerical correspondence between the each amino acid and a physical
property associated with it.  This correspondence provides a sequence

of numbers, { }ξ ξ ξ1 2, ,� L , where ξi   is a numerical value associated with
the amino acid in the ith position along the sequence and L is the
length of the protein sequence.  Often, ξi   takes on values of +1
depending on the chemical composition of the unit [5,8].  In a previous
application, the hydrophilic, Coulombic and hydrogen bonding
properties of amino acid sequences were separately encoded [8].    A
trajectory is generated from encoded sequence.  In the case of a one-
dimensional mapping, this is given by:

( )x l i
i

l

=
=
∑ξ

1

                (1)

Walks defined in this manner will usually show strong drift as a result
of the overall composition of the sequence.  This effect can obscure
correlations and attempts have been made to compensate for it [cf. 22].
Here we consider a drift correction known as the "bridge analysis" [8].
In this analysis the reduced trajectory is considered:

( ) ( ) ( ) ( )y l x l l L x L= −                 (2)
This trajectory y(l) will start, (l=0), and return, (l=L), to the origin,
regardless of composition.  Typically, the trajectory is symmetric about
the midpoint, l L= 2.  At the midpoint of the trajectory, the walk will
have its largest excursion from the origin and this point represents the
mean squared displacement.  A construct of this kind is known as the
"Brownian bridge." 

Trajectories of individual proteins have a limited number of
data points and, therefore, appear "noisy".  For practical analysis of
the walk statistics, ensemble averages must be considered.  An

ensemble averaged squared displacement ( )z l2  is defined as:

( ) ( ) ( )z l y l L2 2 2
= −ξ ξ       (3)

where the brackets represent averages over a large data set of
different proteins and the bars represents an average within a protein

sequence.  For example, ( )ξ ξ= =∑1
1

L ii

L
.  The term ( )L ξ ξ−

2
 eliminates

the L dependence and corrects for different lengths and variances
between proteins.  The mean squared trajectory follows a scaling law:



( )z l l w2 2~ α        (4)

where the exponent αw  will equal 1/2 for a random walk.  When αw  is
greater than 1/2, the walk demonstrates persistence and αw  less than
1/2 indicates anti-persistence.  Correlations in proteins sequences were
seen with αw  being 0.520 for walks based on hydrophilic properties or
on hydrogen bonding and an αw  of 0.470 was determined for walks
based on static charge distributions [8].

The multifractal approach [10] provides a method for detecting
correlations within sequences of individual proteins.  It has been used
to explore correlations in the solvent accessibility profile and the
hydrophilicity profile of a number of proteins [11].  In this analysis,
one again starts  with an encoding of the sequence as in the walk
problem.  However, in previous applications ξi  did not take on values
of +1, rather they were assigned the continuous values associated
either with the fractional solvent accessibility [23] or with the
hydrophilicity index [24]. A generalized box-counting method is used
to analyze the sequential data.  In this approach, the sequential array
is covered by boxes of length, l, and the trajectory of each box is
calculated.  The procedure is repeated with increasing box sizes and
the dependence of the trajectory on box size is found.  In the
multifractal approach one is not concerned with the displacement, x(l),
alone, but with all moments of the displacement, ( )x lq .  These
moments are used to determine the "generalized" dimensions
associated with the shape of data profile.  These generalized
dimensions provide information on the hierarchical nature of the data
set.

A "partition function", ( )Z lq , is defined to examine the qth
moments of the sequence and it is given by:

( ) ( )Z l x lq j
q

j

L l

=
=

∑
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                (5)

where j labels individual boxes or sequences of length l within the
complete protein sequence of length, L.  There will be a total of L/l of

these boxes.  Using a scaling Ansatz, ( ) ( )Z l lq
q~ −τ , where ( )τ q  is a

generalized exponent and is related to a generalized fractal dimension,

Dq, by: ( ) ( )τ q q Dq= − 1 . The generalized exponent is obtained from the



initial slope of a log( ( ))Z lq  versus log( )l  plot using a linear least
squares fit.

It has been demonstrated that ( )τ q  follows a Legendre
transformation and two new function f(q) and α(q) can be defined.  The

function, Zq ( )δ , is analogous in structure to the partition function of
statistical mechanics (cf.  [10]).  In this analogy the multifractal
parameters become "generalized" thermodynamic functions.  This
correspondence is based on the Legendre transformation properties
and gives q as a generalized temperature, τ as the generalized free
energy, α as the generalized energy and f as the generalized entropy.
Often one sees a multifractal spectrum as a plot of f versus α.  In this
formal analogy, the multifractal spectrum represents a relationship
between the generalized energy and the entropy of the problem.

The function, a, (not to be confused with aw) is determined from
the relation:

α τ( ) ( )q
d

dq
q= −                 (6)

With Eq. (5), this gives:
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                (7)

The function a is obtained from the initial slope of  a plot of

x x Z lj
q

j j q∑ ln( ) ( )  vs. ln(l).  Now, the multifractal spectrum,  f(α)

versus α, can be calculated according to:
f q q q( ) ( ) ( )α α τ= +                 (8)

where Feder's convention has been used in Eq. 8 [2].  Commonly, one
sees multifractal spectra represented either as an  f(a) versus α plot or
as a Dq versus q plot.  These are merely different parameteric ways of
representing the same information.

In keeping with the above discussion, a single point on the

spectrum is generated by calculating Z lq ( )  at a fixed q value and

varying l.   From the two linear regressions, f(α) and α are determined.
The entire spectrum is generated by varying q.  Both positive and
negative integer values of q were used.   Figure 1 shows an example of
two data sets that can be analyzed with the multifractal formalism,
the hydrophilicity index and the solvent accessibility for concanavalin



A.   The corresponding multifractal spectra are shown in Figure 2.
Although to the eye the profiles in Figure 1 may appear similar, the
multifractal analysis reveals that they are correlated in very different
ways.  The spectrum for the solvent accessibilities is seen to be much
broader than for the hydrophilicity.  Both of these spectra are broader
than one obtained from a random sequence of numbers of the same
length.  These results show that both the solvent accessibility data and
the hydrophilicity show non-random correlations.  However, these two
parameters are correlated in a different manner.  In previous work
[25], it was shown that hydrophilicity profiles could be modeled as a
simple multiplicative random process.  The solvent accessibility
requires a slightly more complicated model, a binary model with one-
step memory.
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Figure 1.  Profile for concanavalin A for the hydrophilicity (top) and
the solvent accessibility (bottom).  Hydrophilicity was determined as
descibed in [24] and the determination of solvent accessibility from X-
ray structures is described in [10].  Both profiles show similar



variations along the sequence.  However, correlations with each profile
is statistically very different.
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Figure 2.  Multifractal spectra of concanavalin A:  �, spectrum
determined from the hydrophilicity profile, �, theoretical curve for a
multiplicative binomial process used to fit hydrophilicity curve, ∆
spectrum determined from the solvent accessibility profile.  The
broader spectra indicate stronger deviations from random behavior.

At first it may appear as if the multifractal approach is quite
different from the encoded walks.  However, they are actually closely
related.  The main difference in the two approaches is that
multifractals are concerned with the moment distribution of many
short trajectories that make up a protein sequence while the encoded
walks focus on the root mean displacement of a single trajectory from
an ensemble of protein sequences.  Because the encoded walks rely on
a single trajectory, an average over many proteins must be considered
to generate good statistics.  However, given a protein of a long enough
sequence one could in principle obtain a scaling law (Eq. 4) for a single
protein rather than for an ensemble average.  In the multifractal
approach, the sum of trajectories generated from a given sequence
replaces the ensemble average of the encoded walk.  If protein
sequences are ergodic in the information theory sense, then the
statistics within an individual protein sequence will be the same as



those within the ensemble.  In such cases, a correspondence between
the two approaches can be made.

Because of the finite length of a protein sequence, the number of
trajectories in the multifractal approach decreases with trajectory size
as L/l.  Consequently, to relate the multifractal sum to the mean
displacement of the encoded walks, one must normalized the sum.  The

scaling of y2  is related to the second moment of ( )Z lq  by:

 ( ) ( ) ( )y Z l L l l2
2

2 2 2~ ~ −τ                  (9)
where a fractal dimension of one for the support, i.e., the linear
sequence, is implicitly assumed.  Using Eq. 4 and 9, one obtains a
relationship between the walk exponent, αw , and one of the
multifractal exponents, τ(2):

( )
α

τ
w = −1

2

2
              (10)

Thus, the result of the encoded walk trajectory is related to a single
point in the multifractal spectra.  One could, of course, examine higher
order moments of the average displacement of the trajectory and

establish a relationship such as: ( ) ( )z l lq q qw~ α . These higher moments
are related to the appropriate multifractal exponent by:

( )
α

τ
w

q

q
= −1                          (11)

From this it is seen that the multifractal approach has a direct
correspondence with the encoded walks and that, except for negative
moments, it provides the same information.  The multifractal approach
is the method of choice because it can generate scaling exponents for
single protein sequences.
3:  Ergodicity of Protein Sequences

The multifractal spectrum of the hydrophilicity profile (see
Figure 2 for an example) of a large data set of proteins could be
accurately fit  using a multiplicative binomial process [25].  This model
provides the following relationship for τ(q) [cf. 26]:

( ) ( )p pq q q+ − = −1 2 τ                         (12)
where p is the probability of finding a hydrophilic residue and the
factor of 2 results from treating the problem as a binary process.
Using Eq. 12, a multifractal spectrum can be determined with the
following relationships for αmin  and αmax :



( )
α min

ln

ln
= −

−1

2

p
             (13a)

αmax

ln

ln
= − p

2
                       (13b)

The value of p is obtained using the αmin  and αmax  values determined
from the intercepts of the multifractal spectrum.  Most multifractal
spectrum are simple concave curves that are well specified using three
points, αmin  , αmax , and fmax .  For a linear array, fmax  is fixed at 1.   The
dimension, τ(2), is directly determined from the data with the aid of
Eq.  5.  Using Eq. 10, the αw  associated with the corresponding
encoded walk is found.  The data set shows persistence when ( )τ 2 1<

and anti-persistence when ( )τ q > 1.  Binomial multiplicative processes
will always show persistence as τ(2) must always be less than 1 (see
Eq. 12).

In previous work the average  αw   was determined to be 0.517 ±
0.005  for 16 different proteins [25].  This is in excellent agreement
with the value of 0.520±0.005 determined  from the bridge analysis of
hydrophilicity of an ensemble of proteins [8].  The correspondence
between the average of walks within a protein to ensemble average
walks suggests that protein sequences are ergodic.  The ergodicity of
protein sequences have important implications for information theory
approaches to molecular evolution and sequence statistics as all the
central theorems of information theory assume ergodicity in the signal
or message.

To actually prove ergodicity is a difficult task and, at best, one
can hope to establish consistency or inconsistency with an assumed
ergodicity.  To this end, a large, representative data set of protein
sequences was selected.  These were based on two algorithms [27]
whose goals were to reduce redundancy in the set while maximizing
coverage.  Using these algorithms, representative sets of 155 (Set I)
and 190 (Set II) different proteins sequences were examined.  The
multifractal spectrum derived from the hydrophilicity index for each
protein was determined and the value of  αw   for the corresponding
encoded walk was calculated using Eq. 10.  Representative values for
individual proteins are shown in Table I.  Additionally, the average
values of the entire data sets (I and II) are given.  The statistics of the
ensemble of proteins in the data set were determined by concatenating
the entire data set into a single sequence and determining the



multifractal spectrum.   The value and error of τ(2) was determined

from a linear regression of the log( ( ))Z lq  versus log( )l  plot for q=2.
These values are shown in Table I.  As can be seen, the mean of the
individual proteins is well within a standard deviation of the value for
the ensemble of proteins.  It establishes the hydrophilicity as an
ergodic parameter for these data sets.

Table I.  Walk Exponents Derived from Multifractal Spectra
______________________________________________________________

Set Size αw

Concatenated Set I 30,309 A. A. 0.5156 + 0.0008

Concatenated Set II 37,101 A. A. 0.5123 + 0.0007

Average of Individuals, Set I 155 Proteins 0.517  + 0.007

Average of Individuals, Set II 190 Proteins 0.517  + 0.006

Representative Proteins Size αw

Cytochrome B562 106 A.A. 0.523
Hemaglutinin 328 A.A. 0.521
Aconitase 754 A.A. 0.516
Tryptophan Synthase 248 A.A. 0.512

___________________________________________________________

4:  Implications for Information Theory
The number of possible proteins sequences of length N is 20N .

For a protein of only 100 amino acids the number of possible sequences
is astronomical.  Much has been written about the size of this number
[cf.  28] and its implication for molecular evolution.  Yet from an
information theory perspective this number is not all that significant.
An analogy can be made with the information content of languages.
Certainly there are astronomical numbers of letter sequences that one
can generate, but this has nothing to do with the structure or
information content of the language.  A basic theorem in information
theory relates the most probable number of messages, Ω, of length N to
the information entropy, I, by [cf.  29]:

Ω = 2NI               (14)



This theorem was derived for ergodic messages.  The information
entropy can be estimated from the distribution of k-tuplets in a
sequence.  This has been done for languages [30] and for DNA
sequences [2, 31, 32] but we are unaware of any work on protein
sequences.  At the lowest order approximation, the entropy is defined
as:

I p pk k
k

= −
=

∑ ln 2
1

20

    (15)

where pk is the probability of finding the kth amino acid and base 2 is
used to represent the entropy in terms of bits.  At the lowest order of
approximation, I0 , each amino acid is equally probable and
I0 2 20 4 3219= =ln . .  The first order approximation accounts for the non-
uniform amino acid composition and gives I1 4 177= . for data set II.
Higher order approximations can be determined from the k-tuplet
distribution using [30]:

( )I p p k s p k sm k
sk

= − ∑∑
=

( ) ln
1

20

                (16)

where s represents a sequence that is m-1 units long and the inner
sum is over all possible sequences of this length.  The conditional

probability, ( )p k s , is the probability of a kth amino acid following an s
sequence.  Doublet and triplet frequencies give I2 4161= .  and I3 3 988= . ,
respectively.  Higher order entropies drop precipitously.  This is a
result of the limited text.  The number of possible k-tuplets exceeds the
number in the text and gives the appearance of an unusually low
information content.  If a large enough, non-redundant text existed it
would be possible to accurately determine the higher order entropies
and these would decrease until the true information entropy was
reached.  Because we were not able to obtain this limit, the value of
3.988 can be considered to be an upper limit to the information
entropy.  (Interestingly, estimates of the information content of nucleic
acid sequences (from an early and limited data base [31]) found an I of
1.94.  This gives the not too surprising result that two bases do not
quite have enough information to code an amino acid while 3 bases
have an excess.  This allows for redundancy in the genetic code.  A
Huffman encoding of the genetic code could be more efficient but
would require codons consisting of singlets and doublets)

With this crude estimate of the upper bound for the information
entropy, Eq. 14 can be used to calculate the most probable number of
protein sequences.  First, it is recast into a more convenient form:



Ω = 200 2314. NI               (17)
Using I3 in Eq. 17, it is seen that for a protein with N = 100,  Ω is at
most 2092, over 10 orders of magnitude less than the number of
possible sequences.  This indicates that there are significant regions of
"sequence space" that have little or no probability of being populated.
Nevertheless, sequence space is still vast and the number of proteins
that have existed throughout evolution is still minute compared with
the number of  "most probable" proteins.  One must bear in mind that
the number of probable protein sequences is an upper estimate.
Although this number could be considerably lower, from estimates of
information content of nucleic acid one would not anticipate it
approaching the number of proteins visited during evolution.

Proteins have been described as "slightly edited random
polymers" [cf.  8].  Because sequence space is so vast, it is unlikely that
a primordial soup generating random sequences of proteins could
explore major regions of this space during the history of the earth.
The number of proteins that could have existed during our history is
difficult to estimate and these numbers have ranged from 1035-1048
for a protein of 100 units [28]. Despite this wide range, these estimates
are still minute compared with the number of possible sequences.  This
suggests that the conditions for forming a protein from a random
polymer cannot be all that stringent. Yet the concept of a "slightly
edited random polymer" is extremely vague. This work serves to better
define this condition. A "most probable" protein sequence of 100 units
is approximately 10-10 as likely as a random protein sequence,
suggesting that considerable editing has taken place. Yet even with
this, sequence space for "most probable sequences" is still much larger
than the space that has been explored to date, again suggesting that
finding a protein in this space is not too stringent a condition.
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