ASSESSING THE PERFORMANCE OF FOLD RECOGNITION
METHODS BY MEANS OF A COMPREHENSIVE
BENCHMARK.

DANIEL FISCHER, ARNE ELOFSSON, DANNY RICE & DAVID EISENBERG ®.
UCLA-DOF Lab. of Structural Biology & Molecular Medicine
Molecular Biology Institute, UCLA
BOX 951570 Los Angeles, CA-90095-1570

Recently there has been an explosion of methods for fold recognition. These meth-
ods seek to align a protein sequence to a three-dimensional structure and measure
the compatibility of the sequence to the structure. In this work, we present a
benchmark to assess the performance of such methods. The benchmark consists
of a set of protein sequences matched by superposition to known structures. This
set covers a wide range of protein families, and includes matching proteins with
insignificant sequence similarity. To demonstrate the usefulness of this benchmark,
we apply it here to compare different fold-recognition methods developed through
the years in our group as well as several sequence-sequence substitution matri-
ces. The results show that "global-local” alignments are superior to either local
or global alignments. The most effective sequence-sequence matching matrix is
the Gonnet table. The best performance overall is obtained by a method which
combines the 3D-1D profiles of Bowie et al. ! with a substitution matrix and takes
into account residue pairwise interactions.

1 Introduction

In the fold-recognition problem we ask: ”Is the sequence of a protein of un-
known structure ‘compatible’ to the fold of a known protein, and if so, to which
one?” The practical goal of a fold-recognition method is to assign each new
amino acid sequence to the known three-dimensional fold which it most closely
resembles. The classical method of making this assignment has been to estab-
lish a similarity of the new sequence to some sequence of known structure. In
1991, Bowie et al! developed an alternative method: to score the compatibility
of the new sequence against a known three-dimensional structure. This method
has been termed inverted protein folding or 3D profiles. Since then, a vari-
ety of fold-recognition methods have been published 234567 The approaches
used differ in one or more of the four essential components of fold recognition,
namely, (i) the representation of the protein, (ii) the evaluation of the compat-
ibility between the unknown sequence and a fold, (iii) the algorithm to search
for the optimal alignment and (iv) the way the ranking is computed and the
way significance is estimated. The representation of the protein structure can

¢Corresponding author. Fax: 310-206-3914, Tel: 310-825-3754.
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be an all atom structure, a backbone structure, a string of S-carbon atoms, a
set of inter-residue distances or even, in the simplest case, a string of amino-
acid names (that is, a sequence). The evaluation of compatibility can be a
table of scores for matching residue to residue (such as Dayhoff’$ or Gonnet’s’
substitution matrices), or residue to its environment (sometimes called 3D-
1D scorest). The method used for aligning the sequence to the structure can
be a dynamic programming algorithm!%'! multi-level dynamic programming?,
matching of segments with a Monte Carlo” or a branch and bound algorithm'?,
The ranking can consider either the raw scores of the alignments or some nor-
malized scores. Assessing significance can be achieved by considering some
measure of statistical significance such as a z-score. FEach of these steps in-
volves representations and parameters. Selecting the best approximations and
parameters is crucial to success, but is hindered by the complexity of the entire
procedure. It is this problem that this paper addresses.

Our goal is to devise a benchmark that can aid in assessing the performance
of a fold-recognition method in an objective, unbiased and thorough way. The
benchmark is independent of the representation of the proteins, the com-
patibility definition, the search algorithm, and the ranking and significance
estimation procedures used in the method being evaluated. Thus, it allows a
systematic comparison of different methods. Benchmarks are routinely used
to assess performance of sequence-sequence alignment (e.g!314) and secondary
structure prediction methods ( e.g!%). However, in fold recognition, no stan-
dard procedure to assess performance has been established. This benchmark
is a first attempt to establish such a standard in the field of fold recognition.
This benchmark may also aid in determining the strengths or weaknesses of
different fold-recognition methods.

Performance assessment should address the balance between sensitivity -
the ability to calculate high-ranking scores for the correct answer- and selectiv-
ity -the ability to calculate low-ranking scores for unrelated folds'*. Another
important aspect in assessing the performance of a method is the evaluation
of the accuracy of the alignments obtained. The benchmark presented here
quantifies both the sensitivity and selectivity. Alignment accuracy, however, is
the subject of a different study.

This paper 1s organized as follows. In the Materials and Methods section
we first present the benchmark and then describe the various fold-recognition
methods evaluated using the benchmark. In the Results section we present the
results of the performance assessment of some of these methods. In the last
section we analyze the results of the evaluations and we discuss the merits and
limitations of this benchmark.



2 Materials and Methods

2.1 The Benchmark

The benchmark consists of three components. The first is a set P of proteins
of known structure obtained from a structurally non-redundant dataset of pro-
teins. The second is a list S of test sequences. The third component is a set
L of pairs of the form (s,p), where s € S and p € P. L identifies for each
test sequence, which fold in P is the most similar to it. For each s, the most
compatible fold in P is objectively determined by structural comparisont®, as
the structure of s is actually known. Each fold-recognition method being eval-
uated considers each s as a probe (obviously ignoring its structure), aligns it
into each p € P and produces a ranked list of the compatibility of s with each
p. The benchmark uses L to assess how well the method succeeded in each test
sequence, i.e. the ranked list is searched to find at what position the expected
pis. An ideal performance would be one that identifies the expected p at rank
1. To assess sensitivity, an overall score comprising the performance on all
pairs in L is given for each method. To assess selectivity a reliability level is
also computed (see below).

P is obtained from the representative dataset derived in'®. This is a
sequence-independent dataset, obtained by structural criteria only, using a
1994 release of the PDB (Protein Data Bank”). It covers all the different
folds known at that time. It is non-redundant both in structure and sequence,
i.e. no two chains in P are structurally nor sequentially similar up to given
thresholds ®. The size of P is 301 and is available listed from the authors.
The sequences to be used as probes were selected by analyzing the pairwise
comparisons carried out during the construction of the representative dataset.
First, every chain s from the PDB which is represented by some p € P (i.e.
is structurally similar to p), and which has less than 30% sequence identity
with p is selected, and the pair (s, p) added to L. If two chains s; and s, are
represented by the same p and share more than 30% sequence identity, then
only one of them is selected. Second, the results of an all-against-all structural
comparison of the representative chains (the P set) is analyzed and pairs of
chains in P belonging to the same super-family or fold and which are just
below the structural threshold used in the derivation of P, are also included
in L, using either one of them as probe. By definition, these pairs also have
below-thresholds sequence similarity.

bNo two entries have a sequence identity percentage above 35% and when optimally
superimposed, no more than half the residues of the larger structure are matched to residues
of the other structure at a distance of at most 3A; for more details on the derivation of the
dataset and on the structural comparison algorithm used seet®
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TABLE I. THE SEQUENCE-STRUCTURE PAIRS*.

s p % DIFF. || s p % DIFF.
1mdc lifc 21 1.0 Imup  1rbp 14 4.4
1npx 3grs 20 1.0 lcpcl 1cola 17 4.6
lonc Trsa 26 1.0 lak3a 1gky 17 5.3
losa 4cpv 24 1.0 latna  latr 15 5.3
1pfc 3hlab 22 1.0 larb 4ptp 20 6.7
2cmd 6ldh 23 1.0 2pia 1fnr 18 7.4
2pna 1shaa 29 1.0 3rubl 6xia 18 8.0
1bbha  2ccya 21 1.0 2sara 9rnt 12 8.7
1c2ra lycc 23 1.0 3cd4 2rhe 25 9.3
1chra 2mnr 20 1.0 laep 256ba 14 9.6
1dxtb 1hbg 19 1.0 2mnr  4enl 18 9.9
2fbjl 8fabb 22 1.0 1ltsd lbova 19 10.9
1gky 3adk 24 1.1 2gbp 2liv 16 11.6
Thip ohipa 19 1.1 1bbt1  2plvl 20 11.9
2sas 2scpa 17 1.1 2mtac  lycc 15 12.1
1fcla 2fb4h 19 1.1 1taha  ltca 16 12.6
2hpda  2cpp 18 1.1 lrch lgmfa 21 12.7
laba lego 21 1.3 lsaca  layh 14 12.7
leaf 4cla 21 1.3 ldsba  2trxa 13 13.1
2sga 4ptp 21 1.4 1stfi lmola 8 13.4
2hhma  1fbpa 13 1.4 lafna  laoza 19 14.6
laaj 1paz 31 1.6 1fxia lubq 18 15.3
5fd1 2fxb 21 1.7 1bgeb  1gmfa 12 15.4
lisua 2hipa 16 1.9 3hlab  2rhe 15 16.4
1gal 3cox 18 2.0 3chy 4fxn 14 17.3
lcaub lcaua 18 2.0 2azaa  lpaz 11 18.0
Thom 11fb 19 2.4 lcew Imola 10 18.1
1tlk 2rhe 24 2.4 lcid 2rhe 13 20.0
lomf 2por 17 3.7 lcrl lede 17 20.0
1lgaa 2¢cyp 16 3.7 1sim Insba 12 20.0
Imioc Iminb 16 3.7 1ten 3hhrb 18 20.0
4sbva 2tbva 19 3.7 1tie 4fgf 14 20.0
8ilb 4fgf 18 4.1 2snv 4ptp 15 20.0
lhrha 1rnh 24 4.1 1gpla 2trxa 17 20.0

* The 68 sequence-structure pairs of the benchmark, showing for each pair, the probe
sequence s, the target fold p, the sequence identity percentage of the pair (as computed by
GCG's (Genetics Computer Group, 1991) GAP program with default parameters), and the
difficulty index (see text). The sequences are given by their PDB code. The mean sequence
identity between s and p is 18.6% with a standard deviation of 4.4. The minimum sequence

identity is 8% and the maximum is 31%. The average difficulty index is 7.4, with a standard

deviation of 6.8.




There are 68 sequence-fold pairs in L, which are listed in Table 1. This
list provides a standard-of-truth to gauge which is the most compatible fold to
each test sequence. The table shows the the sequence identity percentage and
the difficulty index assigned to each pair. The difficulty index is computed
as the average rank achieved by 7 standard comparison methods, including
6 substitution tables (the 5 substitution matrices shown in Table IIT plus a
new, unpublished matrix developed in our group) and Bowie’s 3D-1D profiles.
If the rank of one particular pair was above 20, it was considered to be 20.
The difficulty index tends to increase as the sequence identity percentage de-
creases. Table I shows that there are 12 test sequences for which even the
simplest sequence-sequence comparison methods succeed in finding their most
compatible fold. The presence of these ”easy” pairs in the benchmark may
be beneficial, because it provides a balancing factor in the assessment of a
method. A good fold-recognition method should also be able to identify these
pairs easily. Table I shows that the sequence identity percentages of these 12
”easy” pairs are all above 19%. The sequence identity percentages of the 17
”hardest” pairs are all below 20%. The other 39 pairs have sequence identity
percentages ranging from 12% to 31%.

Figure 1 shows that L contains proteins of different sizes (in number of
residues). In addition, the figure shows that there are a significant number of
pairs where the difference of size (in number of residues) between probe and
target is considerable. Table II lists the test sequences grouped by structural
class. The table shows that the major superfamilies and domain superfolds are
included in this benchmark!®'®. The pairs represent divergent sequences from
the same family (e.g. the globin pair 1dxtb-1hbg or the immunoglobulin pair
1fcla-2fb4h) as well as unrelated sequences with similar folds (e.g. phycocyanin
lepel - colicin 1cola, both having the globin fold). The percentages of test pairs
in each of the major structural classes (mostly-a, mostly-4, a/3 and o + f)
are 19%, 36%, 29% and 10%, respectively. Except for the mostly-3 class, the
proportion of test sequences in each class is similar to the proportion of proteins
of the same class in P. The 3 class is over-represented, mainly because of the
presence of 8 test sequences with an immunoglobulin-like fold. However, this
3 class over-representation does not actually bias our test set (see legend of

Table IT).

2.2  Grading the overall performance

For each evaluated method we assess its sensitivity (how well the method
performed in ranking the correct fold at the top) and its selectivity (how many
false positives are obtained at the top ranks).
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TABLE II. THE DISTRIBUTION OF THE TEST
SEQUENCES IN THE DIFFERENT STRUCTURAL CLASSES¥*,

Class/fold probe sequences Class/fold probe sequences
a: 13 pairs fA: 25 pairs
Globin-like 1dxtb 1cpcl 1G 1fcla 2fbjl
Cytochrome lc2ra 2mtac 1G-like 1cid 1pfc 1ten
Helical bundle 1bbha 1bgeb 1tlk 3cd4 3hlab
1rch laep Copredoxin laaj lafna 2azaa
EF-hand losa 2sas Virus 4sbva 1bbtl
Other alpha lhom 1lgaa 2hpda Lectin-like lsaca
a/fB: 20 pairs OB fold 11tsd
TIM barrel 1chra 2mnr 3rubl Trefoil 1tie 8ilb
Hyrdolase lcrl 1taha Trypsin larb 2sga 2snv
Thieredoxin laba 1dsba l1gpla Lipocalin 1mdc 1mup
Ribonuclease latna lhrha Propeller 1sim
Open sheet 3chy lak3a Other beta lcaub lomf
1gky 2cmd a+ B : 7 pairs
leaf 2gbp 1mioc UB fold 1fxia
2pia 1gal 1npx cystatin lcew 1stfi
Other : 3 pairs SH2 2pna
Mixed o and 8 2hhma other a + 2sara lonc 5fd1
Small lhip lisua

*The different structural classes and folds covered by the probe sequences of the bench-
mark. The number of test sequences in each class is roughly in the same proportion as that
in the representative set of folds except for the § class, which is over-represented. Note that
this over-representation is partly due to the abundance of immunoglobulin (IG) -like probes.
However, out of the 8 IG-like folds, only 2 are immunoglobulins.

Sensitivity

For each probe sequence the evaluated method produces a list of structures,
sorted by the compatibility score in decreasing order. The benchmark registers
at what rank the expected fold of each probe sequence is found. The number of
correct folds which were identified at rank 1, below rank 5 and below rank 10

are computed. In addition, the overall performance of a method is computed

1/r; .
as %, where the sum is taken over all probes, r; denotes the rank of

the correct fold achieved by probe i and |L| is the number of probes in the
benchmark: 68. Thus, in total, we report 4 values for each method ®. These
empirical measures proved to reflect well the sensitivities of different methods.

“It may be the case that a particular sequence s has a fold which is similar to more than
one chain in P, as some weak structural resemblances exist between the chains in P, e.g.
several TIM barrels. These cases can be regarded as true positives. In order to avoid the
possibility that another true positive be ranked above the expected p, an additional list of
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Figure 1. No. of residues in target vs. probe
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Figure 1: The length of the probe sequence and the target structure need not be equal. Each

point represents one of the 68 test pairs in the benchmark. The horizontal axis gives the

number of residues of the probe; the vertical axis gives the number of residues of the target.

Notice that there are a number of pairs which contain a significantly different number of

residues. The mean difference is 21% (minimum: 0%, maximum: 119%) with a standard
deviation of 22.9.

Selectivity

When a probe sequence is compared to all the folds in the library, one obtains
a list of scores, indicating the compatibility of each fold to the sequence. There
will always be a rank-1 fold. This does not necessarily imply that the probe
sequence has such a fold. Thus, one needs to be able to determine how signifi-
cant this rank-1 fold is, or in other words, how (un)likely it is that this match
arises by chance.

A valuable feature for a fold-recognition method is the potential to give
a reliability level to a prediction. For example: ”there is an 80% probability
that this sequence has the globin fold”. To this end we can express the result
of an alignment in the form of a z-score (the number of standard deviations
above the mean score). To rank the results, some methods normalize the raw
scores of the alignments into a z-score. For such methods, the benchmark
uses the z-score provided by the method. Other methods do not normalize
the scores into a z-score (but rank the results using either the raw scores or
some other normalized score). For these methods, the benchmark computes
a z-score from the distribution of scores obtained in the alignment of s to

true positives for each probe s is also kept. These true positives would not lower the rank
that p achieves, if they rank higher than p. This list contains 110 pairs of true positives,
which may be used as additional test cases (the list is available from the authors).
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each p in P. Having attached a z-score to each alignment, the benchmark
computes a selectivity measure as follows. The z-scores of the first ranks in
each of the 68 test cases are considered. The benchmark reports the number of
pairs successfully recognized at 100%, 80% and 60% reliability levels, and their
associated z-score values. For example, if we report 20 pairs at 80% reliability
and a z-score of 3.0, this means that (i) there are 20 test cases which identified
the correct fold at rank 1 having a z-score of 3.0 or higher, and that (ii) there
are other b test cases where a false positive was found at rank 1, with z-scores

higher than 3.0.

2.3 The evaluated methods

As described in the Introduction, a fold-recognition method has four main
components. We have evaluated various fold-recognition methods which use
different compatibility functions, different optimal alignment algorithms and
different ranking and significance assessment procedures. In what follows we
describe the different choices in each of the components which we have evalu-
ated.

The compatibility functions

The compatibility functions that we have considered in the comparisons are
shown in Table III. These include various sequence-sequence substitution ta-
bles, Bowie’s 3D-1D profiles and two combined sequence-structure profiles.
The functions compared are all functions which can be evaluated at each posi-
tion of the alignment locally and independently of the aligned residues at other
positions.

The Optimal Alignment Algorithms

The search method used in all the comparisons is the dynamic programming
algorithm'%!!. Dynamic programming is a good method to find an optimal
alignment when the compatibility function can be evaluated at each position
of the alignment independently of the aligned residues at other positions. The
functions compared in this work all fall in this category. Finding an optimal
alignment with a compatibility function that evaluates an alignment at more
than one position at a time is an NP-complete problen?!. Methods based
on inter-residue interactions, overcome this problem either (i) by applying
approximations, actually transforming their compatibility function to one that
can be evaluated locally 2%%2% or (ii) by using a heuristic optimal alignment

algorithn?® ™12,



TABLE III. THE COMPATIBILITY FUNCTIONS*.

name description ref.
SEQUENCE SUBSTITUTION TABLES

identity 1 for identical residues, 0 otherwise

gcg normalized pam250 matrix GCG

pam250 point mutations in aligned families 8

blosum62 blocks of aligned motifs 19

gonnet substitutions from database alignments ?

3D-1D SCORES

bowie 3D-1D profile !

elofssonl combined 3D-1D profile, using 20
gcg matrix and areas

elofsson2 combined 3D-1D profile using 20

blosum62 matrix, distances & areas

*The different compatibility functions used in this work. The "name” col-
umn refers to the name used in this work. ”elofsson1” and ”elofsson2” are
new profile methods combining sequence-sequence information with structural
information and are described in Elofsson et al2°.

We have evaluated three dynamic programming algorithms: the local, the
global and the global-local alignments. The ”local” algorithm !, finds the high-
est scoring aligned segment, allowing unpenalized-unaligned N- and C- termini
both in the sequence and in the structure. The global alignment algorithm'®,
allows at most two unaligned N- and C- termini without penalization but
requires that at least one N-terminus segment and one C-terminus segment
of either the sequence or the structure be either aligned or penalized. The
”global-local” alignment algorithm does not penalize unmatched N- or C- ter-
mini segments in the probe sequence (as in the local alignment), but does
penalize any gaps in the target structure (as in the global alignment with ends
penalization). (We did not consider the global algorithm with ends penaliza-
tion, nor the ”local-global” algorithm. These two variants are of no interest as
they both penalize any unaligned amino acids from the sequence. Thus, their
applicability is limited to special cases.).

Gap penalty optimization Dynamic programming algorithms require the
user to specify the values of the gap penalties to be used. Usually, gap penalties
are specified as a gap opening penalty (O) and a gap extension penalty (F).
The overall penalty for a gap in the alignment is given by O 4+ nE, where n 1is
the length of the gap. There is no single set of values which is best for different
methods. Even for different sequences, the optimal gap penalties vary. In the
present work, gap penalties are optimized for each method separately. Since
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there is no analytic method to calculate optimal penalties 23, the approach
taken here is a brute-force search method. For each evaluated method, a range
of gap penalties was tested using a reduced P set. The best combination of O
and E was then used with the full size of P.

Ranking and Significance Assessment

There are two commonly used ways to consider the resulting score of an align-
ment. One is simply the raw score for compatibility of sequence to structure
obtained from the alignment. The other is a statistical measure that indicates
the probability that the raw score of the alignment was obtained by chance.
One way to obtain such a measure is to analyze the raw scores of aligning to
the same fold many sequences (of same length and composition), and compute
their mean and standard deviation. Then, the result of the alignment of the
native, non-randomized sequence is given as the number of standard devia-
tions from the mean. This scoring procedure has the advantage of somewhat
correcting for length and composition similarities between the sequence and
the structure. A third score normalization procedure divides the raw scores by
the logarithm of the length of the target’s sequence!®.

To assess significance we follow the procedure described in the ”Sensitivity”
section above.

3 Results

We have evaluated the performance of fold-recognition methods using different
compatibility functions, different alignment algorithms and different ranking
procedures. In Elofsson et al?%, different compatibility functions were evalu-
ated using the local algorithm and a ranking procedure using the z-scores of
randomized sequences. Other evaluations using the global algorithm and other
ranking procedures will be presented elsewhere. From our evaluations we have
found that the global-local algorithm performs better than the global or local
algorithms. In addition, we have found that for several compatibility functions,
when using the global-local algorithm, the ranking procedure based on the raw
scores 1s comparable, if not superior, to the ranking procedure based on the
z-scores (results not shown).

In this work we chose to show an interesting subset of our evaluations,
for the purpose of illustrating the applicability of the benchmark. This subset
includes the evaluations of different compatibility functions using the global-
local algorithm and the ranking procedure based on the raw scores (i.e. the
results are sorted and ranked by the raw score). Keeping both the alignment
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algorithm and the ranking procedure the same, we can systematically compare
the performances of different compatibility functions. Note however, that the
benchmark is independent of the choice of the alignment algorithm, the ranking
procedure and the compatibility function used by a particular method.

TABLE IV. THE SENSITIVITY ASSESSMENT*.

COMPATIBILITY | GAP PEN. IN RANK OVERALL
FUNCTION O E <10 <5 1 SCORE
bowie 1.8 0.20 43 35 25 0.455
identity 1.4 0.15 43 40 29 0.497
gcg 4.6 0.20 46 37 31 0.518
pam250 5.5 1.25 47 44 35 0.589
blosum 5.2 1.00 52 45 37 0.613
elofssonl 2.4 0.20 48 43 40 0.626
gonnet 10.8 0.60 51 50 40 0.664
elofsson?2 3.2 0.20 53 50 46 0.710

*The results of the sensitivity assessment. The first column gives the name of
the compatibility function used as described in Table III. The second column
describes the optimal gap opening (O) and gap extension (E) penalties as ob-
tained by the brute-force method described in the text. The next three numbers
indicate the number of test probes that identified their target structure in ranks
< 10, < 5 and = 1. The last column gives the overall score (> 1/r;)/68. A
perfect sensitivity would be: 68, 68, 68, with an overall score of 1.000.

Table TV shows the results of our sensitivity analysis of several compat-
ibility functions using the global-local alignment algorithm and the ranking
procedure based on the raw scores. The table shows the optimal gap penalties
for each function as computed by a brute-force search (see Methods). Tt also
shows the sensitivity performance of each method. The latter is described as 4
numbers: the number of test probes that identified the expected fold at rank
1, below rank 5 and below rank 10 and the overall performance (3> 1/r;)/68.
Among the sequence substitution tables, the modern ”gonnet™ matrix per-
forms the best. The ”identity” matrix performs the worst. However, to our
surprise, 1ts performance is not much worse than the ”geg” matrix. This may
be due to the effectiveness of the global-local alignment algorithm, combined
with the use of optimal gap penalties (see Discussion below). Using a local
algorithm, the performance of the identity matrix is much worse than the other
matrices (results not shown).

The new combined profile ”elofsson2” performs significantly better than
any other function tested so far. This compatibility function combines sequence-
sequence information from the Blosum62'® table with Bowie’s 3D-1D profiles'
and with other structural properties such as pairwise interactions (see¢’ for
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details). This method assigns the correct fold in rank 1 in over two thirds of
the test probes (46 out of 68). This is a significant improvement over the other
functions. The best substitution table identifies the correct fold in rank 1 in
only 59% of the test probes.

TABLE V. THE SELECTIVITY ASSESSMENT*,

COMPATIBILITY TRUE POSITIVES/Z-SCORE

FUNCTION 100% 80% 60% ALL RANK 1
bowie 4 3.32 6 2.93 7 2.84 | 25 (37%) 1.20
identity 2 2.61 2 2.61 | 26 1.35 29 (43%) 1.26
gcg 2 281 | 14 2.04 | 27 141 31 (46%) 1.30
pam250 9 2.43 9 243 | 35 1.72 35 (51%) 1.21
blosum62 8 3.74 | 10 3.16 | 35 2.8 37 (54%) 1.25
elofssonl 5 436 | 31 1.92 | 40 1.26 40 (59%) 1.39
gonnet 13 291 | 32 195 | 40 1.27 40 (59%) 1.36
elofsson2 9 4.42 | 40 1.60 | 46 1.18 | 46 (68%) 1.28

*The results of the sensitivity assessment. The first column gives the name of the
compatibility function used as described in Table III. The following columns report
the number of true positives and their associated z-score for 100%, 80% and 60%
reliability levels (see text). The last column gives the number of true positives
in rank 1, the percentage out of 68 test cases and their lowest z-score. A perfect
selectivity would be 68 pairs at 100% reliability level, with a very high z-score.
Table V shows the selectivity assessment of the different compatibility
functions. The table shows the number of true positives and their associated
z-scores at reliability levels of 100%, 80% and 60% (see Methods). The last
column shows the total number of test probes that identified the correct fold
in rank 1 (same as in Table IV), the percentage (out of 68) and the lowest
z-score of the true positives ranked 1. For example, at the 80% reliability
level, ”elofsson2” identifies the correct fold at rank 1 for 40 test probes. These
have z-scores above 1.60. However, there are 8 other probes which identified
the wrong fold at rank 1 with z-scores above 1.60. Table V shows that the
selectivity of no method is as yet very good. The best method identifies only
19% (13 out of 68) test probes at a reliability level of 100%. The total number
of correctly identified folds lies below a reliability level of 68%.

4 Discussion

We present here a benchmark to assess the performance of fold-recognition
methods. The benchmark allows a systematic comparison of different meth-
ods. The benchmark is independent of the particular choices in each of the
components of a fold-recognition method and can aid in the analysis of the
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strengths and weaknesses of the four steps involved in fold recognition.

The advantage of using a benchmark such as the one presented here, is that
the set of test sequences (S) and the library of known folds (P) were derived in
an unbiased way and represent varied sequence-structure compatibility prob-
lems with insignificant sequence similarity, which cover homogeneously many
different families. This is important when building a benchmark, because a
method that works best at one particular type of fold could score higher using
a test set in which that particular fold is over-represented. As long as all fold
classes are present, and no fold 1s over-represented, any representative dataset
of the known structures can serve as the set P. Also, the set of sequence-
structure pairs can be selected to contain any number of pairs, as long as each
structural family is equally represented. We have found that a larger test set
does not increase the discriminative power of the benchmark?®. However, since
our P set was built, proteins with novel folds have been deposited in the PDB.
Thus, we estimate that using the current release of the PDB, L and P could
be about 10% larger. ¢

The performance assessment of this benchmark addresses two issues: sen-
sitivity and selectivity. The four empirical measures of sensitivity assessment
used in this benchmark are quite consistent and correlated. We have found
that if a method has an overall performance over 0.5, then the overall perfor-
mance alone is a good measure. For a lower overall performance, the other
measures provide some additional information.

The performance of a method based on dynamic programming does not
only depend on the compatibility function used, but also on the gap penalties
used. Instead of applying rules of thumb in assigning their values, for each
method compared, we have carried out a brute-force search to determine the
optimal gap penalties. In order to avoid overfitting the parameters, the test
sequences of the benchmark could be split into two sets: a training set for opti-
mizing gap penalties and a test set to evaluate performance. Alternatively, an
independent training set, containing pairs different from those in the bench-
mark, could be used. The values of the optimal gap penalties obtained using

4Tt should be noted however, that if one would like to use P as a library of folds for
an actual prediction using a particular method, the following procedure to extend P is
suggested. Test each sequence s from the PDB against P. If the highest ranking p € P
corresponds to the actual most compatible fold for s, and its score is significantly high, then
proceed to the next s. If however, the score is not significant or the correct fold is not ranked
first, then add s to P. This procedure expands P to an ideal size for the particular method’s
capabilities, ensuring that every sequence of known structure is either in P or a similar fold
to it can unambiguously be found. On the other hand, it keeps P at a reasonable size,
which has the advantage of saving computer time. This extension of P is important to avoid
the possibility of a method that could recognize the correct fold, but fails to do so, simply
because the correct fold was absent in the dataset used.
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different training sets (results not shown) are very similar to the ones obtained
using the full benchmark, and the performances (using the latter sets) are also
very similar to those reported above. Hence, the results shown in this work,
and in particular, the relative performance of the different methods, do not
reflect overfitting.

We have applied the benchmark to different fold-recognition methods which
differ in at least one of their components. In Elofsson et al?®, a local alignment
algorithm was used to compare different compatibility functions using a rank-
ing procedure based on the z-scores. Other choices in each of the components
have also been evaluated. In this work we showed the evaluations of methods
using different compatibility functions, but using the same alignment algo-
rithm and the same ranking procedure. Our results show that the blosum and
gonnet tables perform better than pam250. The relative performance between
the pam250, blosum62 and gonnet tables obtained in this work are consistent
to several previous comparison reports®1419:20 Thegse works use different test
sets, either local or global alignments, search for alignment accuracy or method
sensitivity. The relative performance of the three structural profiles studied in
this work is also consistent to the findings of Elofsson et al?”. The results also
demonstrate that the 3D-1D profiles combined with sequence information and
pairwise interactions are superior to classical sequence-sequence comparison.
The best performing compatibility function evaluated so far is ”elofsson2” | a
new combined profile to be described in 2°.

The results shown in Table IV require further analysis. The number of
correctly 1dentified folds is surprisingly high, in particular for the sequence-
sequence tables. Even the identity matrix has a performance not much worse
than the ”"gcg” table. This is outstanding, as the pairs used in the bench-
mark have low sequence similarity. We attribute this enhanced performance
to the combination of three factors: (i) the use of optimal gap penalties, (ii)
the application of the global-local algorithm and (iii) the use of the ranking
procedure based on the raw scores. As both the global-local algorithm and
the raw scores ranking procedure are not as widely known as other algorithms
and ranking procedures, in what follows, we analyze their properties in more
detail.

The superior performance of the global-local algorithm.

There are two common variations of dynamic programming: the ”global” 1°

and "local™! alignment algorithms. A third, less widely known variation is the
"global-local” alignment (see Methods). Each of these alignment algorithms
was devised for one particular type of comparison, and each has both pros and
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cons. In what follows, the pros and cons are evaluated in the context of fold
recognition, i.e. we will refer to the alignment of a sequence (a probe) to a
structure (a target).

Using a local alignment algorithm, a relatively short alignment, matching
a segment of sequence to some super-secondary motif, may produce a relatively
high score. In addition, as the size of the target to which the sequence is being
aligned increases, the probability of finding such a high score also increases.
Thus, for a given sequence, there can be a number of false positives (incompat-
ible structures) scoring higher than the true positive (a compatible structure).
In the global algorithm this problem appears with less severity as the require-
ment of having at least two N- or C- termini either aligned or penalized, adds
a constraint in the alignment alternatives. However, the problem still persists
to some extent as the above constraint allows the global algorithm to choose
which two termini are to be considered. Our evaluations demonstrate that
the global and local algorithms perform similarly (results not shown). Sev-
eral studies have also suggested that global alignments are not inferior to local
alignments (e.g241311)  Indeed, some existing fold-recognition methods prefer
the global alignment over the local (e.g. ??).

Another problem associated with the global and (especially with the) local
algorithms is that as the alignment of a probe sequence with a structure can
consist of a relatively short segment of the structure, it may not be very useful
for building a model for the sequence. The segment can be composed of some
structural fragment which may be meaningless when considered in isolation.
The ability to build a model for a probe sequence is the ultimate goal of fold
recognition.

The global-local algorithm 1s based on the principle that the compatibility
to one structure should cover the structure globally. The global-local algo-
rithm requires that the unpenalized termini (if any) appear exclusively in the
sequence, accounting for every position of the structure, either as an aligned or
as a penalized-unaligned position. This is a strong constraint imposed in the
search algorithm which has a positive effect, and somewhat overcomes some
of the limitations of the global and local algorithms. There are two factors
involved. First, as all the positions in the structure are accounted for in the
alignment, the possibility of obtaining higher scores for relatively short, local
matches is reduced. Second, the tendency of obtaining higher scores for larger
structures is also reduced; if the fold is larger than the probe sequence, more
gaps need be included, and the score of this match would be lower. In addi-
tion, allowing unpenalized termini in the probe does not bias the algorithm
towards targets of similar length (see below). This is especially important for
probe sequences which may contain more than one domain. The net effects of
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using the global-local algorithm are a lower rate of high scoring false positives,
and in some cases, a higher alignment accuracy. In summary, the global-local
alignment produces alignments that cover the full target, and at the same time
allows unaligned-unpenalized termini in the probe. This is a desirable property
for fold recognition.

The global-local algorithm is not aimed at identifying a compatibility in
only short portions of a structure. One way to identify such submotifs us-
ing the global-local algorithm is to partition the library of known folds into
compact domains and subdomains (i.e. ”minimally recognizable units”), and
place each of these units as separate entries in the library, along with the full
fold. The partitioning process can be carried out using any of the automated
procedures developed especially for this purpose. This has the advantage of
using structural knowledge in the partitioning processes instead of allowing the
local algorithm to choose a fragment which may not be a structurally mean-
ingful unit, merely for the purpose of maximizing the compatibility score. Not
allowing the dynamic programming algorithm to make such a blind choice is
one of the strengths of the global-local algorithm. ¢

At first sight 1t could appear that the enhanced performance of the global-
local algorithm is mainly due to length discrimination. However, an analysis
of the rank versus the size difference between probe and target showed no
correlation, i.e. the best ranks were not necessarily achieved by the pairs having
the smallest differences (results not shown). Furthermore, tests with probe
sequences highly padded at both termini with random sequences demonstrated
that the performance of the global-local algorithm is still superior to those of
the global and local algorithms (results not shown).

The ranking procedure. As the raw scores of the alignments using the
local or global algorithm are dependent on the length of the target, methods
using these algorithms require normalization of the raw scores to account for
this dependency. In contrast, in the global-local algorithm, the raw scores of
the alignments are less length dependent and thus more reliable than those of
the global or local algorithms.

In systematic evaluations using several compatibility functions, we have
observed that (i) the local and global algorithms perform better when the
results are ranked using normalized scores than when using the raw scores.
Normalizing by dividing the raw scores by the In of the length of the target is
superior to the z-score normalization (in agreement with'?). (i) The global-

€In the evaluations of this work, the library of known folds contains full chains, without
any additional partitioning. If we had partitioned the folds in the above way, the perfor-
mances of the various compatibility functions using the global-local algorithm would be even
better.
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local algorithm with the raw scores ranking procedure performs comparably,
if not better, than with the z-scores ranking procedure. The In normalization
performs the worst for the global-local algorithm.

The relatively poor performance of the z-scores ranking procedure in con-
junction with the global-local algorithm is surprising. By analyzing the indi-
vidual results of each probe sequence with either method, we observed that
in several cases, although the raw score rank of the correct fold was at the
very top, its z-score rank was inside the ”twilight zone” of this normalization
procedure (the region where it is impossible to distinguish random scores from
the significant ones). A more detailed analysis of the different ranking pro-
cedures is out of the scope of this paper. We should note here that for the
global-local algorithm, the poor performance of the ranking procedure based
on the z-scores may be attributed in part to the fact that the methods were
evaluated using optimal gap penalties (for a poor choice of gap penalty values,
the z-scores ranking procedure may show some advantage over the raw scores
ranking procedure). Tt could also be attributed to some bias that may exist in
our training or test sets, in the library of folds, or in the compatibility functions
evaluated.

Limitations of the proposed benchmark.

Assessment of alignment accuracy 1s not covered in this work, and is a topic
for a different study (a thorough analysis of alignment accuracy has been car-
ried out for sequence-sequence comparisons by Vogt & Argos'® and for 3D-1D
profiles by Wilmanns & Eisenberg?®). Other computational aspects that a
benchmark can grade are computer time and space requirements, aspects of
practical importance. When one has many probe sequences, a faster, possibly
less sensitive method could be used in a first screening, and then a slower,
more sensitive one for the cases where the first method did not succeed to
unambiguously assign a fold.

There 1s the possibility that our choice of proteins imparts a bias to the
benchmark. We have attempted to extract proteins from the data bank in
an unbiased way, by an all-against-all structural comparison of the protein
data bank. However, different proteins could be extracted for the benchmark
using different thresholds for sequence and structural similarity (e.g2%2713),
Obviously, a different choice might give different results. A more serious matter
is that proteins with known structures are a biased subset of all proteins. For
example, the PDB contains few membrane proteins, few glycoproteins and few
fibrous proteins. Thus our benchmark is not useful in assessing fold recognition
work on these other protein types. Despite the limitations, the use of this
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benchmark, or a different one, may aid in understanding the merits of the
different aspects involved in fold recognition.

The sequences and tables used in this work are available from the authors

by e-mail at fischer@ewald.mbi.ucla.edu.
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