LIST UPDATE PROCESSING (LUP) - SOLVING THE
SEQUENCE DATABASE UPDATE PROBLEM

R.DOELZ, F. EGGENBERGER
BioComputing Basel, Biozentrum der Universitdt, Klingelbergstrasse 70
4056 Basel,Switzerland

Sequence databases of today require frequent updating. Mirror pro-
cedures to copy incrementally updated databases as cumulative sets
are the preferred method and can be implemented by straightforward
scripting. However, limited bandwidth of networks and the increase of
data require more powerful paradigms to reduce the workload reliably.
We suggest the List Update Processing (LUP) principle. The system
has been implemented on an experimental basis to update the Swiss
EMBnet Node (BioComputing Basel, CH) with data from the Euro-
pean Bioinformatics Institute (EMBL Outstation, Hinxton Hall, UK).
The results obtained from the prototype suggest to expand the system
to several sites.

1 Introduction

Sequence databases grow with incredible speed. In order to maintain a database
locally, it is required to transfer the database or parts thereof from a remote
provider to the local system, format it accordingly, and utilize the growing infor-
mation within application programs. Already some years ago, trends of growth
indicated that the emerging CD-ROM technology will face limits in a few years,
as the current density of data on a single disk is limited to about 680 Mbytes
of data. Additionally, production and shipping of databases on CD-ROM can
hardly be accomplished in less than two weeks, which would result in a con-
siderable backlog and significant cost. One of the prime goals of the European
Molecular Biology (EMBnet) project ! is to accomplish database updating via
electronic networks?

Three major problems are to be tackled in order to achieve seamless data
processing:
1. Data selection at the provider side: Today’s sequence databases are prepared
by exporting new data entries from a database management system.
2. Transfer of data from provider to customer
3. Integration and formatting of the data at the customer side.

In this paper, we describe a novel method to synchronize databases in an
improved set of client/server processing routines.

2More information is available at http://www.ch.embnet.org/embnet.news/

1

2 Known methods

Nursing?

Early procedures relied on the transfer of blocks of data, prepared from single
entries, which were pushed to the customer. The selection was accomplished by
creation date of the individual export files. Originally designed for data transfer
via X.25 technology, the transfer of the data was accomplished with the FTP
program in later stages. For this purpose, the customer had to allow the provider
to approach a server accessible on non-anonymous basis (username/password
authentication).

The integration and formatting process has not specifically been solved but
was performed via the file system . Addition and replacement were achieved
this way, as individual entries created one file each.

NDT?

The Network Data Transfer (NDT) protocol, based on the push paradigm,
initiates the transfer on the provider side after proper selection of entries. Pro-
cedures are is similar to the 'nursing’ approach. The provider uses a special-
purpose client to talk to a special-purpose server, and uses IP number and
protocol-inherent authentication.

FTP

The use of the ftp protocol has become very popular with the growing band-
width of international networks, which allowed that the cumulative set of data
could be transferred in one run. Besides the waste of bandwidth caused by this
procedure, both disadvantages of insufficient success control and flexibility are
maintained. However, as the customer approaches the provider to maintain ser-
vice, the principle followed is a poll paradigm. The database providers do also
offer to download incremental updates, which are prepared batchwise in contin-
uous fashion on daily or repository. There is no control on success or completion
of the transaction, and deletion cannot be processed either. As the communi-
cation is initiated by the customer (client), anonymous ftp (no authentication)
is possible.

The data integration of an FTP stream is left to the client - currently, no
procedures are provided to manage the data. Data reformatting of cumulative
updates on script-level basis is the most frequently used option.

3 Principle of the List Update Processing

The following assumes that the goal of the update procedureis to create a perfect
copy of a master database. Sequence databases of various sites can theoretically

2

Table 1: Sets of sequence database updates

Site Name of file | Sets weekly /other
incremental
EBI cumulative.dat | non-sorted yes
NCBI ghcu.flat sorted yes
Basel emnew.dat xembl (new EBI data), | no

xxembl (updated set),
gb_new (exclusion set)

NDT site em_new. (one per entry) n.a.

single files

judged for quality by the number of sequences contained in this database. This
figure is, however, not necessarily sufficient to characterize the data set exhaus-
tively, as the temporarily changing nature of the set is neglected. The following
outlines the requirements to handle sufficiently abstracted information which
shall be utilized in order to duplicate databases over networks.

3.1 Lists

As mentioned, the number of entries in a database can only provide a rough
estimate whether the mirroring performs well. However, as both duplicate or
outdated entries would contribute to the total number, it is required to list the
names of the entries also. Comparing lists of entries, however, does still allow
that some entries are ’outdated’, which means that the update of a given entry
has not been propagated as required. Therefore, the following data are required
to characterize a data set sufficiently well:

e number of entries
e names of the entries

e a property of the entry which characterizes the status of this entry (e.g.,
version number or date stamp).

In order to process updates on a subentry level (atomic updates), it were advan-
tageous to add a checksum which characterizes the data set by contents rather
than by number or property. Due to the overhead caused by this procedure, we
prefer to externalize the atomisation of data (see Discussion).

3

3.2 Properties of updates

Data sets available today are usually available as sequential files alphabetically
sorted by their master key such as the entry name. However, each site will
possibly have more than one single set, and unfortunately the criteria for a
given set are different. Table 1 lists the current composition of three sets in
exemplary fashion.

The integration of incrementally received updates requires the deletion of
entries which are already in the current set in a previous version , and the inser-
tion of the new entry. Sequentially oriented files, however, do not allow entry
substitution as the volume occupied by the entry is variable. We have created
the DBTOOLS package earlier* which used a indexing schema similar to SRS
in order to allow fast access to sequential data. The overhead caused by this
mechanism is considerable and it is difficult to justify just another indexing
schema. In addition, before the transaction can take place, a backup of the
original set is always required.

The List Update Processing (LUP) approach is different and solves the
problem elegantly. Instead of requiring a backup and working on the original
file, the LUP tools create a new file from the live data, which is validated before
it is used to replace the production set. LUP tools reduce the update manip-
ulation to lists rather than full data sets. Lines in these lists are sufficiently
informative to allow entry characterization by name, accession number, date
and version. Instead of updating and mirroring data sets , the goal is to mirror
the lists of these data sets are mirrored. The effect of such a list updating is
that the unit of change is a defined entity (a single line), which can be handled
much more easily than full data sets. Sorting and merging of lists is readily
implemented by standard tools of most operating systems. In order to validate
that a given mirror of the database is as complete as possible, it is sufficient to
prove that the lists created from the databases are identical.

3.8 Communication

As the ftp protocol or other known tools do not allow that individual data sets
are created on the fly, the customer must have a tool to create the required data
on demand.

The Hierarchical Access System for Sequence Libraries in Europe (HAS-
SLE) ¢ has been tailored to meet this task. Security, access control and data
compression are provided as features which facilitate the transfer. In combi-
nation with the LUP tools, we have therefore employed a HASSLE provider
schema which allowed to create a fault-tolerant system of servers which will get

4

the potential customer the best reply possible. In order to avoid unnecessary

data duplication, we choose the HASSLE security feature of individual keys

bound to site addresses”.

3.4 Implementation of LUP routines

Based on a core routine library, about 30 individual programs are available as
LUP toolset. Specific database formats are EMBL and GENBANK formats on
the provider and customer side. On the customer side, the NBRF/GCG pro-
gram format is also supported, together with a ’breaking’ utility to split long
sequences into the currently supported limited length of sequences.

In particular, we have implemented the following functionality:
e Listing of flat/formatted files

e Comparisons of listing files

o Merging of listing files

e Subtraction, extraction and specific manipulation of lists

e Resorting of lists according to lists

e Counting of sequence, reference and flat files

e Composition of new flat files based on listing files

e Composition (merging) of flat or formatted files based on mixed listing

files

3.5 HASSLE

HASSLE has been described earlier %7 and and is readily available® to run the
required programs as provider in the established provider environment. Based
on the available raw data material, we have implemented a new service on
experimental basis: SEND_EBI, for sending data updates in a single file (’cu-
mulative.dat’). It should be noted that the provider does only send unmodified
generic data. The transmission of formatted data is not anticipated in order to
avoid data loss or falsification.

Two different actions are achieved in the services mentioned above depend-
ing on the phase of the process: the listing of the provider data, and the

bour FTP server is at ftp://ftp.switch.ch/mirror/embnet-ch/bioftp-sw/hassle/

5

extraction based on a ’to-do’ list. The ’to-do’ list processed by the HAS-
SLE provider has to be submitted accordingly by the customer. If resource or
bandwidth usage is an issue, the size of the data returned in a single HASSLE
run might be restricted. Such a measure usually reflects a problem, but as the
LUP principle inherits synchronization, the processing of partial batches will
not affect the quality of the data.

3.6 Reliability

We used LUP in the past year to update our copy of the EMBL database. It
was found that the synchronization with entire lists (as opposed to list updates
only) was required on periodical basis, in order to

e enforce synchronization
e allow for deletions

e compensate malicious operational effects

The latter category (commonly referred to as ’bugs’) is possibly irrelevant in an
ideal world. However, we observed a wide variety of problems in incremental
updating. FTP-based methods which we apply simultaneously to GENBANK
updates showed such errors in rare occasions, however, remain undetected due
to the lack of recovering mechanisms.

The LUP-based system had a time delay of two days at most and did not show
any operational flaws . However, logistic problems (such as rejected transfers
due to the fact that files at the provider side were busy due to data processing)
seem to be more limiting to the set-up than failures of data transfer itself.
On a 200 day average, 92of all days had the perfect mirror of the database,
3side (as deletions were processed weekly rather than daily) and most of other
days suffered from ’operational’ problems such as physical power outage, disk
problems and similar effects which were compensated on a subsequent day. This
'insufficiency’ rate of 5measured at the application side (i.e., in the application
package format) and therefore look less advantageous than the data for the raw
data mirror. Data on the application side were never affected in the sense of
erroneous sequences but rather did just not do the update.

The time delay caused by ’pausing’ of updates and large bulk transfers proved
to be feasible as the option to segment list updates in chunks can be added on
demand. Due to the reliability we observed even in the megabyte range, we
dropped this option but are prepared to reinvoke it in case of need.

3.7 Adaptation to other systems

The LUP principle relies on various key elements:

6

e local manipulation
e protocol transfer

e remote manipulation

Each of these three elements can be utilized separately, or can even be replaced
by already existing technology. The flow schema as described below refers to
our reference implementation of all three elements.

4 Details of the LUP implementation: Flow schema

The updating of sequence databases via LUP tools requires a suitable set-up at
both the provider and the customer side.

4.1 Clustomer side

The basic operational principle is to allow the customer to ask the provider for
the creation of a list update. Once this file is received and properly processed,
the customer will compare his own, current entry list with the required entry
list and subsequently create a list of missing data (’to-do’ list). This list is then
forwarded to the provider with the request to send the complete data listed
therein. The customer will create a merged list from own and newly obtained
list data. Comparison with the already existing own data and the merged list
results in the request to transfer the missing data.

4.2 Provider side

The basic operational principle is to allow the provider to return a list update
or an update data set on request, respectively.

4.8 Propagation of deletion

The propagation of updates is currently either an addition or a modification
transaction. A deletion can theoretically be described as a mutation of an entry
to zero size. However, a deletion of an entry is not necessarily experienced as a
transaction on the provider side. Instead, manual deletions might cause a file
to be missing, or a missing file will no longer be part of the entire cumulative
update file. Therefore, to process deletions exclusively on the basis of lists , it is
required to transfer the entire current entry list rather than an update only on
a periodic basis. A much more advanced and elegant procedure were possible
if the provider could prepare a list of to-be-deleted entries which then can be
processed in a dedicated LUP tool. Future collaboration with institutes like
EBI will possibly allow for such a procedure.

7

5 Discussion

The update of databases via networks faces limits if the file to be copied exceeds
the size of a dataset which can be transferred without experiencing problems
in the data transmission. Time-outs on lines with low bandwidth were ob-
served frequently in previous years. Today, the sheer size of the sets (even
in compressed form, 100 Mbytes or more) appears to be the major problem.
The limiting factor is the disk space at the customer site: Receiving an update
requires two to three times the space of the production database.

5.1 Scope and limitations of incremental updates

As mentioned, updates to sequence databases can be classified into three types
(new data, updates to new data and changes to already sent data). Rescoring
these options, we get

e New data (to be added)
e Modifications of data (to be merged)
e Deletions of data (to be removed)

As only the second kind of data does actually change data sent earlier, the
'updates’ as understood by biological researchers in the classical sense will be
most probably new additions (first type). Classification as ’updates’ to data of
another data set (such as the full release of a sequence database) will need to be
handled by the corresponding application. At our site, we split the 'new data’
into really new data and those which have been updated with respect to the
established release. A sequence database update section, therefore, can most
beneficially be processed as only those sequences which are really new are used,
and the inclusion of updates to the existing data would show as duplicates in
the searching result.

For specific applications, we have experimentally set up a system operating with
LUP tools. This approach performs the transactions on two different sets from
one package of updates. We have confirmed that the data can be remerged at
any time to maintain compatibility with other connections.

5.2 Integration

It should be emphasized that the selection which entries shall be updated, as
well as the transmission of these entries (as currently handled by NDT, FTP or
any other method) do not tackle the most important issue of the integration of
these entries into the production database. LUP tools allow the integration in
seamless fashion. As the processing of lists is intrinsically used in the merging

8

of the database, the integration of data is no longer an isolated matter and can
be dealt with as part of the updating process rather than an isolated item.

5.8 Flexibility of the LUP approach

The List Update Principle is currently implemented on the basis of very simple
toolset. The basic idea of the implementation is to demonstrate the benefit of
list processing. We do hope that, once the method as such gets more widely
accepted, more advanced tools will become available to facilitate the creation of
lists. Whereas the processing of the list is fairly straightforward, the creation of
lists proved to be a sophisticated issue if non-sorted data files are encountered.
As we process data in alphabetic fashion at our local site, the cumulative file
as maintained at EBI showed to be alphabetically only in part, as it is assem-
bled from three separate, sorted files. Attempts to extract this file with an
alphabetically sorted list with one of the LUP programs showed to become an
unaffordable input/output intensive process once the extraction list grew be-
yond a few hundred entries. Therefore, we had to create a tool which resorts a
list of entries according to another list.

The previous release of our DBTOOLS package® made use of special-purpose
index files. Besides the overhead of index creation, the code for generating a
special retrieval schema is fairly complex and possibly requires more resources
for maintenance than can be spent. The LUP tools, therefore, rely on very
simple, serial processing implementations of code which is maintainable also by
inexperienced programmers.

The retrieval of sequences from an unsorted database based on a sorted list
will also be possible by state-of-the-art retrieval systems like SRS® once the data
are sufficiently indexed. Further development on this is in progress. However,
the effort to maintain indices for data maintenance (rather than data retrieval
for customers) still requires some careful redesign considerations of the specific
set-up.

Tool development at the database providers will allow promising develop-
ment of the LUP principle. E.g., a relational database system will know best
which entries are needed. the straightforward software in our reference im-
plementation might benefit from these lists, and eventually make the provider
handling more efficient. As the customer, usually, does not use relational sys-
tems, non-specific tools will always be needed.

5.4 POLL paradigm vs. PUSH paradigms

If the PUSH paradigm is to be followed the customer as the primarily interested
partner will have to provide facilities that the provider can send the data on a

9

periodical or semi-periodical basis. Depending on the protocol employed, the
provider will encounter the following feedback (sorted by increasing complexity):

e Success status of a transmission

Maintenance of a date of the last successful transmission

e Maintenance of a transaction number or name of the last successfully
transmitted entry

Feedback of successfully processed transactions

Feedback of successfully application-ready formatted database

The more complex the feedback shall be, the more information has to be com-
puted at the customer side and must be accordingly transmitted to the provider.
Depending on the kind of these computations, these require that the provider
is capable to execute or at least trigger these actions. This raises an important
security problem: Both data security (possible corruption of data) and oper-
ational security (negative impact of updating on availability of data or access
performance) are affected. The most obvious measure, therefore, is to restrict
the provider’s access as much as possible. This is, in turn, contraproductive in
the sense that the provider should do the job as beneficial as possible.

If performance and reliability shall be maintained as the established method
of FTP incremental updating is in place, LUP tools can still improve the status
of the database mirroring, as it allows both quality measuring and success con-
trol, which is not provided by the database maintainers due to the restrictions
set by FTP server-specific limitations.

5.5 Synchronization

Maintenance of update is not necessarily a matter of confidence in technology.
Besides the number of entries, the version numbers of the database may be
used to achieve synchronization . Considerations to employ checksums are not
feasible due to the amount of data used. E.g., two two- byte checksums for
sequence and annotation data section would cause an additional four bytes to
be transmitted per entry. We consider it more reasonable to count the entire
amount of sequence symbols and use pragmatic tools (e.g., a FASTA run) on
the production database to achieve a reasonable functionality testing of the
production data.

As the LUP tools inherit the POLL paradigm with feedback in a two-step
query (as opposed to a procedure like in FTP where all transactions are achieved
in a single session), the synchronization of entries is part of the update method
and does not need to be carried separately. This is advantageous as well if the

10

local database is in a different format than the provider database, as long as
the lists are compatible in format, usual measures of identity (number of lines,
data file size) do not need to be applied. It should be emphasized that these
methods will fail if a formatting step in employed; a NBRF formatted set of
files will always have different sizes, line numbers etc.

If the FTP method is chosen to obtain incremental updates, LUP tools can
be used to integrate the data into the given set of data for an incremental
update. However, the synchronization checking might not be available in trans-
parent fashion as if the provider supplied the list of entries like proposed in this
mechanism .

5.6 Atomic updates

The calculation of a checksum for transmission is an additional effort which
might allow that entries are changed and reconstructed from fragments rather
than entire data transmission. This so-called ’atomic’ updating may be used
to update large sequences with a minor effort by transmitting only the changes
of the entry rather than the entire data itself. There are two major arguments
why this option is unattractive.

o First, we face the problem of an internal standard. The updating mech-
anism allows that the customer updates his set as frequently as desired.
This might lead to a mismatch of entry versions present in provider and
customer databases. As the data are temporary in nature, any atomic
updating would require that a defined entry version is changed rather the
current version, which might differ between provider and customer. As
neither of the two define roll-back history files which would allow to re-
construct versions earlier than the one present in the current version of
the database no common basis can be found.

e Secondly, experience shows that only a fraction of the entries is ever up-
dated. Therefore, the calculation, transmission and comparison of check-
sums is an unnecessary overhead. However, as we do allow multiple queries
and contacts, we propose to handle this atomic updating as a separate ser-
vice: The provider shall prepare a list of entries which is may be updated
on atomic basis, and this service is separately handled from the regular
updating. If this procedure is applied before the ’full entry’ updating,
any failed atomic updating would be ’repaired’ by the subsequent normal
procedure.

11

Acknowledgements

The staff at the EBI, in particular Jeroen Coppieters, were very supportive and
provided helpful discussion. The BioComputing Facility at Basel is funded by
Basel University, and received additional grants from the Swiss National Science
foundation and the Bundesamt fuer Bildung und Wissenschaften.

References

1. R. Doelz, in: The EMBnet Project, Computer Networks and ISDN Sys-
tems 25, 464 (1993).

2. P. Stoehr, EMBnet PSI-COPY data transfer. Unpublished. (1990).

P. Gad, The NDT protocol. Unpublished. (1993).

4. R. Doelz and L. Rosenthaler, The DBTOOLS package. This software was
published as ’dbtools’ on the bioftp.unibas.ch file server in 1993 and is
now superseded by the current version.

5. T. Etzold, and P. Argos, Comput-Appl-Biosci 9, 49 (1993).

R. Doelz, R. Comput-Appl-Biosci 10, 31 (1994).

7. N. Redaschi, R. Doelz, F. Eggenberger, F. in: HASSLE v5, Dr.U.Doelz
Verlag,Basel, 1995.

o

(=]

12

