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Early work on proteins identified the existence of helices and extended sheets in protein sec-
ondary structures, a high-level classification which remains popular today. Using the Snob
program for information-theoretic Minimum Message Length (MML) classification, we are
able to take the protein dihedral angles as determined by X-ray crystallography, and cluster sets
of dihedral angles into groups. Previous work by Hunter and States has applied a similar
Bayesian classification method, AutoClass, to protein data with site position represented by 3
Cartesian co-ordinates for each of the α -Carbon, β -Carbon and Nitrogen, totalling 9 co-
ordinates. By using the von Mises circular distribution in the Snob program, we are instead
able to represent local site properties by the two dihedral angles, φ and ψ . Since each site can
be modelled as having 2 degrees of freedom, this orientation-invariant dihedral angle represen-
tation of the data is more compact than that of nine highly-correlated Cartesian co-ordinates.
Using the information-theoretic message length concepts discussed in the paper, such a more
concise model is more likely to represent the underlying generating process from which the
data came. We report on the results of our classification, plotting the classes in (φ ,ψ ) space;
and introducing a symmetric information-theoretic distance measure to build a minimum span-
ning tree between the classes. We also give a transition matrix between the classes and note
the existence of three classes in the region φ ≈ −1. 09 rad and ψ ≈ −0. 75 rad which are close
on the spanning tree and have high inter-transition probabilities. This gives rise to a tight,
abundant and self-perpetuating structure.

1 Introduction

Proteins exhibit a wide variety of structural similarities with one another. Protein
substructure classifications like secondary structure are used in a variety of impor-
tant applications. For example, they play an important role in fitting reasonable pro-
tein structures to electron density maps generated by X-ray crystallography (e.g.
[Levi92]), and they are the target classes of many attempts to predict protein struc-
ture from sequence (e.g. [QiSe89], [SoSa94]). However, there is some controversy
about whether secondary structure, as currently defined by hydrogen bonding pat-
terns, is the best level of analysis for these tasks. Several researchers have attempted
to improve on secondary structure classification for various tasks, e.g. [RoRW90,
HuSt91, Sun93, KaTa94, Swin95].



Our approach to this problem is to use a quantitative version of Ockham’s razor
for clustering the dihedral angles of proteins taken from the Brookhaven protein
structure database (PDB). We use the Minimum Message Length (MML) principle,
which seeks a simple theory that fits the data well.

The Snob program for clustering and numerical taxonomy was originally devel-
oped by Wallace and Boulton [WaBo68], and was the first serious application of the
MML principle for general inductive inference. The original Snob program
[WaBo68, Wall86, Wall90] permitted continuous data, which were modelled by Nor-
mal distributions, and discrete data, which were modelled by multi-state distribu-
tions. Snob has been used to cluster protein spectral data into classes [ZaCD]. More
recently [WaDo94b], Snob has been extended to permit data to be modelled by Pois-
son distributions and von Mises circular distributions. Snob is the only known pro-
gram permitting cluster models of circular distributions.

Using the fact that dihedral angles along protein backbones can be modelled as
coming from a circular distribution, and that angles around -179 degrees are close to
and should be regarded as being close to angles around +179 degrees, it is advanta-
geous to use the von Mises circular distribution to model our data. Additionally, our
model replaces nine highly-correlated Cartesian co-ordinates with just two orienta-
tion-invariant angles, φ and ψ .

Our data consists of 41,731 pairs of protein (φ ,ψ ) dihedral angle pairs from the
Brookhaven protein structure database (PDB). Our work follows that of Hunter and
States [HuSt91, HuSt92] using AutoClass [CKSS88, CSHT90] with Gaussian vari-
ables.

The work reported here is preliminary in nature: we take little account of the
auto-correlation of the secondary structure sequence; and (less importantly) the
dependence of dihedral angles upon one another. (An expanded version of this
paper is given in [DADH95] and is available from
ftp://www.cs.monash.edu.au/www/publications/1995/TR237.ps.Z.) Section 2 intro-
duces the MML principle and how it can be used for this circular clustering prob-
lem. The remaining sections give the results of the secondary structure groups
[KaSa83] that resulted from applying Snob to cluster our dihedral angle data.

2 MML, von Mises Distributions and Snob

The information-theoretic MML principle [WaBo68(p185), BoWa69,
BoWa70(pp63-64), WaBo75, WaFr87] of inductive inference variously states
[WaDo94b] that the best conclusion to draw from data is the theory with the highest
posterior probability or, equivalently, that theory which maximises the product of the
prior probability of the theory with the probability of the data occurring in light of
that theory.



Letting D be the data and H be an hypothesis (or theory) with prior probability
Pr(H), since − log2(Pr(H). Pr(D|H)) = − log2(Pr(H)) − log2(Pr(D|H)), maximising
the posterior probability, Pr(H|D), is equivalent to minimising
− log2(Pr(H)) − log2(Pr(D|H)), the length of a two-part message conveying the the-
ory and the data in light of the theory. Hence the name "minimum message length"
(principle) for thus choosing a theory, H, to fit observed data, D.

MML pertains to Chaitin’s notion of "random" data [Chai66] and earlier ideas of
Solomonoff [Solo64(p20)]. Introductory material on MML is given in [WaDo93]
and discussion of the subsequent Minimum Description Length (MDL) principle and
other closely related work is given in [Ris89, Solo95, BaOl95]. Parameter estima-
tion by MML is discussed in [WaFr87, WaDo93], about which we say a little below.

Given data
˜
x and parameters

˜
θ , let h(

˜
θ ) be the prior probability distribution on

˜
θ , let p(

˜
x|

˜
θ ) be the likelihood, let L = − log p(

˜
x|

˜
θ ) be the negative log-likelihood

and let F be the Fisher information, the determinant of the (Fisher information)
matrix of expected second partial derivatives of the negative log-likelihood. Then
the MML estimate of

˜
θ is [WaFr87] that value of

˜
θ minimising the message length,

− log(h(
˜
θ )p(

˜
x|

˜
θ )/√⎯ ⎯F(

˜
θ )) + a constant. (This is elaborated upon in [WaDo93].)

The two-part message describing the data thus comprises first, a theory, which is
the MML parameter estimate(s), and, second, the data given this theory. While it is
reasonably clear to see that a finite coding can be given when the data is discrete or
multi-state, we also acknowledge that all recorded continuous data must only be
stated to finite accuracy by virtue of the fact that it was able to be (finitely) recorded.
In analysing statistical data it is important to know the accuracy to which the data
has been measured. Most methods implicitly assume that the data gathered has been
measured to arbitrary accuracy. For an information-theoretic method such as MML,
the less accurate the data the less information it conveys. In practice, we assume
that, for a given continuous or circular attribute, all measurements are made to some
accuracy, ε . For the Snob program, this accuracy is stated by the user. The accuracy
should be a measure of the repeatability of a measurement.

For a physical measurement, it is presumably the accuracy of the instrument
being used. This raises an important point. Using a message length criterion, if our
data is very noisy, the measurement accuracy, ε , is large and the information content
is therefore relatively low, then it would be wiser not to grow too many Snob
classes. If the data becomes increasingly accurate, this should not decrease the num-
ber of classes which we wish to grow. We know [HuSt91] our data to have no better
resolution than 2 Angstrom units in Euclidean space. We believe that this corre-
sponds to a resolution of about 10 to 20 degrees in our dihedral angle data. The



exact choice of measurement accuracy, ε , should not make a great deal of difference,
as we indeed observe from experiment. We opt to assume a measurement accuracy
of approximately 11.5 degrees in our data for Snob.

The von Mises distribution (see, e.g. [Fish93]), M2(µ,κ ), with mean direction
µ, and concentration parameter, κ , is a circular analogue of the Normal distribution
− both being maximum entropy distributions. Letting I0(κ ) be the relevant normali-
sation constant, it has probability density function (p.d.f.)
f (x|µ,κ ) = eκ .cos(x−µ)/(2π I0(κ )), and corresponds to the distribution of the angle, x,
of a circular pendulum in a uniform field (at angle µ) subjected to thermal fluctua-
tions, with κ representing the ratio of field strength to temperature. For small κ , it
tends to a uniform distribution and for large κ , it tends to a Normal distribution with
variance 1/κ .

MML estimation of κ uses [WaDo93, WaDo94a] the Bayesian prior distribution
on κ of h(κ ) = κ /(1 + κ 2)3/2. The MML estimator compared favourably [WaDo93]
against Maximum Likelihood (ML) and other alternative methods [Scho78, Fish93].

In practice, the Snob program makes the reasonable assumption that the stan-
dard deviation, σ ≥ 0. 3ε when dealing with data from Normal distributions. Since
M2(µ,κ ) ≈ N(µ, 1/κ ) for large κ , Snob also makes the similar assumption that
κ ≤ 1/(0. 3ε )2 when dealing with data from von Mises distributions.

The use of a circular distribution is particularly advantageous here since it can
acknowledge the proximity of -179 degrees and +179 degrees in a way that a Nor-
mal distribution can not. Snob [WaBo68, Wall86, Wall90] permits us to deal not
only with parameter estimation from one distribution, but with a mixture of von
Mises [WaDo94b] or other distributions. The statistical consistency and optimality
of MML estimation for a wide range of problems is discussed in [WaFr87, Wall89,
BaCo91, WaDo94b].

A discussion of the similarities between Snob applied to Normal distributions
and AutoClass [CKSS88] is given in [Wall90(pp78-80)], with an old but extensive
discussion of alternative algorithms for intrinsic classification having been given in
[Boul75]. An alternative, popular clustering method is COBWEB [Fish87]. Snob is
the only program we are aware of for clustering (von Mises) circular distributions.

3 Application

Earlier applications of Snob include several to medical, biological and psychological
data, with a thorough survey in [Patr91] and a more recent survey in [WaDo94b].
(A guide to using the Snob program and interpreting its output is given in
[WaDo94b].)

The task of applying Snob or related automated clustering methods to protein
substructure data is difficult for several reasons. First, existing useful classifications



(e.g. secondary structure) are of varying lengths. A beta turn may contain just 3
amino acid residues, while a long helix may have more than 20. Because all exist-
ing clustering methods require a fixed length attribute vector, previous approaches
have clustered fixed length sliding windows of the data, e.g. [HuSt91].

Our overall approach to the problem of variable lengths in substructure classes
is to begin by finding classes of the smallest possible unit of protein substructure
(the peptide bond) and then devise a method for finding class structure in the (vari-
able length) sequences of these unitary classes. Since analysis of variable length
sequences is more tractable than structures with varying numbers of dimensions (i.e.
varying numbers of constituents), we hope that this approach will ultimately address
the problem. This paper reports on our results for finding structure at the unitary
level. We will also describe our work characterising the transition probabilities
between the discovered unitary classes. Future work will consider a clustering
method for longer protein substructures.

Hunter and States [HuSt91] attempted to address this problem by looking at
short fixed length substructures, instead of looking at single peptide bonds. In order
to define a uniform frame of reference for the substructures, Hunter and States used
the centre of mass and the moments of inertia of the fragments. These co-ordinates
cannot be defined for single amino acids, and were unstable for amino acid pairs
with nearly symmetric moments of inertia. Hunter and States settled on a substruc-
tures of five amino acids for their work, although they noted the problems with that
approach. Since Snob permits us to use the von Mises distribution to classify on the
φ and ψ angles of the peptide bond, we do not need to define a specific frame of ref-
erence. We expect this will lead to better results when these unitary classes are
aggregated into our target substructure classes.

A second significant problem with most clustering methods is that they tend to
require that the attributes in the description vectors be independent of each other.
Neither positions of atoms in Cartesian co-ordinates nor the use of φ and ψ angles to
describe the data result in independent distributions. Violation of the independence
assumption typically leads the classifiers to produce too many classes. This work
also suffers somewhat from this problem, although it is an improvement over the
Hunter and States work since there are only two correlated dimensions instead of
nine. As described below, we have taken several steps to factor out the correlation.
We are exploring the possibility of adding a correlation term to each class descrip-
tion (allowing the correlations within each class to vary from the correlations within
other classes), which is well within the ability of the MML framework, although not
yet the Snob program.



4 Methods

We have applied Snob to clustering the (φ ,ψ ) angle data from a non-redundant sub-
set of the PDB. Our stated measurement accuracy was 0.2 radians (11.5 degrees).
This gave the following results:

Axes Message Length (nits) Classes
φ ,ψ 204,270.4 27

where 1 nit = log2 e bits. Notice, properties of the logarithm function ensure that it
makes no difference whether we work in bits or nits. Varying the measurement
accuracy slightly produced little or no difference in the Snob classification.

Snob models the classes as having attributes from independent distributions.
The entries in table 1 give the size, N , of each class and the attribute parameters, µφ

and κφ (for φ ) and µψ and κψ (for ψ ) for each class. The p.d.f. of each class is thus
M2(µφ ,κφ ). M2(µψ ,κψ ), the product of the p.d.f.’s in φ and ψ . The Snob model of
the population is then

classes i
Σ Ni. M2(µφ i,κφ i). M2(µψ i,κψ i).

Figure 1 shows (a) a histogram of the raw data and (b) the Snob model from
table 1. The Snob classes are represented in figure 2 with centres at (µφ , µψ ) and
semi-axis lengths 1/√⎯ ⎯κφ and 1/√⎯ ⎯κψ respectively. The semi-axis length is due to the
Normal approximation for large κ and the wrap-around of some classes is due to the
(φ ,ψ ) axes being toroidal.

Since secondary structure is not purely a local property of the dihedral angles,
we follow Hunter and States [HuSt91, HuSt92] and look at windows of consecutive
sites. For a sliding window of 3 residues, 90 classes were found [DADH95].

Observing some of our original (φ ,ψ ) plots overlaid with the Snob classes
inferred from this data gave us reason to believe that we would like to transform, if
possible, from (φ ,ψ ) space to (φ + ψ ,ψ ) space, since the original (φ ,ψ ) plot (see fig-
ure 2) seemed to show a cluster of Snob classes along the lines (expressed in radi-
ans) φ + ψ = −π /2 and ψ = 3π /4. The axis transformations considered here and
below have a fairly straightforward geometrical interpretation. They also serve as
something of an attempt at factor analysis.

The permissible space of angles, (φ ,ψ ), corresponds to a torus since (in radians)
−π is equivalent to +π . As such, we have some constraints if our transformation of
the parameter space is to be 1-to-1 and onto. For it to be well-defined, we require
that f (φ + 2mπ ,ψ + 2nπ ) = f (φ ,ψ ) for integers m and n. This ensures that −179
degrees and +179 degrees, and also 1 degree and 359 degrees, are always treated as
being close to one another, and remain so under transformation. We also require the
transformation, f , to be invertible with a Jacobian of unity (see [DADH95]).



Table 1: Von Mises distribution parameters and sizes of Snob classes.

Class µφ (phi) κφ (phi) µψ (psi) κψ (psi) Size

1 -1.4846 35.17 1.4782 6.02 714
2 -2.3491 26.23 2.6347 18.61 2409
3 -1.7799 4.80 2.1944 20.01 4667
4 -1.9841 16.48 2.3979 7.94 3756
5 -1.6641 55.85 0.0703 47.21 750
6 -1.4108 56.59 -0.1708 42.71 1152
7 -1.4544 28.26 2.7944 11.41 1509
8 -1.5713 9.50 -0.4434 9.78 2264
9 -2.7258 39.09 2.8028 21.48 1050
10 -2.9697 2.76 -3.1150 10.78 671
11 -1.1634 75.08 -0.4336 37.29 2359
12 -1.1393 39.89 -0.6503 54.92 4842
13 -1.0891 164.71 -0.7455 134.32 4560
14 -0.9740 77.24 -0.8621 92.40 2074
15 -1.9805 18.09 0.2318 12.62 1146
16 -2.3384 17.80 1.3521 8.69 516
17 -1.8083 3.14 -1.0773 0.09 1095
18 -0.8727 13.41 -0.9694 17.20 729
19 1.5602 1.44 0.2542 0.24 675
20 1.6205 25.92 -0.0804 18.09 528
21 1.3191 65.40 0.2938 27.59 424
22 1.0665 85.56 0.5843 41.98 341
23 0.8884 77.93 0.8709 28.48 343
24 1.0079 34.00 -2.3054 23.40 151
25 1.5073 17.16 3.1371 6.00 251
26 -1.1953 44.97 2.5447 21.28 1969
27 -1.0072 85.85 2.3741 46.00 786

Since we are using Minimum Message Length, the message length is the crite-
rion that we use to determine whether or not we deem a transformation of the
parameter space to be a good idea. Using a "colourless", innocuous prior on some
transformations, the negative logarithm of which we add to the message length, we
thus look at the effect on the message length of our considered transformations. The
difference in message length is the log posterior odds ratio; in other words, if theory
H1 leads to a message length 5 bits shorter than H2 does, then H1 is deemed to be
25 times more likely than H2 a posteriori.
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Figure 1: Histogram of (a) raw (φ ,ψ ) data and (b) Snob model.

Following the hints in the graphical plot of the above Snob classes, we trans-
formed the data to (φ + ψ ,ψ ). We earlier deemed the accuracy, ε , on φ and ψ to be
the same. Since the Jacobian of the transformations is unity, the region of area ε 2

corresponding to measurements of φ and ψ should map to a region of area
1 × ε 2 = ε 2 in φ and (φ + ψ ). We thus adopt ε as the measurement accuracy in both
φ and (φ + ψ ) The graphical plots of the Snob classes hint that a better choice of
Snob axes than (φ ,ψ ) might be (φ + ψ ,ψ ). The current implementation of Snob
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Figure 2: Snob classes in (φ ,ψ ) centred at (µφ , µψ ).

assumes that the distributions in φ and ψ are independent in each class, giving each
class an elliptical profile (see figure 2) whose major and minor axes align with the φ
and ψ axes. We experimented with re-aligning the Snob axes. Transforming the
data to (φ + ψ ,ψ ) actually increased the message length as follows:

Axes Message Length (nits) Classes
φ + ψ ,ψ 204,515.2 32

The work in the next section builds on the better results of the (φ ,ψ ) data. How-
ever, in work just completed we noticed the (φ + ψ ,ψ ) plot showed clusters of Snob
classes roughly along the lines ψ = (φ + ψ ) − π /2 and ψ = (φ + ψ ) + π /2, lines for
which we note φ is a constant. This led us to re-introduce the φ axis while retaining
the (φ + ψ ) axis to obtain the following results:

Axes Message Length (nits) Classes
φ , φ + ψ 204,249.3 23

This reduced the message length from the (φ ,ψ ) classification by approximately 21
nits and also has reduced the number of classes and needs to be investigated further.



5 Similarity measure between classes

We wish to arrive at a distance measure between classes. Just as the Dayhoff substi-
tution measure between amino acids gives a method for determining similarity
between two proteins based on their amino acid sequence, using an assignment of
protein dihedral angle pairs to Snob classes, the metric below gives a method of
determining similarity between two proteins based on their tertiary structure. One
candidate for such a metric was the cost that Snob associates with a forced combin-
ing of the two relevant Snob classes. The shortcoming with this metric is that it is
very much affected by the population sizes of the distributions. On the one hand,
two very similar and largely overlapping Snob classes which had very similar
parameter values could be expensive (in terms of Snob’s information-theoretic bit
cost) for Snob to combine if they were both very abundantly populated. On the
other hand, two apparently very different classes with antipodal values of µ and
large concentration parameters could be relatively inexpensive for Snob to combine
if the antipodal classes had sufficiently small populations.

We conclude from the above that we would rather have a distance measure
which is a function of the probability distribution parameters of the Snob classes,
independent of the class sizes. For probability distributions f (x) and g(x), the Kull-
back-Leibler distance from f to g is defined by

distK−L( f , g) = − ∫ f log g dx − (− ∫ f log f dx) = ∫ f log( f /g) dx.

The Kullback-Leibler distance essentially gives the difference between the cost
of coding events from the probability distribution, f , using codewords of length
− log g with the optimal code obtained by coding events from the probability distri-
bution, f , using codewords of length − log f . Some properties are that
distK−L( f , g) ≥ 0 and distK−L( f , f ) = 0, although the Kullback-Leibler distance is
not generally symmetric in f and g. For von Mises distributions M2(µ f ,κ f ) and
M2(µg,κ g), we get that [WaDo93]
distK−L( f , g) = log I0(κ g) − log I0(κ f ) + A(κ f ) (κ f − κ g cos(µ f − µg)), where

I p(κ ) =
1

2π ∫
2π

0
cos(pθ ). eκ .cosθ dθ , and A(κ ) = I1(κ )/I0(κ ) is the expected value of

cos(θ ) under an M2(0,κ ) distribution.
We take a symmetrical distance measure based on the Kullback-Leibler measure

which is vaguely analogous to the cost of forcing Snob to combine two classes. Let
two classes have p.d.f.’s f1 and f2 given by M2(µ1,κ1) and M2(µ2,κ2) respec-
tively.

Consider the resultant vectors of length A(κ1) pointing in direction µ1 and A(κ2)
pointing in direction µ2 respectively. The vector sum of these gives the direction of
µg. Halving the length of this resultant to effectively average the contribution from



the two distributions, the resultant length, l, will satisfy 0 ≤ l < 1. We define κ g to
satisfy A(κ g) = l.

Our symmetrical, "similarity", distance measure is then
d( f1, f2) = distK−L(1/2( f1 + f2), g) = 1/2 distK−L( f1, g) + 1/2 distK−L( f2, g).

This has several desirable properties.
1. If µ1 = µ2 = µ and κ1 = κ2 = κ , then µg = µ and κ g = κ and d( f1, f2) = 0.
2. If µ1 − µ2 = π mod 2π and κ1 = κ2, i.e. if the distributions are antipodal mirror

reflections, then κ g = 0 and d( f1, f2) = distK−L( f1, g) = distK−L( f2, g).
3. It is additive across multiplicatively independent distributions. In other words,

thinking of Snob classes of window width 1 as being of the form
f (φ ,ψ ) = fφ (φ ) fψ (ψ ), we have d( f1, f2) = d( fφ ,1, fφ ,2) + d( fψ ,1, fψ ,2).

We have extended the Snob program [WaDo94b] to carry out these calculations. In
order to better visualize the unitary classification, we have used these calculations to
build a minimum spanning tree from our Snob classes as follows: Iteratively work
out which two of the current classes are closest together under this distance measure.
Then reduce the number of classes by one, replacing these two classes with distribu-
tions f1 and f2 by a class having distribution g as above. The node referring to g
then becomes the parent node of the nodes referring to f1 and f2. This is iterated
until we are left with the root node. Backtracking gives the minimum spanning tree.
Notice that our original flat classification is based on the MML principle. The hier-
archical classification of the von Mises classes here is based on an information-
theoretic distance measure, but the spanning tree does not have a messsage length
directly associated with it.

A minimum spanning tree for the 27 classes in table 1 was constructed (see
[DADH95(fig 3)]). This can be viewed as a form of hierarchical cluster, with the
caveat that the formula for calculating g from f1 and f2 would then be assuming that
all classes are arbitrarily large. The tree has five sub-trees at intermediate nodes
which partition all but four of the classes into groups such that the classes in each
group seem fairly close using our symmetric distance measure.

A transition matrix was built (see [DADH95]) where the entry in row i, column
j is log(Pr(Class j | predecessor in Classi) / Pr(Class j)). The entries for classes
12, 13 and 14 show that class 13 prefers most to be preceded by class 13 and has a
positive inclination to be preceded by classes 12 and 14. Class 13 has a disinclina-
tion to be preceded by every other class. Classes 12, 13 and 14 have close proximity
on the minimum spanning tree. Class 13 has large concentration parameters, κφ and
κψ (see table 1), corresponding to standard deviations in φ and ψ of 4.5 and 4.9
degrees respectively. Also, approximately 11% of the population is in this class.
Classes 12, 13 and 14 show a preference to be preceded by one another and together
contain some 27.5% of the population. This suggests that class 13 is an abundant,



tight (having large values of κ ) and self-perpetuating (highly auto-correlated) struc-
ture, with µ values also corresponding to those of helices. A similar comment
applies to the group of classes 12, 13 and 14 together. These classes are close on the
minimum spanning tree.

We note in passing from the transition matrix that class 5 prefers not to succeed
all but five of the classes. It prefers not to succeed itself and of the five classes it
prefers to succeed, only one of these (class 24) prefers to succeed it. This suggests a
possible transition conformation.

6 Conclusions

Hunter and States [HuSt91, HuSt92] have earlier clustered protein secondary struc-
ture conformations using nine highly correlated Cartesian co-ordinates per sec-
ondary structure site. The Snob program, which is founded on the Minimum Mes-
sage Length principle, permits clustering of circular distributions. This permitted us
to carry out similar work to Hunter and States using only two orientation-invariant
angles as our data per site. Presuming a measurement accuracy of 11.5 degrees,
Snob arrived at 27 classes in (φ ,ψ ).

We formed a minimum spanning tree of the classes and also a transition matrix
between the classes. The highlight was that one very tight class containing approxi-
mately 11% of the population has a strong disinclination to be preceded in a
sequence by any class other than itself and two of its nearest neighbours on the mini-
mum spanning tree. We also found that this set of three classes contained approxi-
mately 27.5% of the population and tended to prefer being preceded by its own
members, suggesting an abundant, tight, self-perpetuating structure.

The program currently implicitly assumes that variables are uncorrelated and
does not yet use the MML single and multiple linear factor analysis [WaFr92,
Wall95]. Where there is correlation, linear factor analysis (which permits axis rota-
tion) should enable the data to be better compressed.

As a Ramachandran plot of the raw (φ ,ψ ) data demonstrates, the distributions in
φ and ψ are not independent of one another. We have investigated axis transforma-
tions as a way of dealing with this. One alternative, currently in the early stages, is
to extend the theory of MML factor analysis (on Normal distributions) to single fac-
tor analysis for von Mises distributions. Another alternative is to permit the individ-
ual Snob classes to have their own, separate, axis transformations. We also wish to
extend the MML decision graph [OlDW92] work on inferring a probabilistic theory
of Extended, Helix or Other secondary structure from the primary amino acid
sequence to inferring a theory using this larger number of secondary structure
classes here. Given the clear serial correlation discussed and observed between
some of the classes, it would be desirable to extend Snob to permit a more explicit



model of this.

Availability of the Snob program

The current version of the Snob program (written in Fortran 77) is freely available
for not-for-profit, academic research, and not for re-distribution, from
<URL:ftp://ftp.cs.monash.edu.au/pub/snob/> or directly from C.S. Wallace. Usage
restrictions are given in [WaDo94b].
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