
288

DNA SPLICING SYSTEMS AND POST SYSTEMS

C. FERRETTI,a S. KOBAYASHI
Department of Computer Science and Information Mathematics

University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182, JAPAN

This paper concems the formal study on the generative powers of extended splic-
ing (H) systems. First, using a classical result by Post which characterizes the
recursively enumerable languages in terms of his Post Normal systems, we estab-
lish several new characterizations of extended H systems which not only allow us
to have very simple altemative proof methods for the previous results mentioned
above, but also give a new insight into the relationships between families of ex-
tended H systems. We show a kind of normal form for extended H systems exactly
characterizing the class of regular languages. We also show a new representation
result for the family of context-free languages in terms of extended H systems.

1 Introduction

A series of papers on "theoretical" research on DNA computing has lately been
attracting much attention in computer science, which has been originated by
Tom Head's work on splicing systems (or H systems) and their languages for
modeling DNA recombination~

In investigating the computational power of extended H systems, all of
the previous work construct a fairly complicated H system to characterize
the recursive enumerability of an extended H system, from which one can
hardly recognize the essentials necessary for achieving the desired complexity.
This will also cause a real "bottleneck" when we think of designing a feasible
implementation method for building DNA computer in a test tube.

In this paper, we propose a new method for realizing the universal com-
putational power of extended H systems which is based on a classical but
beautiful characterization of the recursively enumerable languages in terms of
Post systems? In his historical paper, Post has proposed a new string rewrit-
ing system having rules of the form: uX ~ X w, where u, w : strings over
the (total) alphabet involved, X: variable identifiable with any string. For
example, one can obtain a new string vw from uv by applying the rule, where
X is identified with a string v. .

The key idea used in our method is illustrated in Figure 1 where one appli-
cation of original Post rule is simulated by a number of basic types of rewriting

a{ferretti.satoshi}Ggold.cs.uec.ac.jp.
The first author was on leave from Dept. of Computer Science, Univ. of Milano.

[;:::;:;;:;;;;u;;;;:;;;:;:;;;;;;:1

289

................,

v
Type 1 : uX-wX'-'wr-------.

1::::~:~::2~:~,;(:::~::::th(

+

+

1:~;i;;i;:q.::::~::::1

'P

Type :2
V (a1:::1

.. Type :2.
I
T

lam .£ 14~i~a:::~,*:1

Type:2: aX-Xb-...
.£ """""""""""""""1::::::::::::::::::::::--.:::::::::::::::::::::

Figure 1. Decomposing Into Two Basic Types

steps so that those steps may easily be carried out by splicing operations. In
fact, such a decomposition of a rule uX --+ X w can be realized as follows: We
first introduce new rule uX --+wX which is called Type 1, then use a number
of simple original rule of the form: aX --+X b (a, b : symbol), called Type 2. It
is easy to see that this transformation of the rule application can be performed
in a deterministic manner, so that the simulation process works well.

2 Preliminary

V* is the set of all (finite length) strings over a finite alphabet V. The empty
string is denoted by A, and V+ = V* - {A}. For a string x E V*, Ixl denotes
the length of x, i.e., the number of symbols from V comprising x. The families
of recursively enumerable languages, context-free languages, regular languages
and finite languages are denoted by 'Re, CF, 'Reg and FIN, respectively.

An extended Head system (or EH system) is a quadruple H = (V, E, A, R),
where V is an alphabet of H, E(C V) is the terminal alphabet, A(C V*) is
the set of axioms, and R is the set of splicing rules and R C V* # V* $V* # V*
($, # are special symbols not in V).

For x,y,z,w E V* and r = Ul#U2$U3#U4 in R, we define
(x, y) rr (z, w) if and only if x = X1U1U2X2,Y = Y1U3U4Y2,and

Z = XlUl U4Y2, W = YlU3U2X2,
for some Xl, X2, Yl, Y2 E V*.

For an EH system H = (V, E, A, R) arid a language L C V* , we write
u(L) = {z E V*I(x,y) rr (z,w) or (x,y) rr (w,z), for some X,Y E L,r E R},

290

and define u*(L) = Ui>Oui(L) where
uO(L)= L, ui+I(L)= ui(L)U u(ui(L» for i > O.

The language generated by H is defined by L(H) = u*(A)n E*.
A multi-set M on V* is taken as a recursive function M : V* -+ N U {oo},

where N is the set of non-negative integers. The set {w E V*IM(w) > O}
is called the support of M and is denoted by supp(M). A multi-set M is
represented by a set of pairs {(x, M(x»lx E supp(Mn. For two multi-sets
MI' M2, (MI - M2)(X) = Mdx) - M2(x) if MI(x) > M2(X) (for all x E V*),
and (MI U M2)(X) = MI(X) + M2(X).

An EH system H = (V, E, A, R) is called EH system with multiplicity if A
is a multi-set on V*. For such an H = (V, E, A, R) and two multi-sets MI, M2
on V*, we define

MI ==> M2 iff there exist x, y, Z,wE V* such that
(i) MI(X) > 1,MI(y) > 1 and if x = y, then MI(X) > 2,
(ii) (x, y) I-r (z, w) , for some r E R,
(iii) M2 = (MI - {(x-,1),(y, In) U {(z, 1), (w, In.

The language generated by an EH system H with multiplicity is defined by

L(H) = {w E E*lw E supp(M), for some M such that A ==>* M},

where ==>* is the reflexive and transitive closure of ==>.

For two families of languages FlJ F2' we denote

EH("'Fl' F2) = {L(H)IH = (V,E, A, R), A E Fl' R E F2}

EH(mFI, F2) = {L(H)IH = (V,E, A, R) with mult., supp(A) E Fl, R E F2}.

Further, the families EH(m[k],F2) and EH(",[k],F2), for each k > 1, denote
the ones generated by EH systems with and without multiplicity having at
most k axioms, respectively.

Some important recent results related to the generating power of these
systems are recalled in the following statement:
Theorem 1 (Freund et alf)
(i) neg =EH(m[I], FIN) = EH(",[I],FIN) = EH(",FIN,FIN)
(ii)ne = EH(m[2],FIN) = EH(mFIN, FIN)

3 Post Normal Systems

A Post Normal system (PN system) is a quadruple G = (V,E,P,A), whereV
and E are finite alphabets such that E C V, and P is a finite set of rules of
the form: uX -+ X w (X: unique variable not in V, u, w E V*). A(C V+) is
a finite set of axioms.

291

Given strings a, j3 E V*, a binary relation ===>is defined as follows:

a ===>j3 iff 3uX --+X w E P and 315E V* [a = uc5,j3= c5w].

The reflexive and transitive closure of =::} is denoted by ===>* .
For a given G, a language generated by G is defined as

L(G) = {w E ~*13u E A [u ===>*w]}.

By POST, we denote the family of languages generated by Post Normal
systems. This kind of system is computationally universal, as shown by:
Lemma 2 (Post) POST =nt:.

We introduce two restricted models of Post systems.. A Regular Post sys-
tem (RP system) is a Post system G = (V,~, P,A) with only productions of
the form uX --+ wX. Finally, a RP system G = (V,~, P,A) is pure when
V =~. RP systems and even pure RP systems are enough to characterize the
class of regular languages:
Lemma 3 (Salomad!) Both the class of languages generated by RP systems
and the class of languages generated by pure RP systems are equal to 'Rt:g.

3.1 Generalized Regular Post Systems

We introduce a variant of a PN system which is in fact an extended model of an
RP system. A Generalized Regular Post system (GRP system) is a quadruple
G = (V,~, P, A), where V and ~ are finite alphabets such that ~ C V, and
P is a finite set of rules whose forms are either uX --+wX or aX --+Xb (X:
unique variable not in V, u, w E V*, a, b E V). A(C V+) is a finite set of
axioms. Given strings a, j3 E V*, a binary relation ===>is defined as follows:

either 3uX --+wX E P and 315E V* [a = uc5,j3 = wc5]

or 3aX --+Xb E P and 315E V* [a = ac5,j3= c5b].

The reflexive and transitive closure of =::} is denoted by ===>*.
For a given G, a language generated by G is defined as

a ===>j3 iff

L(G) = {w E ~*13u E A [u ===>*w]}.

By GRP S, we denote the family of languages generated by Generalized
Regular Post systems.

This kind of system is universal, as shown by:
Lemma 4 (Yokomori et al?) POST = GRPS =nt:.
Remark 1 Actually, it is shown by Yokomori et al. 9 that it is enough to
consider only GRP systems in the following 2-restricted form: G = (V u
V,E,P,A), with V = {b I bE V}, ~ C V,A C V+, and productions of the
form uX --+wX or "Ex --+Xb, with lul, Iwl < 2 (u, w E V*) and b E V.

292

3.2 CF Post Systems

These paragraphs are devoted to prove a new result concerning how to char-
acterize in terms of GRP systems the class of context-free languages. We start
from the definition of a specific kind of Post system. A CF Post system is
a GRP system G = (V,~, P, A), with all the production rules of the form
BX -+ CD X or BX -+ Xb, where B,C,D E V - ~ and b E~.

Theorem 5 For a given CF grammar G = (N,~, P, S) in Chomsky normal
form, construct a CF Post system G' = (N U~, ~,P', {S}) having

P' {AX -+ BCX I A -+ BC E P} U {AX -+ Xa I A -+ a E P}

Then, we have L(G) = L(G').
Proof Any w in the context-free language L(G) has a successful left-most

derivation d(w) in C, and by the nature of the Post system C' only such d(w)
can be successfully realized by C'. This implies that L(C) C L(C').

For any w' in L(G'), the successful derivation of w' in G' is corresponding
to some left-most derivation in G: w' E L(C), i.e., L(G') C L(G). 0

In this case, we can see how a GRP system operates compared to a gram-
mar: in a GRP system the rewritings occur only on the prefix of the string
being transformed, while, in general, in a grammar the rewriting can occur also
inside the string being generated. This leads, in the case of CF Post systems, to
the need of a leftmost derivation to generate the same string generated by the
grammar. This issue has relevance when considering EH systems, because in
this model we have splicing rules that can be applied also inside the string, but
they act splitting and joining strings, not performing easily the substitution
that grammars do.

Theorem 6 CF Post systems exactly characterize the classCF.

Proof By Theorem 5, we have only to prove that any CF Post system
C = (V,~, P, A) can only generate a context-free language. Without loss of
generality we can restrict to A = {S}. To do this, consider to construct from
G a push-down automaton as follows:

M ({p}, V,~,d,p,S,{p}) where

d(p, a, A) = (p, A) if AX -+ X a E P

d(p,A,A) = (p, BC) if AX -+ BCX E P

Then, for any A E V - ~, it is easy to see that A :::}nw E L(G) iff (p, w, A) I-n
(p, A,A), by induction on n, and supposing that M accepts in the empty stack
mode. Then, L(G) is context-free. 0

293

4 EH Systems: Basic Tools and Normal Forms

We describe here some formal Basic Tools to be used to build in a modu-

lar way any EH system we need, starting from a given GRP system G =
(Va, :E,Pa, Aa). We also discuss their correctness, and we will apply them to
the main theorems of this paper, to give two kinds of contributions:

. simpler proofs for the statements nE C EH(m:FIN, :FIN)
and nEg C EH(w:FIN, :FIN)

. normal forms for EH systems generating recursively enumerable, regular
or context-free languages.

We will show that the family of EH systems that we can build using only
axioms and rules specified using these Basic Tools, can indeed generate any
language in nE, if we use also multiplicity constraints. Without multiplicity,
it can generate only nEg.

The idea is to reproduce in the splicing system the transformations oper-
ated by a given Post system. The strings w produced in the Post system will
be produced as ZhwZt in the splicing system with the head marked by the
prefixed nonterminal Zh, and the tail marked by the suffixed nonterminal Zt.
Eventually, the splicing system will apply some specific rules to remove these
two markers from any string, so as to allow to produce strings in :E*. The
nonterminals Z1, Z2 and Z3 are used one in each basic building tool we are
going to define. A distinguished set of (nonterminal) symbols Viis required
by one of these three Basic Tools. We may take V' as the set of labels for Pa.

The EH systems specified in this way operate on the set of symbols V,
union of the following four disjoint subsets: Va, {Zh' Zt}, {Zb Z2, Z3}, V'(the
set of labels for Pa). :E C Va is the set of terminals to be considered in the
definition of the generated language.

We describe each Basic Tool in terms of a set of axioms and a set of rules,

. Ahh(U,W) and Rhh(U,W), respectively, for the Basic Tool 1, to recall a
head to head substitution from string U to string w, corresponding to a
rule uX -+ wX in a GRP system

. Ar,,(a, b, c) and Rr,,(a, b, c) for the Basic Tool 2, to recall a rotation and
then the §.ubstitution of symbol a to symbol b, performed using some
auxiliary nonterminal c E V' unique to the corresponding rule aX -+ Xb

. Adr and Rdr, for the Basic Tool 3, to recall the dropping of head and
tail markers from any string.

294

In the following three descriptions of basic splicing tools, it will hold s, t E V*.

I Basic Tool 11 (Ahh(U, w), Rhh(U, w»:

For any production of the form uX ~ wX, we can use the following
Ahh(U, w) = {ZhwZ1} (head subs.)
Rhh(U,W) = {Zhu#a$Zhw#Z11 a E V - {ZbZ2,Z3}} (head subs.)

axiom and rules respectively. This gives the splicing:

. (head subs.) (Zhu:as, ZhW:Z1)rZhu#a$Zhw#Z1 (ZhuZ1, Zhwas)

We see that we generate as garbage string: {ZhuZ1}

I Basic Tool 21 (Ar8(a, b,c), Rr8(a, b,c»:

For any production of the form aX ~ X b, and for its label symbol c E V', we
can use the following axioms:

Ar8(a,b,c) = {ZhcZ2}
U {Z2<5cZ2 1<5E V - (V' U {Z1, Z2, Z3})}
U {Z2bZt}

(head subs.)
(split)
(tail subs.)

{Zha#a$Zhc#Z2 I a E V - {Z1, Z2, Z3}}
{ac<5#/3$Z2<5c#Z2 I a, (3 E V - {Z1' Z2, Z3},
<5 E V - (V' U {Z1 , Z2,Z3})}

U {a#c<5Z2$Z2#<5c/31a,(3 E V - {Z1,Z2,Z3},
<5 E V - (V' U {Z1, Z2, Z3})}

U {a#cZt$Z2#bZt I a E V - {ZbZ2,Z3}}
This gives the following splicings:

and rules:
Rr8(a, b, c) =

U
(head subs.)

(split)

(join)
(tail subs.)

. (head subs.) (Zha:as, ZhC:Z2)rZha#a$Zhc#Z2 (ZhaZ2, Zhcas)

. (split) (sac<5:(3t,Z2<5C:Z2)r aclJ#(j$Z2{jc#Z2 (sac<5Z2, Z2<5c(3t)

. (join) (sa:c<5Z2, Z2:<5c/3t)r a#clJZ2$Z2#lJc(j (sa<5c(3t,Z2c<5Z2)

. (tail subs.) (sa:cZt, Z2:bZt)r a#cZt$Z2#bZt (sabZt, Z2CZt)

We see that we generate as garbage strings: {ZhaZ2, Z2c<5Z2,Z2CZt}

295

The way Basic Tool 2 operates needs a brief explanation. We first substi-
tute in the head of the string a with some special symbol c. Then we move
c toward the tail of the string step by step, swapping it with any symbol not
from V' appearing at its right. To do this with a splicing system, not able
to directly substitute substrings, but only cutting and joining, we do a first
"split" splicing to separate the string in two parts. Then, these same two parts
are pasted with the "join" splicing, resulting in the same starting single string,
but with the two symbols swapped (c and b in the two strings underlined in
the previous description).

I Basic Tool 31 (Adr, Rdr):

To produce a string s from any string ZhsZt we can use the following
Adr = {Z3} (drop)
Rdr = {Zh#$#Z3} (drop head)

U {Z3#$#Zt} (drop tail)
axiom and rules respectively. This gives these splicings:

. (drop head) (Zh:S, :Z3) I-Zh#$#Z3 (ZhZ3, s)

. (drop tail) (Z3:,S:Zt) I-Z3#$#Zt (Z3Zt,s)

We see that we generate as garbage strings: {ZhZ3' Z3Zt, ZhZ3Zt} (the last
one generated by successive splicing steps)

Now we can observe that the splicing rules introduced by these Basic
Tools have some nice properties, even with some biological interest. We only
point out here that in Rr3(a, b, c) and Rdr they specify only splicings occurring
between two splicing sites of equal length, and this length goes from 1 to 4.
Something similar happens in real DNA splicing processes, were the restriction
enzymes define sites of length 6 mostly!O

Other important properties are related to the interactions between these
sets of axioms and rules, when put together to build a splicing system. We
sketch here the proofs of some:

Lemma 7 (Inter-tool lemma) There is no interaction between axioms or gar-
bage strings produced by one Basic Tool, with rules from a different Basic Tool.

This is easily proved by noting that all the rules require the presence of the
specific marker Zi, 1 < i < 3.

Lemma 8 (Rotation lemma) As long as only one string ZhsctZt is present in
the splicing system, then the iterated application of Rr3 (a, b, c) gives ZhstbZt.

296

This is the point where a constraint on the multiplicity of strings is needed.
Otherwise, one could use the 'join" splicing rule on a pair of strings coming
from two different "split" splicings, eventually producing a string not produced
by the GRP system being reproduced.

Lemma 9 (Head-substitution lemma) If there's any string Zhus in the splic-
ing system, then one application of Rhh(U,W) gives the string Zhws,
This is true also for GRP systems where we have pairs of productions like

uX --+ (u'v)X ,u'X --+ wX, even if in this case the interaction between axioms
and rules corresponding to the two productions produces a new garbage string
ZhwvZb by splicing the garbage string of the first production with rule and
axiom of the second production. Finally, we have the simple lemma
Lemma 10 (Trimming lemma) Rdr can produce the string s from ZhsZt.

All these properties allow us to easily state here the first main application
of these Basic Tools. We show that we build a kind of normal form EH system

for any language in 'R£. A k-limited EH system is an EH system where any
splicing rule Ul#U2$U3#U4 has the property: lull + IU21< k, IU31 + IU41 < k.
Theorem 11 Any recursively enumerable language can be generated by a 4-
limited EH system with multiplicity.

Proof By Lemma 4 and the accompanying remark, it is sufficient to show
how to build an EH system, with multiplicity, generating the same language of a
given 2-restricted GRP system G = (VG,~, P,AG). Without loss of generality
consider AG = {S}.

Then we build the EH system with multiplicity H = (V, ~, A, R) with:

. V = VG U Va U {Zh,Zt,Zl,Z2,Z3},whereVa = {ab I a,b E VG}

. A = {ZhSZt}UAdrU(UuX-wXEPAhh(U,W))U(UaX-XbEPAr,,(a,b,ab)),
where ZhSZt has multiplicity 1, and the others have multiplicity 00,

. R = Rdr U (Uux-wxEpRhh(U, w)) U (UaX-XbEpRr,,(a,~, ab)).

First we observe that we can reproduce any Post derivation of G in the
splicing system, eventually removing the head and tail markers to have the
correct strings in ~*. Then L(G) C L(H).

Moreover, any string in ~* produced by H cannot come from a garbage
string, because they contain some Zi, 1 < i < 3. We are allowed to apply here
the previous lemmas, having multiplicity one on the starting axiom ZhSZt,
and having chosen carefully the special auxiliary symbols for the Basic Tool 2.
Then, it is proved that L(G) =>L(H).

It is easy to check that in each Rhh (u, w) this length is bounded by 2 +
max(lul, Iwl), then, if we start from a 2-restricted GRP system, we are building
a 4-limited EH system. 0

297

We can state specific characterization results for the family of EH systems
being described here:
Corollary 12 A language can begenerated by an EH system with multiplicity,
built by Basic Tools 1, 2 and 3 iff it is recursively enumerable.

Proof (Sketch) By the Turing/Church thesis and Theorem 11. 0

5 A Simple Form for n£g

Dealing with regular languages allows us to build much simpler EH systems.

Theorem 13 Any regular language can begenerated by an EH system without
multiplicity, using only Basic Tools 1 and 3 ("head subs." and "drop"), and
with only 4 nonterminal symbols.

Proof By Lemma 3, it is sufficient to show how to build an EH system
generating the same language of a given (pure) RP system.

Having only productions of the form uX --+ wX, we will use only the
Basic Tools for "head subs." and "drop". This also means that we don't need
multiplicity constraints on the axioms, which is only required by Basic Tool 2.

Moreover, if the given RP system is pure, we can build an EH system of
the simple form H = (E U {Zh, Zt, Zl, Z3}, E, A, F). 0

We can state specific characterization results for the sub-family of EH
systems being described in the previous lemma:
Theorem 14 A language can be generated by an EH system using only Basic

Tools 1 and 3 iff it is regular.

Proof By known results 1,6concerning the regularity of splicing systems
H without nonterminals, the definition of L(EH) = L(H)nE*, and the closure
property of the class of regular languages, we know that any language generated
by an EH system is regular. Conversely, by Theorem 13 we know how to find,
for each regular language, an EH system generating the same language. 0

6 A subclass of EH Systems for CF Languages

This section deals with a level of the Chomsky hierarchy seldom considered
in the studies of the languages generated by extended splicing systems. Con-
cerning context-free languages, only some closure properties of families like
EH(wCF, FIN) has been recently studied.5 Here we try to give a characteri-
zation, in terms of EH systems with finite set of axioms and finite set of rules,
and with multiplicity, for CF.

Let's consider to generate any context-free language by use of a CF Post
system, as discussed in Section 3.2. We aim at performing the productions

298

of the Post system, which we have proved can be restricted to be of the form
AX -+ BCX or AX -+ X a, using the Basic Tools previously defined.
Theorem 15 Any context-free language on 1;* can be generated by an EH

system with multiplicity, built by Basic Tools of the simplified form (X, Y, Z, Xy
symbols not in I;, y symbol in I;):

Ahh(X, Y Z)

Rhh(X, Y Z)

ArlJ(X, y, Xy)

RrIJ(X,y,Xy)

Adr

Rdr

Proof. Using the characterization of CF in terms of CF Post systems,
given in Theorem 5, we know we need Basic Tool 2, because we have to rep-
resent also Post productions of the form AX -+ X a. The use of Basic Tool 2
requires constraints on the multiplicity of the axioms of the splicing system we
build. It is possible to completely specify the EH splicing system H starting
from a CF Post system G, and to prove L(H) = L(G), in the same way as
done in Theorem 11; then we have only to observe that given the restriction
on the structure of CF Post systems, the Basic Tools used will be of the simple
form described in the statement we are proving. 0

Unfortunately, it is not easy to show whether the family of EH systems
of the form described in the previous theorem generates only context-free lan-
guages, so to give a complete characterization of CF in terms of splicing sys-
tems. In contrast, it is not hard to see that any member of the family of EH
systems just mentioned can be simulated by a linear-bounded Turing machine~
It would be nice, at least, to prove that this family of EH systems generates
only a proper subset of the family of context-sensitive languages.

7 Conclusions

Using the classical result due to E. L. Post in formal language theory, we
have proposed a new method for charactering the universal computability of
extended H systems, and have shown some characterizations of regular and
context-free languages in the framework of extended H systems with finite
axioms and finite rules. In our analysis, it turned out that the universal com-
putability can be realized by three Basic Tools of splicing operations, namely
Basic Tool 1 for substituting prefix, Basic Tool 2 for rotating from head to tail,
and Basic Tool 3 for dropping end-markers. And, we have shown that the class
of regular (or context-free) languages is achieved by a simple combination from
these three Basic Tools. Multiplicity is required only when rules from Basic
Tool 2 (or rules of the form aX -+ Xb) has to be performed.

Open problems: Is the special subclass of extended H systems introduced
to represent the class CF in Theorem 15 exactly generating the class CF ?

299

Moreover, to simulate languages beyond 'Reg is it necessary to put multiplicity
constraints on axiom strings, in our current framework?

Acknowledgements

This work was supported in part by a Joint JSPS/EC Grant No.94043 and
Grants-in-Aid for Scientific Research No.94234 (for the first author),
No.O7780310 and No.O7249201 (for the second author) from the Ministry of
Education, Science and Culture, Japan.

References

1. K. Culik II and T. Harju. Dominoes and the regularity of DNA splicing lan-
guages. Discrete Applied Mathematics, 31:261-277, 1991.

2. R. Freund, L. Kari, and Gh. Paun. DNA computing based on splicing: The
existence of universal computers. Technical report, Fachgruppe Informatik,
Tech. Univ. Wien.

3. T. Head. Formal language theory and DNA: An analysis of the generative
capacity of specific recombinant behaviors. Bulletin of Mathematical Biology,
49:737-759, 1987.

4. S.Y. Kuroda. Classes of languages and linear-bounded automata. Information
and Control, 7:2, 207-223, 1964.

5. Gh. Paun, G. Rozenberg, and A. Salomaa. Computing by splicing. submitted,
1995.

6. D. Pixton. Regularity of splicing languages. Discrete Applied Mathematics,
(To appear), 1995.

7. E. L. Post. Formal reductions of the general combinatorial decision problem.
American Journal of Mathematics, 65:197-215, 1943.

8. A. Salomaa. Computation and Automata. Cambridge University Press, 1985.
9. T. Yokomori, S. Kobayashi, C. Ferretti. On the power of circular splicing

systems and DNA computability. Technical report, Dept. of Comput. Sci.
and Inform. Math., Univ. of Electro-Commun., TR 95-01, 1995. '"

10. J.D. Watson, J. Tooze, D.T. Kurtz. Recombinant DNA: a Short Course. Free-
man, New York, 1983.

