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STATISTICAL GEOMETRY ANALYSIS OF PROTEINS:
IMPLICA TIONS FOR INVERTED STRUCTURE PREDICTION
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The topology of folded proteins from the representative dataset of well-defined three-dimensional

protein structures is studied using a statistical geometry approach. Amino acid residues in
protein chains are represented by C(]tatoms, thus reducing the protein three-dimensional structure
to a set of points in three dimensional space. The Delaunay tessellation of a protein structure
generates an aggregate of space-filling irregular tetrahedra, or Delaunay simplices. Each simplex
objectively derIDes four nearest neighbor C(]tatoms, i.e. four nearest neighbor residues. The
statistical analysis of residue composition of Delaunay simplices reveals nonrandom preferences
for certain quadruplets of amino acids. These nonrandom preferences are used to develop a
fitness function that evaluates sequence-structure compatibility. Using this fitness function,

several tested native proteins score the highest among 100,000 random sequences with average
protein amino acid composition. The statistical geometry approach, based solely on first
principles, provides a unique means for protein structure analysis and has direct implications for
inverted protein structure prediction.

1 Introduction

Accurate prediction of protein three-dimensional (3D) structure from its primary
sequence represents one of the greatest challenges of modern theoretical biology. It
is still experimentally much easier to determine a protein's primary sequence than
its 3D structure. As a result, the size of protein primary sequence databases (e.g.
PIR and Swiss-Prot!) exceeds that of the experimentally determined 3D protein
structure database2 by at least an order of magnitude. This disparity will likely
increase over time. Therefore, the most attractive means for obtaining information
about 3D protein structure is to predict it from the protein primary sequence.

The goal of predicting 3D protein structures from primary sequences has
given rise to a number of techniques which can be divided into three major
categories: potential energy based analysis, lattice simulations of protein folding,
and knowledge based approaches3. Potential energy based methods include
molecular mechanics optimizations and molecular dynamics (MD)4. MD has
proven extremely useful in refmement of experimentally determined structures5.
However, even the MD equilibration of systems already near equilibrium (e.g.
starting from crystallographically or spectroscopically obtained coordinates)
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requires substantial computational resources. The prediction of folded protein
structures by dynamic simulations is currently computationally prohibitive.
Furthermore, it has been shown that deliberately misfolded structures often have
much lower molecular mechanics potential energies than the native structures6.

Monte Carlo lattice simulations of protein folding with simplified
potentials using single point (Ca atoms) representation of amino acid residues have
led to reasonable predictions of approximate protein folds and, in a few cases, to
accurate predictions of several simple protein structures7,8. Due to high
computational cost and inadequacy of the simplified potentials, the predictions are
currently limited to fairly small proteins or stable structural motifs such as coiled
coils9. However, it has been shown that the Ca-basedrepresentation of protein 3D
structure is sufficient for reliable restoration of the complete backbone structure
and, with a reasonable accuracy, a full atom structure, including the side chainslO.

Knowledge-basedmethods of protein 3D structure prediction rely on the
analysis of sequence-structurerelationships in known protein folds. According to a
recent evaluation, the number of different protein folds may be limited to about
100011.A significant amount of effort by several research groups has been focused
on the area of inverted protein structure prediction12-14.These methods are based
on the statistical analysis of amino acid preferences for particular secondary
structures, combined with two-bodyand, in some cases, three-body12propensities
of amino acids to be clustered together in folded proteins. From this analysis,
sequence-structure compatibility scores are derived for each amino acid, and the
prediction is achieved by "threading" new protein sequence through known protein
structural templates in order to locate the most compatible template. These
methods lead in principle to full atom predictions of protein architecture and have
been shown in several cases to outperform other methods in the accuracy of
structure prediction.

The accuracy of knowledge based 3D structure prediction can be improved
by a systematic application of statistical and pattern matching techniques to the
comparison, alignment, and classification of known protein structures. In this
paper, we employ the Delaunay tessellation of folded proteins for unambiguous
identification of all clusters of four nearest neighbor residues in any protein
structure. The statistical analysis of the amino acid composition of the nearest
neighbor quadruplets providesa novel set of tetrabody residue potentials and a new
sequence-structure compatibility scoring function. Thus, the results of this study
have direct implication for inverted protein structure prediction.
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2 Methods

The statistical geometry approach for studying structure of disordered systems was
introduced by Bernal15. He suggested characterization of structural disorder by
statistical analysis of irregular polyhedra obtained as a result of a specific
tessellation in three-dimensional space. The method, including the design and
implementation of practical algorithms, was further developed by Finney for the
case of Voronoi tessellation16. A Voronoitessellationpartitions the space into
convex polytopes called Voronoi polyhedra. For a molecular system the Voronoi
polyhedron is the region of space around an atom, such that all points of this
region are closer to this atom than to any other atom of the system. A group of
four atoms, whose Voronoi polyhedra meet at one vertex, forms another basic
topologicalobject, the Delaunay simplex. The topological difference between these

tessellations is that the Voronoi polyhedron describes the coonJination of the
nearest atomic environment while the Delaunay simplex describes the ensemble of
neighboring atoms. Although the Voronoi polyhedra and the Delaunay simplices
are completely determined by each other, Voronoi polyhedra may differ
topologically (having different number of faces and edges), while the Delaunay
simplices are always topologically equivalent (they are always tetrahedra in three-
dimensional space) and can be compared quantitatively. The Delaunay tessellation
was used for structural analysis of various disordered systems and in most cases
served as a valuable tool for structure description17.18.

Figure 1: Voronoi (dashed line) and Delaunay (solid line) tessellations in two dimensions
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The Delaunay tessellation was perfonned on the dataset of unique protein
structures identified by Jones et al19.This dataset contains 103 protein chains with
high crystallographic resolution that do not have apparent structural similarity and
carry low sequence identity. This dataset was successfullyused by the authors to
identify unique protein folds and provides an adequate database for statistical
analysis of protein structure.

The proteins in the Jones' list were analyzed in a pipeline fashion as
follows: (i) preprocessing of raw PDB files; (ii) Delaunay tessellation in 3D space;
(iii) statistical analysis of residue composition of Delaunay simplices. First step is
the extraction of the necessary3D coordinates of Ccxatoms from the PDB entry file.
Then, the Delaunay tessellation is perfonned using the qhull program developed
by Barber et al2oand distributed by the University of Minnesota Geometry Center.
The program produces the Delaunay tessellation from the convex hull of a set of
points in general N-dimensions by computing a convex hull using a randomized
incremental algorithm. After the tessellation is done, the pdb program takes the
PDB entry file and the tessellation results from the qhuU program as input and
computes various characteristics of tetrahedra and their constituent residues. For
this work we were interested mainly in the amino acid composition and the
geometry of the simplices which was analyzed using the qfc program. Both pdb
and qfc programs were written in the C programming language. All calculations
were perfonned on a HP-9000!735 workstation running HP-UX operating system.
The cumulative wall clock time for analyzing a protein structure (through all the
phases) for a typical protein was on the order of 10 seconds.

3 Results and discussion

3.1 Delaunay tessellation offolded protein structures

The typical result of the Delaunay tessellation of a folded protein is shown in
Figure 2 for crambin (the Brookhaven code lcrn). The tessellation of this 46-
residue protein generates an aggregate of 192 nonoverlapping, space-filling
irregular tetrahedra or Delaunay simplices. Each Delaunay simplex uniquely
defines four nearest neighbor Ccx atoms, Le., four nearest neighbor amino acid
residues, as vertices of this simplex. A vertex may be shared by several tetrahedra.
Thus, individual amino acid residues may have different number of neighbors. For
instance, in crambin, as many as 15 edges may originate from a common vertex.
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Figure2: Delaunay tessellation of Crambin

Thus, the Delaunay tessellation may in principle derIDeall neighbors of a given
residue. However, the Delaunay tessellation emphasizes the fundamental property
of a set of three-dimensional point objects where four and only four nearest
neighbors could be identified unambiguously.

3.2 Statistical analysis of the composition of Delaunay simplices

The Delaunay tessellation of 103 protein chains in the dataset generates a total of
114,617 simplices. The composition of these simplices was analyzed in terms of
statistical likelihood of occurrence of four nearest neighbor amino acid residues for
all observed quadruplet combinations of 20 natural amino acids. The
agglomeration factor q was calculated for each quadruplet from the Eq.l:

hjkl
qijkl = log-

Pij/cl

where iJ,k,1are any of the 20 natural amino acid residues,[;jldis the observed
normalized frequency of occurrence of a given quadruplet, and Pijklis the expected
frequency of occurrence of a given quadruplet. The qijklshows the likelihood of
rIDdingfour particular residues in one simplex. The [;jklis calculated by dividing

(1)
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the total number of occurrence of each quadruplet type by the total number of
observedquadrupletsof all types. ThePijkJ wascalculatedfromtheEq. 2:

Pijk(=Caiajaka( (2)

where aj, aj, at,and at denote the individually observed frequency of occurrence of
each amino acid residue (i.e. total number of occurrences of each residue type
divided by the total number of amino acid residues in the dataset), and C is the
combination factor, defmed as

C= 41n

II (tj 1)
j

(3)

where n is the number of distinct residue types in a quadruplet and tj is the number
of amino acids of type i, where i ranges from 1 to n. The factor C accounts for the
underestimation due to permutability of replicated residue types.

We have fust analyzed the composition of the Delaunay simplices in
terms of well known chemical classes of the amino acid side chains. The amino
acid residues were classified as hydrophobic (F), hydrophilic (L), and polar (P)
typeS21;hydrophobic amino acids include Ala, Val, Phe, lIe, Leu, Pro, Met,
hydrophilic amino acids include Asp, Glu, Lys, Arg, and polar amino acids include
Ser, Thr, Tyr, Cys, Asn, Gin, His, Trp; this consideration reduces the 20-letter
amino acid alphabet to a three-letter code. Since we have been interested in the
analysis of amino acid contacts that may produce physico-chemical interaction, we
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have introduced a 7 A distance cutoff to qualify amino acid residues in one
tetrahedron as nearest neighbors; thus, tetrahedra with at least one edge exceeding
7 A were excluded from the analysis. (For comparison, 5.5 to 7.5 A cutoff
distances between Ca atoms are customarily used in the distance geometry based
classification of amino acids as nearest neighbors). Figure 3 shows the log-
likelihood ratio for fifteen possible quadruplet combinations of the three types of
amino acids among all simplices in tessellatedproteins of the dataset. This ratio is
calculated as the observed frequency of occurrence of each quadruplet divided by
the expected (theoretical) frequencyof occurrence. Quadruplets containing four or
three residues of types P and F are much more likely to occur than the ones with
four or three type L residues.

Theoretically, the maximum number of all possible quadruplets of natural
amino acid residues is 8,855 whereas only 8,351 occur in the dataset. The
agglomeration factor q is plotted in Figure 4 for all observed quadruplets of amino
acids. Each quadruplet is thus characterized by a certain value of the q factor
which describes the nonrandom bias for the four amino acid residues to be found in

the same Delaunay simplex. This value can therefore be interpreted as a four-body
potential for the quadruplets of amino acid to be nearest neighbors in 3D protein
space. Hence, based on the data of Figure 4, for each native tessellated protein the
total score can be calculated as the sum of individual scores for all composing
Delaunay simplices. The resulting value is considered as an estimate of the
sequence-structure compatibility score for the native protein.
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3.3 Implications/or inverted structure prediction

We have evaluated the proposition that the agglomeration factor accurately reflects
the compatibility of native sequence with native structure; this is an essential step
towards inverted structure prediction. We have chosen three proteins of different
length from the dataset: hemoglobin (leca), flavodoxin (4fxn), and papain (9pap).
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For each of these proteins. 100.000 random sequences of the same length as the
native protein were generated as follows. An amino acid was assigned randomly to
each position in a sequence according to its observed frequency of occurrence in
the training dataset. This procedure generates amino acid sequences of different
composition, but ensures that the ensemble of generated sequences has the same
observed frequency of occurrence for each amino acid on average. Once a random
sequence has been generated and assigned (threaded) to a template, the new amino
acid composition and corresponding agglomeration factor for each Delaunay
simplex of the template was determined. For the Delaunay simplices that were not
observed in the training dataset, the value of agglomeration factor was set to zero.
The total sequence/structure compatibility score was calculated as the sum of the
agglomeration factors for all compositionsof the Delaunay simplices of the random
sequence. The results of experiments are presented in Figure 5. As can be seen in
this Figure, in all cases the native protein has the highest score. One may
hypothesize that the protein sequences that scored close to the native structure may
in fact have similar fold. This hypothesis may be further tested experimentally.

4 Conclusions

The analysis of residue contacts in folded proteins provides important information
about the topologyand stability of protein structures. In order to identify all sets of
nearest neighbor residues in proteins we have employed the Delaunay tessellation
of protein structure, where each amino-acid residue was represented by its Ca
atom. Delaunay tessellation ensures unambiguous defInition of the sets of four
nearest neighbors. Statistical analysis of residue composition of Delaunay
simplices reveals nonrandom preferences for certain combinations of residues. We
calculated the log likelihood for all observed quadruplets of amino acid residues.
Based on the values of log likelihood we have derived a novel sequence-structure
compatibility scoring function. This function is used to discriminate between the
native and any random sequences for a given native 3D structure template. The
results of this work should aid in further development of methods for the analysis
and prediction of protein structure from sequence.
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