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Abstract

The shape of a protein is important for its functions� This includes the location and

size of identi�able regions in its complement space� We formally de�ne pockets as regions

in the complement with limited accessibility from the outside� Pockets can be e�ciently

constructed by an algorithm based on alpha complexes� The algorithm is implemented

and applied to proteins with known three�dimensional conformations�
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� Introduction

The motivation for the work reported in this paper is the apparent di�culty to talk in mathe�
matically concrete terms about intuitive geometric concepts sometimes referred to as �depres�
sions�� �canyons�� �cavities�� and the like� In topology� the notions of homotopy and homology
have long been used to de�ne and study �perfect� holes of various types and dimensions� We
are after a de�nition and study of imperfect holes� of regions people would instinctively refer
to as holes although they are neither holes in the homotopical nor the homological sense�

Observations about common language reveal a great deal of confusion on what holes are�
A hole in the ground is usually a depression deep or big enough so we would care about its
existence� The fact we can fall into but not through it reveals it is not a hole in a topological
sense� Or consider exploding a balloon by poking through its surface with a needle� The
needle connects the hole holding the balloon�s air with the outside� Topologically� poking a
needle through the surface removes rather than creates a hole�
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Pockets in proteins� The study of imperfect holes in this paper focuses on proteins and
other macromolecules� The ideas are more general though and can be extended to other

�dimensional shapes and to higher dimensions�

The functions of a protein are determined through its interaction with other molecules�
Such interactions happen frequently in protected yet accessible regions of appropriate size
and shape� The shape complimentary between such a protected binding site and the ligand is
largely responsible for the speci�city observed in protein�ligand�protein interactions� There
are also the less frequent situations where the binding ligand sits in an isolated cavity�void and
is completely engulfed by the protein �such as the Xe binding sites in myoglobin�� For such
cases� we refer to our earlier results in cavity�void identi�cation and their area and volume
measurements ��� The above intuitive but vague description of protein binding pockets is
certainly not su�cient to distinguish protected regions from unprotected ones� or to specify the
precise location and extent of a protected region once it is identi�ed� In this paper� we will
formally de�ne pockets as regions in the complement space with limited accessibility from
the outside� The de�nition deliberately excludes shallow valleys or depressions� Although
there are also binding sites of the latter type� their determination will either require a priori
knowledge or an extension of the ideas described in this paper�

Intuition� The following intuition guides our formulation of an unambiguous criterion� We
declare a region in the complement a pocket if it can be reached only via relatively narrow
pathways� �all paths into the pocket get narrow before they get wider�� This intuition can
also be captured through a growth process� �a pocket becomes a void inaccessible from the
outside before it disappears��

It is clear that considerations based on relative distance are required to make this intuition
concrete and algorithmically useful� Such considerations are expressed in terms of Voronoi
cells �	�� and Delaunay simplices ���� These are key concepts in this paper and they play a
crucial role in de�ning� delimiting� and algorithmically constructing pockets� The algorithm
is implemented and sample applications to proteins whose coordinates are available from the
protein databank are given�

Outline� Section � discusses common sphere models of molecules and their relationship to
Voronoi cells� Section 
 describes dual sets and complexes of simplices� Section � de�nes
pockets based on an acyclic relation over the Delaunay tetrahedra� Section � presents an
algorithm constructing pockets� Section � applies the implementation of the algorithm to a
few proteins with known 
�dimensional conformations� Section � mentions possible extensions
of this work and directions for further research�

� Spherical Ball Models

It is common in biology to represent an atom by a spherical ball and a molecule by a union
of balls� Geometric models of this type go back to Lee and Richards �	�� and Richards �	���
For a �xed set of atom centers� the space �lling model uses van der Waals radii� see e�g� ���
chapter ��� to unambiguously specify the balls and thus their union� The solvent accessible
model increases radii to re�ect accessibility for a solvent� itself modeled as a spherical ball�
This section introduces the geometric terminology necessary to talk about these models and
their relationship to Voronoi cells�

�



Distance and growth� The Euclidean distance between points x� y � R
� is denoted by

jxyj� and the �spherical� ball with center z � R� and radius r � R is

b�z� r� � fx � R� j jxzj � rg�

The union of a �nite set B of balls is
S
B � fx � R

� j x � b � Bg� The complement�
R
� � SB� consists of one or more components� Exactly one component is unbounded and

usually referred to as the outside� The other components are bounded and referred to as voids
of
S
B� Figure 	 shows the union of a set of ��dimensional balls or circular disks�

Figure 	� The union of �� disks is connected and decomposes its complement into � unbounded
component �the outside� and � bounded components �voids��

The solvent accessible model di�ers from the space �lling model by the size of the balls� the
centers are the same� This suggests we consider the union while growing the balls continuously
and simultaneously� As the balls grow the union grows and the voids shrink� Which voids
appear depends on the relative growth� We �nd it convenient to grow the balls such that the
circles where two spheres meet sweep out planes�

The growth is controlled by a real parameter ��� Formally� we choose � from R
�

� � that is�
� is either a non�negative real or it is a positive real multiple of the imaginary unit�

p�	�
De�ne b��z� r� � b�z�

p
r� � ��� and

B� � fb��z� r� j b�z� r� � Bg�

If r� � �� � �� the radius is imaginary and b� � b��z� r� is empty� In this case� b� does not
contribute to

S
B� but it does in�uence the formation of pockets� This makes sense since

we argue pockets are regions that will become voids in the future� Future is de�ned in the
direction of increasing ��� and b� is born when �� passes �r��

Voronoi cells� De�ne the distance of a point x � R
� from a ball b � b�z� r� as �b�x� �

jzxj� � r� and note it is de�ned even if r� � �� In general� x � b i� �b�x� � �� The Voronoi
cell of b � B is

Vb � fx � R� j �b�x� � �c�x�� c � Bg�

In words� Vb is the set of points x at least as close to b as to any other ball in B� De�ne
VorB � fVb j b � Bg� The set of points with equal distance from two balls form a plane� It
follows Vb is the intersection of �nitely many closed half�spaces and hence a convex polyhedron�






Figure �� The �� disks in �gure � de�ne a decomposition of R� into �� Voronoi cells�

Voronoi cells overlap at most along their boundary� and together they cover the entire space�
R
� �
S
VorB� see �gure �� The vertices� edges� and facets of the Voronoi cells are referred

to as Voronoi vertices� Voronoi edges� and Voronoi facets� It is convenient to assume general
position so a Voronoi edge belongs to exactly 
 Voronoi cells and a Voronoi vertex belongs to
exactly � Voronoi cells�

Observe a point x � R� is simultaneously contained in a ball c � B and the Voronoi cell
Vb of b �� c only if �b�x� � �c�x� � �� This implies x � b� In other words� Vb �

S
B � Vb � b

for every b � B� The sets Rb � Vb � b are convex and any two overlap at most along their
boundary� De�ne ResB � fRb j b � Bg and note it covers the union of balls�

S
B �

S
ResB�

see �gure ��
The growth process is de�ned so Voronoi cells do not change� Indeed� �b�x� � �c�x� i�

�b��x� � �c��x�� and therefore VorB � VorB� for every � � R
�

� � This will be important
later when we take advantage of the fact the same Voronoi cells decompose every

S
B� into

convex cells�

� Simplex Collections

The connectivity of a union of balls can be expressed by a collection of simplices that keeps
track of which cells Rb overlap� This collection is used to represent the union� Similarly� sets
of simplices are used to represent voids and later pockets� We begin by introducing some
general terminology�

Simplicial complexes� An abstract simplicial complex is a �nite system of sets� A� with
X � A and Y � X implying Y � A� X � A is referred to as an abstract simplex and its
dimension is dimX � cardX � 	� The vertex set is VertA �

SA� A subcomplex is an
abstract simplicial complex B � A� For example� if S is any �nite set� then the nerve of S�

Nrv S � fX � S j
�
X �� �g�

is an abstract simplicial complex with vertex set S� The nerve of every subset of S is a
subcomplex of Nrv S� More generally� if S� is a set and i � S� � S is an injection with
a� � i�a�� for each a� � S� then Nrv S� is isomorphic to a subcomplex of Nrv S� Indeed�
B � fX � S j X � i�X��� X� � Nrv S�g is clearly a subcomplex of Nrv S and isomorphic to
NrvS��

�



Every abstract simplicial complex� A� can be realized geometrically by a collection of
simplices in Rd� for some �nite dimension d� The elements of VertA are represented by points�
and an abstract simplex�X � A� is represented by the convex hull of the corresponding points�
Provided d is large enough� the points can always be chosen so the convex hull is a simplex
of dimension dimX and no two simplices intersect improperly� Formally� let � � VertA� R

d

be an injection so

conv ��X� � conv ��Y � � conv ��X � Y �

for all X�Y � A� The resulting set of simplices�

K � fconv ��X� j X � Ag�
is a �geometric� simplicial complex� The underlying space of K is jj K jj � SK� A subcomplex
of K is a set fconv ��X� j X � Bg� B a subcomplex of A�

Delaunay simplices� We form simplices by taking convex hulls of 	� �� 
� or � ball centers�
The collection of such simplices re�ecting the overlap relation among the Voronoi cells is a
complex which is now formally introduced�

Let B be a �nite set of balls in R
�� assume general position� and recall VorB is the

set of Voronoi cells� The nerve of VorB is of course an abstract simplicial complex� It is
geometrically realized by mapping each Voronoi cell to the center of the generating ball�
Formally� let � � VorB � R

� be de�ned by ��Vb� � z if b � b�z� r�� The Delaunay simplicial
complex of B is

DelB � fconv ��X� j X � NrvVorBg�
see �gure 
� General position implies DelB is indeed a simplicial complex� The simplices

Figure 
� The Delaunay simplicial complex of the �� disks in �gure ��

� � DelB are referred to as Delaunay simplices�
Consider a tetrahedron � � conv ��X� in DelB� The � Voronoi cells in X intersect at

a point z� �
T
X referred to as the orthogonal center of � � Let b�� b�� b�� b� be the balls

generating the Voronoi cells in X� By construction� the distance of z� from the balls is the
same�

r�� � �b��z� � � �b��z� � � �b��z� � � �b��z� ��

The radius of � is r� and the orthogonal ball is b� � �z� � r� �� The name suggests b� meets the
bi in some ways orthogonally� Indeed� for a point on two intersecting spheres� x � bd b��bd bi�
the two tangent planes passing though x meet at a right angle�
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Alpha complexes� The union of balls covers only a portion of the Voronoi cells� and this
portions is represented by a subcomplex of the Delaunay simplicial complex� see �	���

Recall the de�nitions of Rb � Vb � b and ResB � fRb j b � Bg� The nerve of ResB is
an abstract simplicial complex that can be geometrically realized by mapping cells to ball
centers� the same way as before� Let � � ResB � R

� be de�ned by ��Rb� � b�� The dual
complex of

S
B is

CpxB � fconv ��X� j X � NrvResBg�

see �gure �� Clearly� NrvResB is isomorphic to a subcomplex of Nrv VorB� and therefore

Figure �� The union of disks in �gure � is decomposed into convex cells� The dual complex
connects � centers by an edge and � centers by a triangle if the corresponding cells have non�
empty common intersection� The union of disks has � voids	 each contained in a void of the dual
complex�

CpxB � DelB� The dual complex inherits the property of being a simplicial complex from
DelB�

We refer to ��� for a list of properties CpxB enjoys� This includes CpxB is homotopy
equivalent to

S
B� More precisely� jjCpxB jj � SB and there is a deformation retraction that

takes
S
B to jjCpxB jj� The same is true for the respective complements� More precisely� each

void of
S
B is contained in a void of jjCpxB jj and there is a deformation retraction that takes

R
� � jjCpxB jj to R� �SB�
Recall the de�nition of B�� which is obtained by simultaneously growing or shrinking all

balls in B� The ��complex of B is the dual complex of
S
B�� Cpx�B � CpxB�� For ��� � ���

we have b��
� b��

� which implies

f�g � Cpx��
B � Cpx��

B � DelB�

The bounds are tight� For su�ciently small �� all balls have imaginary radius and are empty�
which implies Cpx�B � f�g� For su�ciently large �� the nerves of ResB and VorB � VorB�

are isomorphic� which implies Cpx�B � DelB�

The dual set of a void� Recall a void of
S
B is a bounded component of the complement�

To be speci�c� let

R
� �
�
B � H� ��H� �� � � � ��Hk

�



be the partition into maximal connected subsets� Assume H� is unbounded and H� through
Hk are the voids of

S
B� As mentioned earlier� there is a deformation retraction that takes

the complement of jjCpxB jj to the complement of
S
B� Let

R
� � jjCpxB jj � H�

� ��H�

� �� � � � ��H�

k

be the partition into components so the above mentioned deformation retraction takes H�
i

to Hi� see �gure �� The voids of jjCpxB jj are naturally represented by the simplices in
DelB � CpxB that cover them� For 	 � i � k the dual set of Hi is

Hi � f� � DelB j int� � H�

ig�
For example� the smaller of the two voids in �gure � has a dual set consisting of � triangles
and 	 edge� The dual set of the larger void consists of � triangles and 
 edges� As shown
in ���� the volume and surface area of a void Hi can be computed directly from Hi� without
explicit construction of Hi�

� Pockets

The concept of a pocket is based on an acyclic relation over the set of Delaunay tetrahedra
motivated by a continuous �ow �eld� After de�ning and classifying pockets we compare them
with related concepts in the literature�

Flow relation� Let T � be the set of tetrahedra in DelB and T � T � � f��g� where �� �
cl �R� � jjDelB jj� is considered a convenient dummy element� We de�ne the �ow relation
�	� � T 
 T with � 	 � if

�i� � and � share a common triangle� �� and

�ii� int � and the orthogonal center z� of � lie on di�erent sides of the plane a� ��

The conditions makes sense for � � �� but not for � � ��� The �ow relation is acyclic
because � 	 � implies r�� � r�� or � � ��� In words� the radius of the orthogonal ball
increases with the �ow relation� This is the intuition behind the �ow or vector �eld that
motivates the de�nition of �	�� a point �ows in the direction of the closest orthogonal ball�

If � 	 � we call � a predecessor of � and � a successor of � � The set of descendents of � is

des � � f�g �
�

����T

des��

and the set of ancestors of � is

anc � � f�g �
�

����T

anc � �

� � T is a sink if it has no successors� or equivalently des � � f�g� �� is necessarily a sink�
A tetrahedron � � T � is a sink i� it contains its orthogonal center� z� � �� In general� �
cannot have more than 
 successors because z� can be on the other side of at most 
 of the
� triangles bounding ��

Sinks are important since they are responsible for the formation of voids� Indeed� if Hi is
a void of

S
B then at least one tetrahedron in Hi is a sink� This follows from the observation

that � � Hi and � 	 � implies � � Hi� If � � T is a sink that belongs to Hi then z� � Hi

and r�� 	 �� The radii of sinks thus predict the moment in time Hi will disappear� namely
when � reaches the maximum radius of any sink in Hi� Of course� before Hi disappears it
may break up into several voids� each with at least one sink�

�



Pockets� The combinatorial notions of closure� interior� and boundary motivate analogous
combinatorial notions applicable to sets of simplices� The closure of a subset L of a simplicial
complex K is ClL � f� � K j � � � � Lg� it is the smallest subcomplex that contains L�
The star of � � K is St � � f� � K j � � �g� L � K is open in K if St � � L for every
� � L� The interior of a subset L � K is IntL � f� � L j St � � Lg� it is the largest open
set contained in L� The boundary of L is BdL � ClL � IntL� An open set is connected
if it cannot be partitioned into two non�empty disjoint open sets� The components are the
maximal connected open subsets�

As mentioned earlier� the intention is to de�ne pockets so they are generalizations of voids�
possibly with connections to the outside� The relation over the tetrahedra decides which side
tetrahedra belong and the divide forms the connection to the outside� More precisely� pockets
consist of the Delaunay tetrahedra that do not belong to CpxB and that are not ancestors of
��� De�ne P � IntCl �T � anc ���� CpxB� and let

P � P� �� P� �� � � � �� Pk

be the partition into components� For each 	 � i � k�

Pi �
�
Pi �

�
B

is a pocket of
S
B� and Pi is its dual set� These de�nitions are illustrated in �gure ��

Figure �� The �� disks are obtained by shrinking the disks in �gure �
 � of them have now
imaginary radii� There are � pockets each grown from one of the voids in �gure �� Consult �gures
� and � to see that � Delaunay triangles are ancestors of ��� All other triangles belong to P
and none to the dual complex of the disk union� The component of � disks in the middle of the
picture de�nes a chain of � vertices and � edges in the dual complex� This chain separates P into
� components	 each de�ning a pocket�

The above de�nition of pockets treats the unbounded component special and di�erent from
the voids� Sometimes this may not be appropriate and large voids are to be treated the same
way as the unbounded component� This can formally be done by bounding the radii of the
sinks used in the construction� For a size limit 
� � R de�ne T� � f��g� f� � T � j r�� 	 
�g
and

P� � IntCl �T �S��T�
anc��� CpxB�

As before� the subset of R� �SB covered by the interiors of the simplices in a component of
P� is a pocket� and the component is its dual set� see �gure ��
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Figure �� The upper bound on the sink radii used for the example shown excludes sinks whose
orthogonal centers are not covered by the disk union in �gure �� As a result	 the � pockets in
�gure � are reduced to � smaller pockets�

Mouth openings� The only type of pockets without connection to the outside are the voids�
All other pockets connect to the outside at one or more places� For a pocket Pi consider the
part of BdPi not contained in CpxB� BdPi is a simplicial complex and connectedness and
components relative to BdPi are well de�ned for all its open subsets� The mentioned set is
indeed open in BdPi and we let

BdPi � CpxB � M� ��M� �� � � � ��M�

be the partition into components� The mouths of Pi are the sets Mj �
SMj �

S
B� for

	 � j � �� and their dual sets are the Mj� Consider for example the two pockets in �gure ��
The left and smaller pocket has 
 mouths� each de�ned by a single Delaunay edge� The right
and bigger pocket has � mouths� 
 de�ned by a single Delaunay edge each and 	 de�ned by
a chain of � Delaunay edges and 	 Delaunay vertex�

The number of mouths� �� is a useful characteristic of a pocket and can be used to distin�
guish between di�erent types� One would expect a pocket with di�erent number of mouths
in a protein implies di�erent functionalities� We suggest the following terminology re�ecting
the resulting classi�cation� Call a pocket a

void if � � ��
normal pocket if � � 	�
simple connector if � � �� and
multiple connector if � � 
�

In the presence of a size limit one can furthermore distinguish between connectors whose
mouths connect to the same or to di�erent components of the outside�

Related concepts� The computational biology literature contains at least 
 concepts de�
�ned as tools to study regions of limited accessibility� These are the �molecular surface�� the
�interstitial skeleton�� and the �molecular interface�� We brie�y point out the similarities and
di�erences between pockets and these concepts� The authors of this paper believe pockets are
superior to all 
 concepts in terms of visual appearance� objective quanti�cation� and wide
applicability�

The molecular surface model de�ned by Richards �	�� is a union of balls�
S
B� where

gaps inaccessibly to a sphere modeling a solvent are �lled� Let MS � SB be the resulting





object� The union of pockets is similar to albeit not the same as the di�erence� MS � SB�
union all voids of MS� While pockets are de�ned in terms of relative distance� the criterion
employed for de�ning molecular surface uses absolute distance� namely the radius of the
solvent� Furthermore� the object obtained fromMS is cluttered with tiny remains within the
crevices and cusps of

S
B� Pockets do not share this visual distraction�

The interstitial skeleton de�ned by Connolly �
� consists of all Voronoi edges outside
S
B

and within the convex hull of the balls� A problematic feature of this concept is the lack of
any possibility to clip edges inside delta regions where a depression opens up slowly towards
the outside� Another disadvantage is the mess of edges that possibly attracts the eye to large
pockets� but they o�er little in terms of objective quanti�cation�

The molecular interface has recently been suggested by Varshney and coauthors �	�� to
study the region between interacting molecules� It assumes � or more di�erent molecules
and consists of the points outside all molecules at distance at most � from at least � of the
molecules� � is a parameter that can be chosen and adjusted� A shortcoming of this de�nition
is its lack of dependence on any local shape characteristic� Also� it cannot be used to study
depressions in a single molecule� On the other hand� pockets are easily adjusted to study the
interface� compute pockets for the union of the molecules and select only the ones that touch
at least � di�erent molecules�

� Algorithm

We construct pockets by growing them from sinks� We assume a pointer based data structure
for DelB and a linear list that distinguishes between Delaunay simplices inside and outside an
alpha complex� Both data structures are part of the alpha shape software �	��� which forms
the basis of our implementation� The entire software is based on exact arithmetic and the
simulation of general position by in�nitesimal perturbation �		�� We begin by describing the
two data structures in su�cient detail to provide the context for the construction of pockets�

Simplex digraph� We refer to the pointer based data structure for DelB as the simplex
digraph� It supports access to neighboring simplices in constant time each� Data structures
with this functionality are reasonably standard and di�erent versions have been described in
the literature� see e�g� �	� ���

The simplices of DelB are the nodes of the digraph� and they are referenced through
pointers� Each simplex has direct access to its location in the linear list or �lter� see below�
In order to avoid a tedious discussion of the details of the simplex digraph� we stipulate
functions faces and cofaces that provide access to the neighborhood� Given a simplex
� � DelB and a dimension k � dim�� faces returns the k�dimensional faces�

faces��� k� � f� � Clf�g j dim� � kg�

For k 	 dim�� cofaces returns the k�dimensional simplices that share � as a face�

cofaces��� k� � f� � St� j dim� � kg�

It is convenient to assume cofaces��� 
� includes �� if � lies on the boundary of jjDelB jj�
We assume both functions take constant time per returned simplex�

As an example consider the problem of computing the set N ��� of tetrahedra adjacent to
a given tetrahedron � � DelB�

N ��� �� ��

	�



for all � � faces��� �� do
for both � � cofaces��� 
� do

if � �� � then

N ��� �� N ��� � f�g
endif

endfor

endfor�

The �rst loop is over � triangles and the second over � tetrahedra each� so the total time for
�nding all adjacent tetrahedra is constant�

Filter and �ltration� The Delaunay simplices are stored in the order they enter the alpha
complex� We assume an array representation with constant time access via indices�

Recall the ���complex of B is a subcomplex of the ���complex if ��� � ���� It follows the
in�nite sequence of �� de�nes a sequence of nested complexes� Two consecutive complexes
di�er by one or more Delaunay simplices� and the cardinality of DelB is an upper bound on
the number of complexes in the sequence� We represent the sequence by a list of simplices
sorted in the order they enter� We break ties by letting vertices precede edges precede triangles
precede tetrahedra� Remaining ties are broken arbitrarily� The resulting sequence of simplices�

� � ��� ��� ��� � � � � �n�

is a �lter of DelB� The array is a representation of the �lter� with pointers linking simplices
to their locations in the simplex digraph� Each pre�x of the �lter de�nes a simplicial complex�
Ki � f��� ��� � � � � �ig� The resulting sequence of complexes�

f�g � K��K��K�� � � � �Kn � DelB�

is a �ltration of DelB� For each �� � R there is an index i��� with Cpx�B � Ki���� but not
necessarily vice versa�

Suppose we wish to construct the pockets of
S
B�� or rather their dual sets� The general

idea is to traverse the latter part of the �lter� from �i�� to �n� The algorithm is incremental�
and after processing the simplices in Kj the data structures represent the pockets for the
corresponding size limit� Each encountered tetrahedron either joins the outside� joins a set of
delayed tetrahedra because it does not belong to the current set of pockets� or starts a new
pocket and possibly merges some of the existing pockets into one� The delayed tetrahedra
will be added at the appropriate time�

Representing pockets� The pockets are stored as sets of tetrahedra in an evolving system�
�� represented by a union��nd data structure� The sets in � are pairwise disjoint and the
data structure supports the following operations�

add�u� � Add fug as a new set to ��
set�u� � Find set X � � with u � X�
union�X�Y � � Replace sets X and Y by X � Y �

A sequence ofm operations takes time O�m��m��� where ��m� is the extremely slowly growing
inverse of Ackermann�s function� see e�g� ��� chapter V�� For all practical purposes� ��m� can
be considered a small constant�

In our application� the elements in the system are tetrahedra� � is initialized to ff��gg�
set���� represents the outside and is the only set in � that does not represent a pocket�

		



Traversing the �lter� The index of a simplex speci�es its position in the �lter� If �j is a
tetrahedron its depth is

dp�j � maxfk j �k � des�jg
� max�fjg � fdp� j �j 	 �g��

The depth determines the minimum size limit from which moment on the tetrahedron belongs
to the set of pockets� The recursive speci�cation of depth lends itself to computing all depth
values in a single traversal of the �lter�

for j �� n downto 	 do

dp�j �� j�
for all � � N ��j� do

if �j 	 � then

dp�j �� maxfdp�j� dp �g
endif

endfor

endfor�

Pockets are constructed by following the evolution of the ball growth� Only tetrahedra �j
with i��� � j � i�
� need to be considered� and such a �j belongs to P� i� dp�j � i�
��
When the traversal reaches �j� all tetrahedra with depth j are added to the union��nd system
representing the pockets� These tetrahedra are collected in an initially empty set Yj � At the
time Yj is processed it may or may not contain �j�

for j �� i��� to i�
� do
k �� dp�j� Yk �� Yk � f�jg�
for all � � Yj do

add����
for all � � N ��� with � � S� do

union�set���� set�� ��
endfor

endfor

endfor�

Note the test whether or not the tetrahedron � belongs to any set in � that occurs in the
inner for�loop� For � � �k the test is equivalent to i��� � k and dp � � j�

Dual sets of pockets and mouths� The traversal constructs a pocket P as a set of
tetrahedra� To compute the dual set� P� we still need to take the closure of this set� then the
interior� and remove simplices in the dual complex of

S
B� Similarly� to get the dual sets of

the mouths� we need to take the boundary� remove simplices in the dual complex� and collect
components� We �rst describe the process for pockets and then for mouths�

Let X � � be the collection of tetrahedra de�ning P � The closure C � ClX is obtained
by collecting all faces� with a straightforward marking mechanism to avoid duplication�

C �� X � f�g�
for all � � X do C �� C � faces��� ��

� faces��� 	� � faces��� ��
endfor�

To construct the interior� we use the fact a vertex or edge in C belongs to I � IntClX i� all
triangles in its star belong to I�
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I �� C � f�g�
for all triangles � � I do

for both � � cofaces��� 
� do
if � �� X then I �� I � f�g

� faces��� 	�� faces��� ��
endif

endfor

endfor�

The dual set of P is �nally obtained by removing all simplices from I whose indices in the
�lter are less than i� 	�

The dual sets of the mouthsMj are the componentsMj of BdP�CpxB� Every boundary
simplex of P belongs to B � BdClX � C � I or to CpxB or to both� We can therefore work
with B� which can be constructed along with I by the above algorithm�

B is a ��dimensional connected manifold because I is connected� This means every edge
belongs to exactly � triangles and the star of every vertex is an alternating cycle of edges and
triangles� The Mj are the components of B�CpxB� They are computed in a way analogous
to the computation of the dual sets of pockets� only in one dimension lower� First� traverse
the triangles � � B and collect the ones outside CpxB in a system represented by a union��nd
data structure� Whenever a triangle is added� check the 
 adjacent triangles and merge sets
if they are already in the system� In the end� each set Y in the system contains the triangles
of a mouth Mj � The dual set of Mj is Mj � IntClY �

� Protein Examples

Tunnel extraction for Gramacidin A� Gramacidin A is a synthetic membrane channel
and has been used as an antibiotic� It is composed of D and L amino acid residues in
alternating order�

Figure �� The alpha shape of gramacidin A reecting the topological structure of the molecule�

Figure � shows the alpha complex of the molecule when � � �� Figure � shows that the
tunnel of the potassium channel is extracted by the pocket construction of gramacidin A�

Pocket in HIV�I protease for inhibitor� HIV�I protease displayed in �gure  is impor�
tant for the maturation of HIV�I virus� Its complexed structure with VX ��� inhibitor has
been recently solved �	
�� Atoms of the HIV�I protease that are in solvent contact with the
inhibitor can be identi�ed by comparing the complexes for the bound and unbound states�
The inhibitor binding site is a pocket and can be seen from the alpha complex on the left of

	




Figure �� The pocket constrcuted from gramacidin A� It is a simple channel connector�

Figure � HIV�I protease shown in van der Waals model�

�gure 	�� This binding site is a simple connector with � mouths� The pocket of the binding
site is constructed and shown on the right� Note the complementary nature of the two shapes�

Heme pocket of the myoglobin� Myoglobin is the protein that carries oxygen in muscle
cells� providing the oxygen necessary for cell metabolism� Figure 		 shows the alpha complex
of the apoprotein as well as the heme pocket� The heme binding site is in the pocket that
can be seen from the alpha complex� The dual set of the pocket is constructed and depicted
on the right hand side� Note that unlike the previous example� this is a normal pocket with
a dead end�

� Discussion and Extensions

Initial experiments have shown that the algorithm for computing pockets described in this
paper cannot �nd shallow pockets� In systems of large molecules� shallow pockets can occur
quite frequently� One possible solution to this problem is an additional parameter specify�
ing �steepness� or �depth� that will add �ner control over the inclusion or exclusion of the
tetrahedra that �ow to ���

The concept of a pocket can be applied to the complementary space of a macromolecule
thus de�ning protrusions of the molecule� An appropriate notion of complementarity is de�
scribed in ���� The authors of this paper expect that pockets and protrusion together provide
a good handle on predicting docking pairs and sites�
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Figure 	�� The alpha complex of HIV�I protease and the inhibitor binding pocket�

Figure 		� The alpha complex of myoglobin and the dual set of the heme binding pocket�

The notion of limited accessibility arises also in studies of shapes in other �elds� For
example� Miller �	�� uses it to compute realistic shadings of statues� Notions of local and global
accessibility are related to molecular surfaces and to pockets� The algorithmic techniques in
this paper can be used to improve the performance of the algorithms in �	�� by orders of
magnitudes�
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