368

A Branch and Bound Algorithm for Local
Multiple Alignment

Paul Horton

Computer Science Division
University of California
Berkeley, CA 94720

Abstract

A Branch and Bound Algorithm has been developed to find a set of
window positions in a compilation of sequences with globally maximal
information content. We have also developed an algorithm for brute
force evaluation of solutions which is faster by a factor of the length of
the windows than the naive brute force algorithm. The combination of
these two algorithms allows us to solve problems to optimality that were
previously amenable only to heuristic algorithms.

1 Introduction

In recent years the amount of DNA and protein sequence available to computer
analysis has increased dramatically. The availability of such sequence data has
inspired formulations of local multiple sequence alignment problems, which are
designed to have solutions that give the positions of local patterns within a
collection of sequences. In this paper we introduce two algorithms for solv-
ing Stormo and Hartzell’s formulation of local multiple sequence alignment [1],
whose objective function relates to the entropy of the proposed patterns. This
paper is divided into sections with the following purposes:

e Describe the local multiple sequence alignment formulation in more detail.
e Introduce an exhaustive algorithm.

Introduce a modification of an earlier heuristic search algorithm.

Introduce a branch and bound algorithm.

Prove the validity of the bound used.

369

e Describe precomputation and an additional heuristic speedup.

Describe the data sets used in this study.

Summarize and discuss the results of the algorithms on the data sets.

Suggest future directions for research and conclude.

2 Problem Formulation

The formulation of local multiple sequence alignment which we use was proposed
by Stormo and Hartzell [1]. Informally the idea is to select a substring or
window for each string such that the distribution of the ith character in each
window is far away from the expected distribution based on a prior distribution
of characters. More formally, the input is a set of n strings Sy, Ss,..., S, over
a fixed alphabet A, and an integer window length w such that w is between
1 and the length of the shortest string. Let V specify one position in each
string, i.e. V is a vector of length n whose elements v; are integers satisfying
Vi1l < wv; <[;, where [; 1s the length of string 7. The frequency of a character b
in V' is denoted by the matrix entry F(V,b), where YV Y ,c4 FI(V,b) = 1, and
the vector of frequencies for all the characters at a given set of positions V' is
denoted F(V). The prior probabilities of the characters is given by a vector
P, with element p, of P representing the prior probability of character b. We
can now define the information content (also known as the relative entropy)
introduced by Schneider et al [2] which provides a measure of the distance
between the distributions F'(V') and P. The function is given by

I(V) = Y4ea F(V,b) x loga(F(V,)/ ps).

Schneider et al denote this function R;equemc and use 1t to extend the standard
information theory entropy,

H(F(V)) =~ ea F(V,b) x log: F'(V, b),

to include prior probabilities. Bailey [3] shows that (V) can be interpreted
as the ratio of the likelihood that a random character generator that generates
characters according to the distribution F'(V) would generate the n characters
observed at position V' to the likelihood that a generator using the distribution
P would generate those n characters.

We wish to maximize F'(V) over a window of length w. Thus our evaluation
function becomes

E(V) =¥ I(V +1),

370

where we abuse notation to denote (vy +¢,vo+1¢,...,v,+1) as V 41 for a scalar
i, and define F (V') only for V such that Vo 1 <wv; <[; — w4+ 1 to prevent the
window from extending past the end of the sequences. The alignment problem
then is to find a V' such that £(V) is maximal.

3 An Exhaustive Algorithm

Let [be the length of the longest string. A naive algorithm would calculate the
frequencies for the characters in the n strings for each of the w columns covered
by each possible window position. There are O(I™) possible window positions
so this would require O(w(I™)) calculations of F' and O(nw(l/™)) time. However,
it is possible to remove the factor of w from the running time. The main
observation is this: Let V be a set of window positions such that Vi v; < [; — w,
and V' = V + 1. In other words let V'’ be V shifted one base to the right. Then
E(V') may be obtained as follows:

E(V') = E(V) = I(V) + I(V + w).

Using this observation to good advantage the algorithm is straightforward:

Mazx_F +— —o0

Iterate over all starting vectors V such that at least one element is equal to
one and for all elements v; of V, 1 <v; <[; —w + 1.

EV Vi I(V +1)

Do
Maz_E <— max{Maz_E,E_V}
EV — EV —I[(V)+ I[(V +w)
, 78 +— V+1

Loop while no element v; of V' exceeds [;

Return Maz_E

There are [* — ["~! = O(nl™!) starting vectors when at least one element is
constrained to equal one. Fach starting vector requires O(wn) time for initial-
ization. For all other vectors, F (V) can be calculated by adding the information
content of one column and subtracting the information of another (actually the

371

value of I(V 4 w) can be cached to avoid the need to calculate I(V) w itera-
tions later, thus reducing the information content calculation to one column per
iteration), which requires O(n) time per vector. Thus the overall running time
is O(n?wl™ ' + ni™). Which is O(nl") as long as nw is not much greater than
l. In practice for DNA sequences with n < 7 we precompute the value of I(V)
for all possible vectors V' thus reducing the time to O(I"); if array lookups are
counted as constant time operations.

4 Heuristic Search

The optimization problem we are concerned with can be formulated as a search
problem over a search tree whose leaves represent each possible choice of window
positions. More formally, the search tree can be constructed as follows: start
with a root at level 0, then give the root {; —w+1 child nodes representing each
possible position for a window in the first sequence. Likewise for 7 from 1 to
n — 1 give each node at level ¢ [;;; —w+ 1 child nodes to represent the possible
choices of the window position in S;4;. There is a one to one correspondence
between paths from the root to leaves in the tree and the possible assignments
of the window positions for the sequences.

Stormo and Hartzell [1] used a form of greedy search on the search tree as a
heuristic for quickly finding good, but not necessarily optimal, solutions. Their
algorithm actually performs [; — w 4 1 greedy searchs in parallel, one starting
from each node at level 1 of the tree, and returns the best solution found. The
greedy search can be described iteratively from 7 = 1 to n — 1. When the level
of the current node is ¢, then for each child of the current node, calculate the
function E(vy,v,...,v;41) (simply denoted E for the rest of this section) for
S1,S2,...,Si41, where (vy,vs,...,v,41) is the set of window positions implied
by the path from the root to the child node. If there is one child whose path
maximizes I then make that child the current node and iterate. Otherwise in
the case of a tie between the children at level 1 +1 for maximizing £ then “split”
the search into independent greedy searches for each child starting with that
child as its current node.

We applied a similar heuristic that can be described as a kind of beam search.
This type of beam search was suggested for multiple alignment problems by
Bacon and Anderson [4]. The algorithm descends the tree in a breadth first
search fashion except that at each level of the tree it only keeps the nodes cor-
responding to the top k values of E for that level. The parameter k is user
specified. When k is equal to one this type of search is equivalent to a simple
greedy search.

372

5 Branch and Bound

We developed a branch and bound algorithm which uses the same search tree
as the beam search algorithm but finds a guaranteed optimal solution. The
algorithm is essentially depth first search with pruning. An inequality is used
to compute an upper bound on E(V) for any V whose first : elements are
determined by the path to the node at level ¢ of the search tree. In order to
describe the bound formally we need to introduce some more notation. Let

E(‘U], V2y o0 vy Uiy Vig1 ™ Un) = IMaXy;41,vi42,.n E(vla V2y- 00y Uﬂ))
E(Ui-l-l e Un) = MaXy; 4 1,0i42,.04Vn E(Ui-f"la Vit2y:) Uﬂ)'
In words, E(vi,vs,. ..,V Vit1,~ Un) is the optimal value of E(V) for a set

of window positions V which starts with a path to a particular node at level
i; while E(viy; ~ v,) is the optimal value over V’ of the evaluation function
E(V') where V' is a set of window positions in sequences Sit1, Sit2, ..., The
upper bound we use can now be written as:

n* E(vy,vg,. .., 0i,Vig1 ~ Vp) < 1% E(v1,vg,. .., 0;)+(n—1)* E(vit1 ~ vg). (1)

Note that the second term of the right hand side can be obtained by solving a
smaller version of the original problem. Utilizing that fact we have developed
a recursive algorithm that uses two arrays (which are defined to be global vari-
ables) to hold bounds:

Array L is defined such that L[:] will be assigned a lower bound for the maxi-
mum value of F for the sequences S;i, Sit1, .- -, On,

Array U is initiated to have undefined values for all its elements and will be
assigned values during the execution of the algorithm such that U[z] is ei-
ther undefined or it contains the exact maximal value of E for the sequences
S, Sis1, .-, Sn. The level at which the algorithm begins pruning is denoted d,
which is a user defined parameter. A description of the algorithm is given in
table 1.

Pruning is generally ineffective at the first 2 levels of the tree, therefore we
used d = 3 when the program was called with less than 8 sequences, i.e. when n—
start_seq+1 < 7, and d = 4 otherwise. Note that the array L can be computed
in one pass of the beam search heuristic by inputing the sequences in reverse
order and letting L[i] be the best candidate for the sequences Su, Sp-1, ..., 5i.

6 Proof of the Bound

We first prove the inequality for I(V) and then for E(V). Let F', Fo, and F; be
probability vectors with elements F'(b) specifying the probability of generating
character b. Furthermore let the probability vectors satisfy the relation:

373

Description of Branch and Bound Algorithm

Use the beam search heuristic to calculate the values of an array L such
that L[:] holds a lower bound for the maximum value of E for the

sequences S;, Siy1,- ..y On.
Call Program(1).
Program(start_seq)

if start_seq > n — d then
Calculate Ul[start_seq] with the exhaustive algorithm

Return Ulstart_seq]

for(1 = n to start_seq+d step —1)
if U[7] is undefined U[:] +— Program(z)
endfor

Mazx_ F +— —o0

Visit all the nodes at level d of the search tree using the exhaustive
algorithm described above. For each node, use Ul[start_seq + dJ,
L[start_seq], the value of E(vy,v,,...,vq) for the path
v1,V,...,0q leading to the node, and inequality 1 to determine
if the node can be eliminated.
For each node generated that cannot be eliminated by inequality 1
perform a depth first search,
pruning any node generated that can be eliminated
with the inequality.
For each node generated at level n update Maxz_E if necessary.

Return Maz_FE

Table 1: The main function “Program” is recursively called with the argument
start_seq specifying from which sequence “Program” is to begin. For example,
if “Program” were called with start_seq = 5, it would return an optimal solution
for input consisting of the 5th through nth sequences.

374

Vbe A F(b) = 0Fp(b) + (1 —0)Fy(b), 0 <8< 1.
Define I analogously with I(V') defined earlier, i.e.
I'=3pea F'(b) x loga(F(b)/ps).

Where the p,’s are constants. Define [y and I; likewise using Fy and Fj.
Theorem 1 [< 6Iy+ (1 —0)1,.
The meat of the proof is provided by the following lemma:

Lemma 1
H>0Hy+ (1 —-0)H, (2)

where:

H = — EBGA F(b) * lOggF(b),
H(): e EbEA Fg(b) * lOggFg(b),
Hy= — 34 F1(b) * loga F1 (D).

Proof of lemma 1:

The proof closely follows the proof of a similar theorem by Gallager [5]. Consider
F, Fy, and F to be probability vectors over the sample space B equal to the
space of generating single characters from the alphabet A. Furthermore consider
the probabilities Fyp(b) to be conditioned on a binary variable z with sample
space Z = {0,1} such that

Fo(b) = Fpz(b]0), Fi(b) = Fpz(b1).

Let 2 = 0 with probability . Then inequality 2 is equivalent to the following
series of equations:

H(B) > ¥, Prob[z = 0] * Fy(b) * loga Fo(b) + 3, Problz = 1] * Fy(b) * log, Fy (b)
H(B) > 3., Problb, z] x logy(Prob[b|z])

H(B) > H(B|Z).

The steps follow from the identity Prob[b,z] = Prob|z] Prob[b|z] and the stan-
dard information theory definitions of H(B) and H(B|Z). The last equation is
a well know identity and this completes the proof of lemma 1.

The proof of theorem 1 follows from lemma 1 by noting that I can be writ-
ten as: [= —H — F'- C, where C is a vector defined such that C(z) = log(p:).

C is a constant vector with respect to F' so we have:

375
F.C=0F -C+(1-0)F-C,
[—0lo—(1—06)I; =0Hy+ (1 — 0)H; — H

By lemma 1 the right hand side of the last equation is less than zero, thus
finishing the proof of theorem 1.

7 Precomputation and Heuristic Speedup

7.1 Precomputation

The function I(V') requires the calculation of several logarithms. Without pre-
computation those calculations would become a bottleneck, thus we employed
two kinds of precomputation. First, as mentioned in the section on the exhaus-
tive algorithm, for each possible column of up to 7 characters we precompute
the value of I(V) for that column. For nucleic acid sequences this requires
47 + 4% 4 ... + 4 =~ 22K double precision numbers worth of memory. This kind
of precomputation is less effective for the larger alphabet size required for amino
acid sequences but precomputing the values for columns of up to 3 or 4 amino
acids is possible.

For columns with too many characters to cover with the above form of pre-
computation it is still possible to avoid calculating logarithms during the main
phase of the algorithm. The key observation is that the character frequencies
for which logarithms need to be computed always equal the ratio of the num-
ber of times a character is observed, which must be a nonnegative integer no
greater than the number of sequences in the subproblem, divided by the num-
ber of sequences in the subproblem, which can be no greater than n. Thus
there are only O(n?) possible frequencies. To exploit this fact, we precompute
an+1xn+1 array M, where for : < j the M[:][j] entry holds the value of
;—: * logg(;%). Although this array does not allow I(V') to be calculated with a
single array lookup, the space required for it is only quadratic in the number of
sequences.

7.2 Heuristic Input Ordering Speedup

Recall that when descending the search tree, the condition for eliminating a
node and its descendants is dependent on the value of F for the path to the
node and on the value of F for the optimal set of window positions maximized
independently over the remaining sequences. Thus more nodes can be elimi-
nated early if the sequences with the lowest maximal value of E come last in

376

the input. To give a concrete example consider the case where there are 11
input sequences and one is trying to eliminate nodes at the fourth level of the
tree. If the maximal value of F for the last 7 sequences of the input is low then
the right side of inequality 1 will provide a lower upper bound on the value of
E for descendents of the node in question.

We exploit this observation by ordering the sequences based on the results of
running the heuristic beam search on the initial, arbitrary ordering of the input.
The input sequences are sorted in descending order according to the value of
Yo loga(F (1, B(4,7))/pBi.j), where F(i, B(i, 7)) denotes the frequency in col-
umn ¢, in the window position vector chosen by the heuristic, of the character in
the ¢th column of the window in the jth sequence. And pp(; ;) denotes the prior
probability of that character. The logic behind this is that if you believe that
there is one strong signal in the data and that the heuristic can find that signal,
then the sequences where that signal is weakest should have a low optimal value
of I/ and thus should come last.

& Data Sets

8.1 LexA Data Set

For this study we used a set of 11 E.coli DNA sequences of length 200, each
of which is known to contain at least one binding site for the protein LexA.
We copied this data set directly from Hertz et al [6]. LexA binds in or near
promoters and may bind to sites which occur on either the sense strand or the
anti-sense strand of the DNA. Thus we needed to consider possible occurrences
of the pattern on both the sequence and the reverse complement of the sequence.
Instead of designing our program to consider the reverse complement of each
input sequence, we simply concatenated the reverse complement of each input
sequence onto itself to create 11 sequences of length 400 each. This added w — 1
bogus window positions in the middle of each input string, but as these window
positions never appeared in a solution the solutions obtained were valid. As in
Hertz et al we used prior probabilities of 0.25 for each of the four DNA bases.

8.2 Artificial Data

Intuitively one would expect stronger motifs to be easier to find. In order to
investigate the relationship between motif strength and the running time of our
algorithm we generated sets of artificial sequences with artificial motifs of vary-
ing strength planted in them. We somewhat arbitrarily chose to generate sets
of nine sequences of length 320.

377

The sequence generator receives four parameters: the length of the sequences
to be generated [, the number of sequences to be generated n, the length of the
motif w, and the minimum information content ¢ of each column of the motif.
The generator can be described with the following pseudo-code:

Generate n DNA sequences of length [using a uniform distribution over the
four possible bases.

Fori=1tow
Do
Generate a motif column 7 of length n using a uniform distribution over
the four possible bases.
Loop while the information content of motif : <= c.
EndFor

Generate a set of n random motif starting positions using the uniform dis-
tribution over all possible starting positions.

Replace the characters in the sequences whose positions correspond to motif
columns with the characters from the motif columns generated above.

9 Results

9.1 LexA Dataset

We ran the branch and bound program on the LexA data set with three different
window lengths. The patterns found by the branch and bound program with
a window length of 24 are shown in table 2. The running time was quite slow,
requiring 71 hours on a Hewlett Packard 9000/715 workstation. The program
ran faster with window sizes of 20 and 22, requiring 20 and 28 hours respectively.
However since the window size of 24 is the only one for which the optimal
solution escaped Stormo and Hartzell’s heuristic, we decided to show that result.
Table 3 shows how many nodes survived at each level of the search tree. Even
with the least favorable window size of 24, the bound does well in terms of the
percent of nodes eliminated. Remembering that the fan out for this particular
search tree is 400 — 24 + 1 = 377 for each level of the tree we can see that the
bound eliminates all but 6 x 10™* percent of the nodes at level 4 and all but
7 x 107° percent of the nodes at level 5 of the search tree. We must mention
that the sequence input ordering heuristic was used for the window size of 24.

378

Sequence Pattern Found

umu-operon CTACTGTATATAAAAACAGTATAA
cloacin-df13 ATACTGTGTATATATACAGTATTT

recn TTACTGTATATAAAACCAGTTTAT
uvrb ATACTGGATAAAAAAACAGTTCAT (complementary strand)
reca ATACTGTATGAGCATACAGTATAA
sula TTACTGTATGGATGTACAGTACAT (complementary strand)

colicin-ib TATATGGATACATATACAGTACTA (complementary strand)
colicin-ia CATATGGATACATATACAGTATTA (complementary strand)
colicin-el ATGCTGTATATAAAACCAGTGGTT
uvrd AATCTGTATATATACCCAGCTTTT
uvra ATACTGTATATTCATTCAGGTCAA

Table 2: The name of each sequence and the 24 base window found by the
branch and bound algorithm are given. When applicable the occurrence of the
window on the complementary strand is indicated.

Without reordering the sequences the program took so long to execute that it
had to be terminated prematurely, however judging from the pace of its progress
we estimate the reordering to have sped the calculation up by at least a factor
of 10. The reordering heuristic was not necessary for window sizes of 20 and 22.

We did not run extensive empirical tests of the performance of our beam search
heuristic with the heuristic of Stormo and Hartzell [1]. However the results
from very limited data suggest that our heuristic performs somewhat better.
Table 4 shows how their results compare with the beam search heuristic. We
chose to keep the number of candidate paths, i.e. the beam width, equal to the
length of the sequence, a parameter setting which should keep the amount of
memory and time resources used by the two heuristics roughly equal (recall that
Stormo and Hartzell’s algorithm performs one greedy search for each window
in the first sequence). Note that that although the difference is small our beam
search always finds an equal or better solution. If one increases the number
of candidates kept to 1700 from 400, then our beam search heuristic finds the
optimal solution for a window size of 24 for all five orderings. The running time
with the 1700 setting is just under 20 minutes.

379

Level of Tree

= O 00 ~1 Oy O

Number of Nodes that Survive
131532

499498

3489962

597786

133618

200389

27146

Table 3: Results for the branch and bound program on the LexA dataset with a
window width of 24. The number of nodes surviving at each level of the search
tree for which pruning is done is shown.

Search Type | Window Size | E(V) of Solution Found | Times found / # of trials
Beam Best 27.241 5/5
Stormo Best | 20 27.241 1/5
Beam Best 28.426 5/5
Stormo Best | 22 28.426 2/5
Beam Best 29.279 2/5
Beam Other 29.181 3/5
Stormo Best | 24 28.926 2/5

Table 4: Beam Best labels the best solution found by our beam search heuristic
while Beam Other labels a worse solution which was also found. A trial consists
of randomly rearranging the order of the sequences and running the programs.
The numbers for Stormo and Hartzell’s heuristic were taken from their paper,
while we randomly generated our own five orderings for our numbers.

380

9.2 Artificial Dataset

The running times with different window sizes on the LexA data set provides
anecdotal evidence that a higher information content per position correlates
with shorter running times. The results of a more systematic investigation of
this correlation are shown in figure 1. Again the input ordering heuristic was
necessary for the harder input sets, in this case the ones with motif strengths
of 21.4 and 21.8 bits. It can be seen that the computation becomes infeasible
as the information content drops below 21.4 bits for a motif length of 20.

To get a feel for the significance of this motif strength we tried to determine
what information content could be expected when no motif was present. When
run on sets of nine random sequences of length 320 (without any planted mo-
tifs), our beam search heuristic consistently found length 20 windows with an
information content of approximately 18.8 bits. Thus for data sets of the size
tested here, the possibility remains of subtle motifs appearing with strengths in
the range of 18.8 to 21.4 bits over 20 columns which cannot be found with the
current implementation of our branch and bound algorithm.

10 Discussion and Future Directions

Our main result was that we were able to solve a non-contrived data set of rea-
sonable size to global optimality. The data set itself was used to demonstrate
the heuristic of Stormo [6] and the size of the problem O(400'!) is comparable
in size to the data sets used to test two other heuristic algorithms for maximiz-
ing functions very similar to E(V'). Specifically the data sets used to test an
expectation maximization algorithm by Lawrence and Reilly [7] and an algo-
rithm using Gibbs Sampling by Lawrence et al [8] were not much bigger than
O(400™). We must note here that in practice these heuristics produce good
solutions and are more flexible in terms of modifying the objective function, not
to mention that they run much faster than our branch and bound algorithm.
Our point is that it is somewhat surprising that a problem as large as the one
presented here could be solved to optimality.

Branch and Bound algorithms have been effective in optimally constructing
global multiple alignments, where global refers to aligning the whole strings
rather than local patterns in the strings, but for somewhat smaller problem
sizes. For example, in regards to his branch and bound algorithm for the maxi-
mum weight trace formulation of multiple alignment Kececioglu [9] states “. .. we
can solve instances on as many as 6 sequences of length 250 in a few minutes.
These are among the largest instances that have been solved to optimality to

381

date for any formulation of multiple sequence alignment.”

To increase the utility of the branch and bound algorithm three improvements
need to be made. One needed improvement would be to speed up the algorithm
so that data sets with 20 or more long (length >= 300) sequences could be han-
dled instead of the current limit of about 10. To address this we have considered
searching a search tree in which the nodes represent the displacement of windows
relative to each other rather than the absolute positions of windows, as well as
implementing the algorithm on a parallel machine. Unfortunately we have not
significantly developed these ideas at this time. The second improvement would
be to include “regularizers” to adjust for small sample effects in the evaluation
function. A Laplacian regularizer can be used with the current implementation
by simply adding dummy sequences of length w, one for each character in the
alphabet consisting entirely of that character. However Karplus [10] has shown
that, at least for protein sequences, the Laplacian regularizer performs poorly.
He finds Dirichlet mixtures to be the best choice and we are therefore consider-
ing how to modify our program to accommodate a Dirichlet mixture regularizer.
A compromise would be to use fractional pseudocounts, which Karplus found to
be much better than a straight Laplacian regularizer. The third improvement
would be to incorporate the so called “ZOOPS” model proposed by Bailey and
Elkan [11]. This model allows for the possibility that some sequences do not
contain the motif. It is an attractive model computationally because it adds
only one bit per sequence to the search space. Moreover the model can be used
iteratively to locate motifs that occur a different number of times on different
sequences, without any prior knowledge of the number of times the motifs occur.

In conclusion, we have developed a branch and bound algorithm for a widely
used formulation of multiple sequence alignment. This algorithm has allowed
problems to be solved to optimality that were previously amenable only to

heuristic algorithms.

References

(1] G.Stormo and G.W.Hartzell 111, Identifying protein-binding sites from un-
aligned DNA fragments, Proc. Natl. Acad. Sci. USA, 86 (1989) pp. 1183-

11187.

[2] T.Schneider, G.Stormo, L.Gold and A.Ehrenfeucht, Information Content
of Binding Sites on Nucleotide Sequences, J. Mol. Biol., 188 (1986) pp.
415-431.

382

[3] Timothy L. Bailey, Likelihood vs. Information in aligning biopolymer se-
quences, Technical Report CS93-318, University of California, San Diego
February 1993.

[4] D.J.Bacon and W.F.Anderson, Multiple Sequence Alignment, J. Mol. Biol.,
191 (1986) pp. 153-161.

[5] Robert G. Gallager, Information Theory and Reliable Communication,
John Wiley and Sons, 1968, pp. 90-91.

(6] G.Z.Hertz, G.W.Hartzell III, and G.D.Stormo, Identification of consen-
sus patterns in unaligned DNA sequences known to be functionally related,

CABIOS, Vol 6. #2. (1990) pp. 81-92.

[7] Charles E. Lawrence and Andrew A. Reilly, An Ezpectation Mazimization
(EM) Algorithm for the Identification and Characterization of Common
Sites in Unaligned Biopolymer Sequences, PROTEINS, 7 (1990) pp. 41-51.

[8] C.E.Lawrence, S.F.Altschul, M.B.Boguski, J.S.Liu, A.F.Neuwald, and
J.C.Wootton, Detecting Subtle Sequence Signals: A Gibbs Sampling Strat-
egy for Multiple Alignment, Science, 262 (1993) pp. 208-214.

[9] John Kececioglu, The mazimum weight trace problem in multiple sequence
alignment, Proceedings of Combinatorial Pattern Matching, (1993) pp. 106-
119.

(10] Kevin Karplus, Evaluating Regularizers for Estimating Distributions of
Amino Acids, Proceedings of ISMB-95, (1995) pp. 188-196.

[11] Timothy L. Bailey and Charles Elkan, The value of prior knowledge in
discovering motifs with MEME, Proceedings of ISMB-95, (1995) pp. 21-38.

383

Running Time vs. Motif Strength

Hours

130.00 ’\
120.00 \

110.00 R

100.00

80.00

|
90.00 \
|
\

70.00 \
60.00

50.00 \
40.00 \

30.00 \\
i

20.00 ~
___—-__—__"‘"——-
10.00]

Information Content

22.00 24.00 26.00 28.00 30.00

Figure 1: The y-axis gives the running time in hours of the branch and bound
algorithm, while the x-axis gives the total information content of the optimal
set of window positions. The data shown is from the artificial data set.

