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Recently there has been an explosion of methods for fold recognition� These meth�
ods seek to align a protein sequence to a three�dimensional structure and measure
the compatibility of the sequence to the structure� In this work� we present a
benchmark to assess the performance of such methods� The benchmark consists
of a set of protein sequences matched by superposition to known structures� This
set covers a wide range of protein families� and includes matching proteins with
insigni�cant sequence similarity� To demonstrate the usefulness of this benchmark�
we apply it here to compare di�erent fold�recognition methods developed through
the years in our group as well as several sequence�sequence substitution matri�
ces� The results show that �global�local� alignments are superior to either local
or global alignments� The most e�ective sequence�sequence matching matrix is
the Gonnet table� The best performance overall is obtained by a method which
combines the �D��D pro�les of Bowie et al� � with a substitutionmatrix and takes
into account residue pairwise interactions�

� Introduction

In the fold�recognition problem we ask� �Is the sequence of a protein of un�
known structure �compatible� to the fold of a known protein� and if so� to which
one�� The practical goal of a fold�recognition method is to assign each new
amino acid sequence to the known three�dimensional fold which it most closely
resembles� The classical method of making this assignment has been to estab�
lish a similarity of the new sequence to some sequence of known structure� In
�		�� Bowie et al�� developed an alternative method� to score the compatibility
of the new sequence against a known three�dimensional structure� This method
has been termed inverted protein folding or 
D pro�les�� Since then� a vari�
ety of fold�recognition methods have been published ������������ The approaches
used di�er in one or more of the four essential components of fold recognition�
namely� i� the representation of the protein� ii� the evaluation of the compat�
ibility between the unknown sequence and a fold� iii� the algorithm to search
for the optimal alignment and iv� the way the ranking is computed and the
way signi�cance is estimated� The representation of the protein structure can
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be an all atom structure� a backbone structure� a string of ��carbon atoms� a
set of inter�residue distances or even� in the simplest case� a string of amino�
acid names that is� a sequence�� The evaluation of compatibility can be a
table of scores for matching residue to residue such as Dayho��s� or Gonnet�s�

substitution matrices�� or residue to its environment sometimes called 
D�
�D scores��� The method used for aligning the sequence to the structure can
be a dynamic programming algorithm�	���� multi�level dynamic programming��
matching of segments with a Monte Carlo� or a branch and bound algorithm���
The ranking can consider either the raw scores of the alignments or some nor�
malized scores� Assessing signi�cance can be achieved by considering some
measure of statistical signi�cance such as a z�score� Each of these steps in�
volves representations and parameters� Selecting the best approximations and
parameters is crucial to success� but is hindered by the complexity of the entire
procedure� It is this problem that this paper addresses�

Our goal is to devise a benchmark that can aid in assessing the performance
of a fold�recognition method in an objective� unbiased and thorough way� The
benchmark is independent of the representation of the proteins� the com�
patibility de�nition� the search algorithm� and the ranking and signi�cance
estimation procedures used in the method being evaluated� Thus� it allows a
systematic comparison of di�erent methods� Benchmarks are routinely used
to assess performance of sequence�sequence alignment e�g������� and secondary
structure prediction methods  e�g����� However� in fold recognition� no stan�
dard procedure to assess performance has been established� This benchmark
is a �rst attempt to establish such a standard in the �eld of fold recognition�
This benchmark may also aid in determining the strengths or weaknesses of
di�erent fold�recognition methods�

Performance assessment should address the balance between sensitivity �
the ability to calculate high�ranking scores for the correct answer� and selectiv�
ity �the ability to calculate low�ranking scores for unrelated folds��� Another
important aspect in assessing the performance of a method is the evaluation
of the accuracy of the alignments obtained� The benchmark presented here
quanti�es both the sensitivity and selectivity� Alignment accuracy� however� is
the subject of a di�erent study�

This paper is organized as follows� In the Materials and Methods section
we �rst present the benchmark and then describe the various fold�recognition
methods evaluated using the benchmark� In the Results section we present the
results of the performance assessment of some of these methods� In the last
section we analyze the results of the evaluations and we discuss the merits and
limitations of this benchmark�
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� Materials and Methods

��� The Benchmark

The benchmark consists of three components� The �rst is a set P of proteins
of known structure obtained from a structurally non�redundant dataset of pro�
teins� The second is a list S of test sequences� The third component is a set
L of pairs of the form s� p�� where s � S and p � P � L identi�es for each
test sequence� which fold in P is the most similar to it� For each s� the most
compatible fold in P is objectively determined by structural comparison��� as
the structure of s is actually known� Each fold�recognition method being eval�
uated considers each s as a probe obviously ignoring its structure�� aligns it
into each p � P and produces a ranked list of the compatibility of s with each
p� The benchmark uses L to assess how well the method succeeded in each test
sequence� i�e� the ranked list is searched to �nd at what position the expected
p is� An ideal performance would be one that identi�es the expected p at rank
�� To assess sensitivity� an overall score comprising the performance on all
pairs in L is given for each method� To assess selectivity a reliability level is
also computed see below��

P is obtained from the representative dataset derived in��� This is a
sequence�independent dataset� obtained by structural criteria only� using a
�		� release of the PDB Protein Data Bank���� It covers all the di�erent
folds known at that time� It is non�redundant both in structure and sequence�
i�e� no two chains in P are structurally nor sequentially similar up to given
thresholds b� The size of P is 
�� and is available listed from the authors�
The sequences to be used as probes were selected by analyzing the pairwise
comparisons carried out during the construction of the representative dataset�
First� every chain s from the PDB which is represented by some p � P i�e�
is structurally similar to p�� and which has less than 
�� sequence identity
with p is selected� and the pair s� p� added to L� If two chains s� and s� are
represented by the same p and share more than 
�� sequence identity� then
only one of them is selected� Second� the results of an all�against�all structural
comparison of the representative chains the P set� is analyzed and pairs of
chains in P belonging to the same super�family or fold and which are just
below the structural threshold used in the derivation of P � are also included
in L� using either one of them as probe� By de�nition� these pairs also have
below�thresholds sequence similarity�

bNo two entries have a sequence identity percentage above ��� and when optimally
superimposed� no more than half the residues of the larger structure are matched to residues
of the other structure at a distance of at most ��A� for more details on the derivation of the
dataset and on the structural comparison algorithm used see��






TABLE I� THE SEQUENCE�STRUCTURE PAIRS��

s p � DIFF�

�mdc �ifc �� ���
�npx �grs �� ���
�onc �rsa �� ���
�osa 	cpv �	 ���
�pfc �hlab �� ���
�cmd �ldh �� ���
�pna �shaa �
 ���
�bbha �ccya �� ���
�c�ra �ycc �� ���
�chra �mnr �� ���
�dxtb �hbg �
 ���
�fbjl �fabb �� ���
�gky �adk �	 ���
�hip �hipa �
 ���
�sas �scpa �� ���
�fc�a �fb	h �
 ���
�hpda �cpp �� ���
�aba �ego �� ���
�eaf 	cla �� ���
�sga 	ptp �� ��	
�hhma �fbpa �� ��	
�aaj �paz �� ���
�fd� �fxb �� ���
�isua �hipa �� ��

�gal �cox �� ���
�caub �caua �� ���
�hom �lfb �
 ��	
�tlk �rhe �	 ��	
�omf �por �� ���
�lgaa �cyp �� ���
�mioc �minb �� ���
	sbva �tbva �
 ���
�i�b 	fgf �� 	��
�hrha �rnh �	 	��

s p � DIFF�

�mup �rbp �	 	�	
�cpcl �cola �� 	��
�ak�a �gky �� ���
�atna �atr �� ���
�arb 	ptp �� ���
�pia �fnr �� ��	
�rubl �xia �� ���
�sara 
rnt �� ���
�cd	 �rhe �� 
��
�aep ���ba �	 
��
�mnr 	enl �� 
�

�ltsd �bova �
 ���

�gbp �liv �� ����
�bbt� �plv� �� ���

�mtac �ycc �� ����
�taha �tca �� ����
�rcb �gmfa �� ����
�saca �ayh �	 ����
�dsba �trxa �� ����
�st �mola � ���	
�afna �aoza �
 �	��
�fxia �ubq �� ����
�bgeb �gmfa �� ���	
�hlab �rhe �� ���	
�chy 	fxn �	 ����
�azaa �paz �� ����
�cew �mola �� ����
�cid �rhe �� ����
�crl �ede �� ����
�sim �nsba �� ����
�ten �hhrb �� ����
�tie 	fgf �	 ����
�snv 	ptp �� ����
�gp�a �trxa �� ����

� The �� sequence�structure pairs of the benchmark� showing for each pair� the probe

sequence s� the target fold p� the sequence identity percentage of the pair �as computed by

GCG�s �Genetics Computer Group� ����� GAP program with default parameters�� and the

di�culty index �see text�� The sequences are given by their PDB code� The mean sequence

identity between s and p is ����� with a standard deviation of �� The minimum sequence

identity is �� and the maximum is ���� The average di�culty index is ��� with a standard

deviation of ����
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There are �� sequence�fold pairs in L� which are listed in Table I� This
list provides a standard�of�truth to gauge which is the most compatible fold to
each test sequence� The table shows the the sequence identity percentage and
the di�culty index assigned to each pair� The di�culty index is computed
as the average rank achieved by � standard comparison methods� including
� substitution tables the � substitution matrices shown in Table III plus a
new� unpublished matrix developed in our group� and Bowie�s 
D��D pro�les�
If the rank of one particular pair was above ��� it was considered to be ���
The di�culty index tends to increase as the sequence identity percentage de�
creases� Table I shows that there are �� test sequences for which even the
simplest sequence�sequence comparison methods succeed in �nding their most
compatible fold� The presence of these �easy� pairs in the benchmark may
be bene�cial� because it provides a balancing factor in the assessment of a
method� A good fold�recognition method should also be able to identify these
pairs easily� Table I shows that the sequence identity percentages of these ��
�easy� pairs are all above �	�� The sequence identity percentages of the ��
�hardest� pairs are all below ���� The other 
	 pairs have sequence identity
percentages ranging from ��� to 
���

Figure � shows that L contains proteins of di�erent sizes in number of
residues�� In addition� the �gure shows that there are a signi�cant number of
pairs where the di�erence of size in number of residues� between probe and
target is considerable� Table II lists the test sequences grouped by structural
class� The table shows that the major superfamilies and domain superfolds are
included in this benchmark������ The pairs represent divergent sequences from
the same family e�g� the globin pair �dxtb��hbg or the immunoglobulin pair
�fc�a��fb�h� as well as unrelated sequences with similar folds e�g� phycocyanin
�cpcl � colicin �cola� both having the globin fold�� The percentages of test pairs
in each of the major structural classes mostly��� mostly��� ��� and � � ��
are �	�� 
��� �	� and ���� respectively� Except for the mostly�� class� the
proportion of test sequences in each class is similar to the proportion of proteins
of the same class in P � The � class is over�represented� mainly because of the
presence of � test sequences with an immunoglobulin�like fold� However� this
� class over�representation does not actually bias our test set see legend of
Table II��

��� Grading the overall performance

For each evaluated method we assess its sensitivity how well the method
performed in ranking the correct fold at the top� and its selectivity how many
false positives are obtained at the top ranks��
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TABLE II� THE DISTRIBUTION OF THE TEST
SEQUENCES IN THE DIFFERENT STRUCTURAL CLASSES��

Class�fold probe sequences

�� �� pairs
Globin�like �dxtb �cpcl
Cytochrome �c�ra �mtac
Helical bundle �bbha �bgeb

�rcb �aep
EF�hand �osa �sas
Other alpha �hom �lgaa �hpda

���� �� pairs
TIM barrel �chra �mnr �rubl
Hyrdolase �crl �taha
Thieredoxin �aba �dsba �gp�a
Ribonuclease �atna �hrha
Open sheet �chy �ak�a

�gky �cmd
�eaf �gbp �mioc
�pia �gal �npx

Other � � pairs
Mixed � and � �hhma
Small �hip �isua

Class�fold probe sequences

�� �� pairs
IG �fc�a �fbjl
IG�like �cid �pfc �ten

�tlk �cd	 �hlab
Copredoxin �aaj �afna �azaa
Virus 	sbva �bbt�
Lectin�like �saca
OB fold �ltsd
Trefoil �tie �i�b
Trypsin �arb �sga �snv
Lipocalin �mdc �mup
Propeller �sim
Other beta �caub �omf

�� � � � pairs
UB fold �fxia
cystatin �cew �st
SH� �pna
other �� � �sara �onc �fd�

�The di�erent structural classes and folds covered by the probe sequences of the bench�
mark� The number of test sequences in each class is roughly in the same proportion as that
in the representative set of folds except for the � class� which is over�represented� Note that
this over�representation is partly due to the abundance of immunoglobulin �IG� �like probes�
However� out of the � IG�like folds� only 
 are immunoglobulins�

Sensitivity

For each probe sequence the evaluated method produces a list of structures�
sorted by the compatibility score in decreasing order� The benchmark registers
at what rank the expected fold of each probe sequence is found� The number of
correct folds which were identi�ed at rank �� below rank � and below rank ��
are computed� In addition� the overall performance of a method is computed

as

P
��ri

jLj � where the sum is taken over all probes� ri denotes the rank of

the correct fold achieved by probe i and jLj is the number of probes in the
benchmark� ��� Thus� in total� we report � values for each method c� These
empirical measures proved to re�ect well the sensitivities of di�erent methods�

cIt may be the case that a particular sequence s has a fold which is similar to more than
one chain in P � as some weak structural resemblances exist between the chains in P � e�g�
several TIM barrels� These cases can be regarded as true positives� In order to avoid the
possibility that another true positive be ranked above the expected p� an additional list of
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Figure 1. No. of residues in target vs. probe

Figure �� The length of the probe sequence and the target structure need not be equal� Each
point represents one of the �� test pairs in the benchmark� The horizontal axis gives the
number of residues of the probe� the vertical axis gives the number of residues of the target�
Notice that there are a number of pairs which contain a signi�cantly di�erent number of
residues� The mean di�erence is 
�� �minimum� 	�� maximum� ����� with a standard

deviation of 

���

Selectivity

When a probe sequence is compared to all the folds in the library� one obtains
a list of scores� indicating the compatibility of each fold to the sequence� There
will always be a rank�� fold� This does not necessarily imply that the probe
sequence has such a fold� Thus� one needs to be able to determine how signi��
cant this rank�� fold is� or in other words� how un�likely it is that this match
arises by chance�

A valuable feature for a fold�recognition method is the potential to give
a reliability level to a prediction� For example� �there is an ��� probability
that this sequence has the globin fold�� To this end we can express the result
of an alignment in the form of a z�score the number of standard deviations
above the mean score�� To rank the results� some methods normalize the raw
scores of the alignments into a z�score� For such methods� the benchmark
uses the z�score provided by the method� Other methods do not normalize
the scores into a z�score but rank the results using either the raw scores or
some other normalized score�� For these methods� the benchmark computes
a z�score from the distribution of scores obtained in the alignment of s to

true positives for each probe s is also kept� These true positives would not lower the rank
that p achieves� if they rank higher than p� This list contains ��	 pairs of true positives�
which may be used as additional test cases �the list is available from the authors��
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each p in P � Having attached a z�score to each alignment� the benchmark
computes a selectivity measure as follows� The z�scores of the �rst ranks in
each of the �� test cases are considered� The benchmark reports the number of
pairs successfully recognized at ����� ��� and ��� reliability levels� and their
associated z�score values� For example� if we report �� pairs at ��� reliability
and a z�score of 
��� this means that i� there are �� test cases which identi�ed
the correct fold at rank � having a z�score of 
�� or higher� and that ii� there
are other � test cases where a false positive was found at rank �� with z�scores
higher than 
���

��� The evaluated methods

As described in the Introduction� a fold�recognition method has four main
components� We have evaluated various fold�recognition methods which use
di�erent compatibility functions� di�erent optimal alignment algorithms and
di�erent ranking and signi�cance assessment procedures� In what follows we
describe the di�erent choices in each of the components which we have evalu�
ated�

The compatibility functions

The compatibility functions that we have considered in the comparisons are
shown in Table III� These include various sequence�sequence substitution ta�
bles� Bowie�s 
D��D pro�les and two combined sequence�structure pro�les�
The functions compared are all functions which can be evaluated at each posi�
tion of the alignment locally and independently of the aligned residues at other
positions�

The Optimal Alignment Algorithms

The search method used in all the comparisons is the dynamic programming
algorithm�	���� Dynamic programming is a good method to �nd an optimal
alignment when the compatibility function can be evaluated at each position
of the alignment independently of the aligned residues at other positions� The
functions compared in this work all fall in this category� Finding an optimal
alignment with a compatibility function that evaluates an alignment at more
than one position at a time is an NP�complete problem��� Methods based
on inter�residue interactions� overcome this problem either i� by applying
approximations� actually transforming their compatibility function to one that
can be evaluated locally ������	� or ii� by using a heuristic optimal alignment
algorithm�������
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TABLE III� THE COMPATIBILITY FUNCTIONS��

name description ref�

SEQUENCE SUBSTITUTION TABLES
identity � for identical residues� � otherwise
gcg normalized pam��� matrix GCG
pam��� point mutations in aligned families �

blosum�� blocks of aligned motifs ��

gonnet substitutions from database alignments �

�D��D SCORES
bowie �D��D prole �

elofsson� combined �D��D prole� using ��

gcg matrix and areas
elofsson� combined �D��D prole using ��

blosum�� matrix� distances � areas
�The di�erent compatibility functions used in this work� The �name� col�
umn refers to the name used in this work� �elofsson�� and �elofsson�� are
new prole methods combining sequence�sequence information with structural
information and are described in Elofsson et al����

We have evaluated three dynamic programming algorithms� the local� the
global and the global�local alignments� The �local� algorithm��� �nds the high�
est scoring aligned segment� allowing unpenalized�unaligned N� and C� termini
both in the sequence and in the structure� The global alignment algorithm�	�
allows at most two unaligned N� and C� termini without penalization but
requires that at least one N�terminus segment and one C�terminus segment
of either the sequence or the structure be either aligned or penalized� The
�global�local� alignment algorithm does not penalize unmatched N� or C� ter�
mini segments in the probe sequence as in the local alignment�� but does
penalize any gaps in the target structure as in the global alignment with ends
penalization�� We did not consider the global algorithm with ends penaliza�
tion� nor the �local�global� algorithm� These two variants are of no interest as
they both penalize any unaligned amino acids from the sequence� Thus� their
applicability is limited to special cases���

Gap penalty optimization Dynamic programming algorithms require the
user to specify the values of the gap penalties to be used� Usually� gap penalties
are speci�ed as a gap opening penalty O� and a gap extension penalty E��
The overall penalty for a gap in the alignment is given by O� nE� where n is
the length of the gap� There is no single set of values which is best for di�erent
methods� Even for di�erent sequences� the optimal gap penalties vary� In the
present work� gap penalties are optimized for each method separately� Since

	



there is no analytic method to calculate optimal penalties ��� the approach
taken here is a brute�force search method� For each evaluated method� a range
of gap penalties was tested using a reduced P set� The best combination of O
and E was then used with the full size of P �

Ranking and Signi�cance Assessment

There are two commonly used ways to consider the resulting score of an align�
ment� One is simply the raw score for compatibility of sequence to structure
obtained from the alignment� The other is a statistical measure that indicates
the probability that the raw score of the alignment was obtained by chance�
One way to obtain such a measure is to analyze the raw scores of aligning to
the same fold many sequences of same length and composition�� and compute
their mean and standard deviation� Then� the result of the alignment of the
native� non�randomized sequence is given as the number of standard devia�
tions from the mean� This scoring procedure has the advantage of somewhat
correcting for length and composition similarities between the sequence and
the structure� A third score normalization procedure divides the raw scores by
the logarithm of the length of the target�s sequence�� �

To assess signi�cance we follow the procedure described in the �Sensitivity�
section above�

� Results

We have evaluated the performance of fold�recognition methods using di�erent
compatibility functions� di�erent alignment algorithms and di�erent ranking
procedures� In Elofsson et al��	� di�erent compatibility functions were evalu�
ated using the local algorithm and a ranking procedure using the z�scores of
randomized sequences� Other evaluations using the global algorithm and other
ranking procedures will be presented elsewhere� From our evaluations we have
found that the global�local algorithm performs better than the global or local
algorithms� In addition� we have found that for several compatibility functions�
when using the global�local algorithm� the ranking procedure based on the raw
scores is comparable� if not superior� to the ranking procedure based on the
z�scores results not shown��

In this work we chose to show an interesting subset of our evaluations�
for the purpose of illustrating the applicability of the benchmark� This subset
includes the evaluations of di�erent compatibility functions using the global�
local algorithm and the ranking procedure based on the raw scores i�e� the
results are sorted and ranked by the raw score�� Keeping both the alignment
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algorithm and the ranking procedure the same� we can systematically compare
the performances of di�erent compatibility functions� Note however� that the
benchmark is independent of the choice of the alignment algorithm� the ranking
procedure and the compatibility function used by a particular method�

TABLE IV� THE SENSITIVITY ASSESSMENT��

COMPATIBILITY GAP PEN� IN RANK OVERALL
FUNCTION O E ��� �� � SCORE

bowie ��� ���� 	� �� �� ��	��
identity ��	 ���� 	� 	� �
 ��	
�
gcg 	�� ���� 	� �� �� �����
pam��� ��� ���� 	� 		 �� ����

blosum ��� ���� �� 	� �� �����
elofsson� ��	 ���� 	� 	� 	� �����
gonnet ���� ���� �� �� 	� ����	
elofsson� ��� ���� �� �� 	
 �����

�The results of the sensitivity assessment� The rst column gives the name of
the compatibility function used as described in Table III� The second column
describes the optimal gap opening �O� and gap extension �E� penalties as ob�
tained by the brute�force method described in the text� The next three numbers
indicate the number of test probes that identied their target structure in ranks
� ��� � � and � �� The last column gives the overall score �

P
��ri����� A

perfect sensitivity would be� ��� ��� ��� with an overall score of ������

Table IV shows the results of our sensitivity analysis of several compat�
ibility functions using the global�local alignment algorithm and the ranking
procedure based on the raw scores� The table shows the optimal gap penalties
for each function as computed by a brute�force search see Methods�� It also
shows the sensitivity performance of each method� The latter is described as �
numbers� the number of test probes that identi�ed the expected fold at rank
�� below rank � and below rank �� and the overall performance 

P
��ri�����

Among the sequence substitution tables� the modern �gonnet�� matrix per�
forms the best� The �identity� matrix performs the worst� However� to our
surprise� its performance is not much worse than the �gcg� matrix� This may
be due to the e�ectiveness of the global�local alignment algorithm� combined
with the use of optimal gap penalties see Discussion below�� Using a local
algorithm� the performance of the identity matrix is much worse than the other
matrices results not shown��

The new combined pro�le �elofsson�� performs signi�cantly better than
any other function tested so far� This compatibility function combines sequence�
sequence information from the Blosum���� table with Bowie�s 
D��D pro�les�

and with other structural properties such as pairwise interactions see�	 for
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details�� This method assigns the correct fold in rank � in over two thirds of
the test probes �� out of ���� This is a signi�cant improvement over the other
functions� The best substitution table identi�es the correct fold in rank � in
only �	� of the test probes�

TABLE V� THE SELECTIVITY ASSESSMENT��

COMPATIBILITY TRUE POSITIVES�Z�SCORE
FUNCTION ���� ��� 
�� ALL RANK �

bowie 	 ���� � ��
� � ��	 �� ����� ����
identity � ���� � ���� �� ���� �
 �	��� ����
gcg � ���� �	 ���	 �� ��	� �� �	��� ����
pam��� 
 ��	� 
 ��	� �� ���� �� ����� ����
blosum�� � ���	 �� ���
 �� ���� �� ��	�� ����
elofsson� � 	��� �� ��
� 	� ���� 	� ��
�� ����
gonnet �� ��
� �� ��
� 	� ���� 	� ��
�� ����
elofsson� 
 	�	 	� ���� 	
 ���� 	
 �
��� ����

�The results of the sensitivity assessment� The rst column gives the name of the
compatibility function used as described in Table III� The following columns report
the number of true positives and their associated z�score for ����� ��� and ���
reliability levels �see text�� The last column gives the number of true positives
in rank �� the percentage out of �� test cases and their lowest z�score� A perfect
selectivity would be �� pairs at ���� reliability level� with a very high z�score�

Table V shows the selectivity assessment of the di�erent compatibility
functions� The table shows the number of true positives and their associated
z�scores at reliability levels of ����� ��� and ��� see Methods�� The last
column shows the total number of test probes that identi�ed the correct fold
in rank � same as in Table IV�� the percentage out of ��� and the lowest
z�score of the true positives ranked �� For example� at the ��� reliability
level� �elofsson�� identi�es the correct fold at rank � for �� test probes� These
have z�scores above ����� However� there are � other probes which identi�ed
the wrong fold at rank � with z�scores above ����� Table V shows that the
selectivity of no method is as yet very good� The best method identi�es only
�	� �
 out of ��� test probes at a reliability level of ����� The total number
of correctly identi�ed folds lies below a reliability level of ����

� Discussion

We present here a benchmark to assess the performance of fold�recognition
methods� The benchmark allows a systematic comparison of di�erent meth�
ods� The benchmark is independent of the particular choices in each of the
components of a fold�recognition method and can aid in the analysis of the
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strengths and weaknesses of the four steps involved in fold recognition�
The advantage of using a benchmark such as the one presented here� is that

the set of test sequences S� and the library of known folds P � were derived in
an unbiased way and represent varied sequence�structure compatibility prob�
lems with insigni�cant sequence similarity� which cover homogeneously many
di�erent families� This is important when building a benchmark� because a
method that works best at one particular type of fold could score higher using
a test set in which that particular fold is over�represented� As long as all fold
classes are present� and no fold is over�represented� any representative dataset
of the known structures can serve as the set P � Also� the set of sequence�
structure pairs can be selected to contain any number of pairs� as long as each
structural family is equally represented� We have found that a larger test set
does not increase the discriminative power of the benchmark�	� However� since
our P set was built� proteins with novel folds have been deposited in the PDB�
Thus� we estimate that using the current release of the PDB� L and P could
be about ��� larger� d

The performance assessment of this benchmark addresses two issues� sen�
sitivity and selectivity� The four empirical measures of sensitivity assessment
used in this benchmark are quite consistent and correlated� We have found
that if a method has an overall performance over ���� then the overall perfor�
mance alone is a good measure� For a lower overall performance� the other
measures provide some additional information�

The performance of a method based on dynamic programming does not
only depend on the compatibility function used� but also on the gap penalties
used� Instead of applying rules of thumb in assigning their values� for each
method compared� we have carried out a brute�force search to determine the
optimal gap penalties� In order to avoid over�tting the parameters� the test
sequences of the benchmark could be split into two sets� a training set for opti�
mizing gap penalties and a test set to evaluate performance� Alternatively� an
independent training set� containing pairs di�erent from those in the bench�
mark� could be used� The values of the optimal gap penalties obtained using

dIt should be noted however� that if one would like to use P as a library of folds for
an actual prediction using a particular method� the following procedure to extend P is
suggested� Test each sequence s from the PDB against P � If the highest ranking p � P

corresponds to the actual most compatible fold for s� and its score is signi�cantly high� then
proceed to the next s� If however� the score is not signi�cant or the correct fold is not ranked
�rst� then add s to P � This procedure expands P to an ideal size for the particular method�s
capabilities� ensuring that every sequence of known structure is either in P or a similar fold
to it can unambiguously be found� On the other hand� it keeps P at a reasonable size�
which has the advantage of saving computer time� This extension of P is important to avoid
the possibility of a method that could recognize the correct fold� but fails to do so� simply
because the correct fold was absent in the dataset used�
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di�erent training sets results not shown� are very similar to the ones obtained
using the full benchmark� and the performances using the latter sets� are also
very similar to those reported above� Hence� the results shown in this work�
and in particular� the relative performance of the di�erent methods� do not
re�ect over�tting�

We have applied the benchmark to di�erent fold�recognitionmethods which
di�er in at least one of their components� In Elofsson et al��	� a local alignment
algorithm was used to compare di�erent compatibility functions using a rank�
ing procedure based on the z�scores� Other choices in each of the components
have also been evaluated� In this work we showed the evaluations of methods
using di�erent compatibility functions� but using the same alignment algo�
rithm and the same ranking procedure� Our results show that the blosum and
gonnet tables perform better than pam���� The relative performance between
the pam���� blosum�� and gonnet tables obtained in this work are consistent
to several previous comparison reports����������	� These works use di�erent test
sets� either local or global alignments� search for alignment accuracy or method
sensitivity� The relative performance of the three structural pro�les studied in
this work is also consistent to the �ndings of Elofsson et al��	� The results also
demonstrate that the 
D��D pro�les combined with sequence information and
pairwise interactions are superior to classical sequence�sequence comparison�
The best performing compatibility function evaluated so far is �elofsson��� a
new combined pro�le to be described in �	�

The results shown in Table IV require further analysis� The number of
correctly identi�ed folds is surprisingly high� in particular for the sequence�
sequence tables� Even the identity matrix has a performance not much worse
than the �gcg� table� This is outstanding� as the pairs used in the bench�
mark have low sequence similarity� We attribute this enhanced performance
to the combination of three factors� i� the use of optimal gap penalties� ii�
the application of the global�local algorithm and iii� the use of the ranking
procedure based on the raw scores� As both the global�local algorithm and
the raw scores ranking procedure are not as widely known as other algorithms
and ranking procedures� in what follows� we analyze their properties in more
detail�

The superior performance of the global�local algorithm�

There are two common variations of dynamic programming� the �global� �	

and �local��� alignment algorithms� A third� less widely known variation is the
�global�local� alignment see Methods�� Each of these alignment algorithms
was devised for one particular type of comparison� and each has both pros and
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cons� In what follows� the pros and cons are evaluated in the context of fold
recognition� i�e� we will refer to the alignment of a sequence a probe� to a
structure a target��

Using a local alignment algorithm� a relatively short alignment� matching
a segment of sequence to some super�secondary motif� may produce a relatively
high score� In addition� as the size of the target to which the sequence is being
aligned increases� the probability of �nding such a high score also increases�
Thus� for a given sequence� there can be a number of false positives incompat�
ible structures� scoring higher than the true positive a compatible structure��
In the global algorithm this problem appears with less severity as the require�
ment of having at least two N� or C� termini either aligned or penalized� adds
a constraint in the alignment alternatives� However� the problem still persists
to some extent as the above constraint allows the global algorithm to choose
which two termini are to be considered� Our evaluations demonstrate that
the global and local algorithms perform similarly results not shown�� Sev�
eral studies have also suggested that global alignments are not inferior to local
alignments e�g����������� Indeed� some existing fold�recognition methods prefer
the global alignment over the local e�g� ����

Another problem associated with the global and especially with the� local
algorithms is that as the alignment of a probe sequence with a structure can
consist of a relatively short segment of the structure� it may not be very useful
for building a model for the sequence� The segment can be composed of some
structural fragment which may be meaningless when considered in isolation�
The ability to build a model for a probe sequence is the ultimate goal of fold
recognition�

The global�local algorithm is based on the principle that the compatibility
to one structure should cover the structure globally� The global�local algo�
rithm requires that the unpenalized termini if any� appear exclusively in the
sequence� accounting for every position of the structure� either as an aligned or
as a penalized�unaligned position� This is a strong constraint imposed in the
search algorithm which has a positive e�ect� and somewhat overcomes some
of the limitations of the global and local algorithms� There are two factors
involved� First� as all the positions in the structure are accounted for in the
alignment� the possibility of obtaining higher scores for relatively short� local
matches is reduced� Second� the tendency of obtaining higher scores for larger
structures is also reduced� if the fold is larger than the probe sequence� more
gaps need be included� and the score of this match would be lower� In addi�
tion� allowing unpenalized termini in the probe does not bias the algorithm
towards targets of similar length see below�� This is especially important for
probe sequences which may contain more than one domain� The net e�ects of

��



using the global�local algorithm are a lower rate of high scoring false positives�
and in some cases� a higher alignment accuracy� In summary� the global�local
alignment produces alignments that cover the full target� and at the same time
allows unaligned�unpenalized termini in the probe� This is a desirable property
for fold recognition�

The global�local algorithm is not aimed at identifying a compatibility in
only short portions of a structure� One way to identify such submotifs us�
ing the global�local algorithm is to partition the library of known folds into
compact domains and subdomains i�e� �minimally recognizable units��� and
place each of these units as separate entries in the library� along with the full
fold� The partitioning process can be carried out using any of the automated
procedures developed especially for this purpose� This has the advantage of
using structural knowledge in the partitioning processes instead of allowing the
local algorithm to choose a fragment which may not be a structurally mean�
ingful unit� merely for the purpose of maximizing the compatibility score� Not
allowing the dynamic programming algorithm to make such a blind choice is
one of the strengths of the global�local algorithm� e

At �rst sight it could appear that the enhanced performance of the global�
local algorithm is mainly due to length discrimination� However� an analysis
of the rank versus the size di�erence between probe and target showed no
correlation� i�e� the best ranks were not necessarily achieved by the pairs having
the smallest di�erences results not shown�� Furthermore� tests with probe
sequences highly padded at both termini with random sequences demonstrated
that the performance of the global�local algorithm is still superior to those of
the global and local algorithms results not shown��

The ranking procedure� As the raw scores of the alignments using the
local or global algorithm are dependent on the length of the target� methods
using these algorithms require normalization of the raw scores to account for
this dependency� In contrast� in the global�local algorithm� the raw scores of
the alignments are less length dependent and thus more reliable than those of
the global or local algorithms�

In systematic evaluations using several compatibility functions� we have
observed that i� the local and global algorithms perform better when the
results are ranked using normalized scores than when using the raw scores�
Normalizing by dividing the raw scores by the ln of the length of the target is
superior to the z�score normalization in agreement with���� ii� The global�

eIn the evaluations of this work� the library of known folds contains full chains� without
any additional partitioning� If we had partitioned the folds in the above way� the perfor�
mances of the various compatibility functions using the global�local algorithmwould be even
better�
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local algorithm with the raw scores ranking procedure performs comparably�
if not better� than with the z�scores ranking procedure� The ln normalization
performs the worst for the global�local algorithm�

The relatively poor performance of the z�scores ranking procedure in con�
junction with the global�local algorithm is surprising� By analyzing the indi�
vidual results of each probe sequence with either method� we observed that
in several cases� although the raw score rank of the correct fold was at the
very top� its z�score rank was inside the �twilight zone� of this normalization
procedure the region where it is impossible to distinguish random scores from
the signi�cant ones�� A more detailed analysis of the di�erent ranking pro�
cedures is out of the scope of this paper� We should note here that for the
global�local algorithm� the poor performance of the ranking procedure based
on the z�scores may be attributed in part to the fact that the methods were
evaluated using optimal gap penalties for a poor choice of gap penalty values�
the z�scores ranking procedure may show some advantage over the raw scores
ranking procedure�� It could also be attributed to some bias that may exist in
our training or test sets� in the library of folds� or in the compatibility functions
evaluated�

Limitations of the proposed benchmark�

Assessment of alignment accuracy is not covered in this work� and is a topic
for a di�erent study a thorough analysis of alignment accuracy has been car�
ried out for sequence�sequence comparisons by Vogt � Argos�� and for 
D��D
pro�les by Wilmanns � Eisenberg���� Other computational aspects that a
benchmark can grade are computer time and space requirements� aspects of
practical importance� When one has many probe sequences� a faster� possibly
less sensitive method could be used in a �rst screening� and then a slower�
more sensitive one for the cases where the �rst method did not succeed to
unambiguously assign a fold�

There is the possibility that our choice of proteins imparts a bias to the
benchmark� We have attempted to extract proteins from the data bank in
an unbiased way� by an all�against�all structural comparison of the protein
data bank� However� di�erent proteins could be extracted for the benchmark
using di�erent thresholds for sequence and structural similarity e�g�����������
Obviously� a di�erent choice might give di�erent results� A more serious matter
is that proteins with known structures are a biased subset of all proteins� For
example� the PDB contains few membrane proteins� few glycoproteins and few
�brous proteins� Thus our benchmark is not useful in assessing fold recognition
work on these other protein types� Despite the limitations� the use of this
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benchmark� or a di�erent one� may aid in understanding the merits of the
di�erent aspects involved in fold recognition�

The sequences and tables used in this work are available from the authors
by e�mail at �scher�ewald�mbi�ucla�edu�
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