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This paper proposes a novel method of deriving a contact potential (a pair score
function) for protein threading. In this method, the constraint that the score
of the native threading is minimum over all possible threadings is expressed in

a form of linear inequalities, and then parameters de�ning the contact potential
are determined by applying a program package of linear programming. The most

important advantage of this method over the previous methods is that this method
can learn a score function from a small number of training data. The proposed
method was evaluated using Lathrop and Smith's algorithm for �nding optimal

threadings and was shown to be e�ective for computing nearly correct threadings.

1 Introduction

The prediction of three-dimensional protein structure from amino acid se-

quence is one of the most important problem in computational biology. Al-

though a lot of approaches were proposed, recent studies have been focused

on an indirect approach in which, given an amino acid sequence and a set of

structural models (structural templates), a structure into which the sequence

is most likely to fold is computed. To test whether or not a sequence is likely

to fold into a structure, an alignment between spatial positions in a protein

structure (or a structural model) and amino acids in a sequence is computed

using a suitable score function (equivalently, potential function). That is, an

alignment which minimizes the total score (corresponding to potential energy)

is computed. This minimization problem is called a protein threading problem,

and an alignment between a sequence and a structure is called a threading. An

alignment minimizing the total score is called an optimal threading.

To use protein threading in a predictive setting, there are two major prob-

lems: how to compute an optimal threading, and how to derive a score function.
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For the former problem, a lot of methods have been proposed. Most meth-

ods use DP (dynamic programming) 3;7;15 or its variant such as double DP
9. However, using DP based approach, it may fail to �nd an optimal thread-

ing when a pair score function is used. Although recent Asilomar meeting

(CASP2) 6 revealed that protein threading was useful for protein structure

prediction even if such DP-based methods were used and computed thread-

ings were incorrect, computing optimal threadings seems important for futher

improvement of protein threading. Recently, Lathrop and Smith proposed a

novel branch-and-bound algorithm (LS-algorithm, in short) which always �nds

an optimal threading 11. Although there are some limitations (gaps within a

core segment are not allowed), their method has great advantage over the other

methods since it always �nds an optimal threading. They examined several

score functions, but the results were not satisfactory in the sense of accuracy of

the obtained threadings. They listed some problems to be solved for improving

the accuracy, in which the improvement of score functions was included. Thus,

the latter problem (i.e., developing a good score function) is very important.

A lot of methods have also been proposed for the latter problem. Usually,

they are empirically derived from known tertiary structures. In most of them,

score functions are derived using Boltzmann-like statistical methods based on

the concept of quasichemical approximation 14. In a simplest form of the qua-

sichemical approximation, contact potential �x;y between residues (amino acid

types) x and y is derived by �x;y = �T ln fx;y, where fx;y is a normalized

frequency of contacts between x and y extracted from the known structures,

and T (temperature) denotes the energy scale13;14. Based on the quasichemical

approximation, a lot of variants of score functions have been proposed. For

example, Sippl developed distance-dependent potentials 16, Godzik et al. de-

veloped a potential with multi-body interactions7, and Nishikawa and Matsuo

developed a potential considering dihedral angles 15. Although the quasichem-

ical approximation is reasonable under the assumption that protein sequences

are random 13, real protein sequences are not considered to be random. Thus,

quasichemical approximation does not necessarily suit for real proteins.

By the way, a real score function should distinguish the native structure

(native conformation) by making its energy minimum (or minimal) among

all other conformations. Although it may be impossible to develop such a real

score function, it is important to develop a score function which approximately

satis�es the above requirement. There have been several such studies. Gold-

stein et al. maximized energy gap between the native structure and alternative

structures (decoys), using an optimization procedure developed in the theory

of neural networks 8. However, their optimization procedure could be applied

to only one protein, and thus they obtained a score function by averaging over



all proteins. Mirny and Shakhnovich used a Monte-Carlo method in order to

simultaneously maximize energy gaps for all proteins 13. However, it is not

guaranteed that energy gaps are truly maximized because their optimization

procedure is a Monte-Carlo type. Maiorov and Crippen used an iterative pro-

cedure to solve the constraints that energy of the native structure should be

less than those of alternative conformations, where alternative conformations

were generated by incorrect threadings through several tens of structures 12.

However, in their method, only threadings without gaps (insertions and dele-

tions) were used and examined. Thus, it is not guaranteed that the optimal

threading exactly matches with the native threading (i.e., the threading de�ned

from the native conformation) if gaps between core segments are allowed.

In this paper, we focus on the problem of deriving a pair score function

such that the optimal threading coincides (or approximately coincides) with

the native threading where gaps between core segments are allowed. Note that

we could not select a correct structure from template structures if we could not

�nd correct threadings, where a correct threading means an optimal threading

which exactly coincides with the native threading. To derive such a structure,

we randomly generate alternative threadings and make a constraint:

score(native threading) + gap < score(alternative threading)

for each alternative threading. Then, we �nd a score function which simultane-

ously satis�es these inequalities. Since each constraint is linear (if we assume a

usual contact potential), we can use a linear programming (LP, in short) solver
18. The above method is similar to the method of Maiorov and Crippen 12.

But, there are some important di�erences.

(1) Our score function was developed for computing a correct threading, while

their score function was developed for selecting a correct conformation among

candidate conformations and they did not consider gaps between core seg-

ments. Since energy gap between the native threading and a slightly perturbed

threading is considered to be not large, their score function does not seem to

be suitable for computing correct threadings. Moreover, in order to examine

self-threading (i.e., threading of a sequence through its own structural model),

we have implemented LS-algorithm 11.

(2) We use an LP solver to solve linear constraints directly, while they use

an iterative procedure. Previously, there had been no LP solver which simul-

taneously could solve large number of constraints. However, owing to recent

progress on the interior point method 10;18, recently developed LP solvers can

solve a million of constraints. Therefore, we used such an LP solver and thus

we could directly solve a large number of constraints.

In order to evaluate the proposed method, we examined self-threading



using the derived score function. The results show that the score function

derived by the proposed method is as good as existing score functions. Since

the most important advantage of the proposed method over statistical methods

is that it requires a small number of training data, score functions can be

specialized for some structural families. In order to con�rm this property, we

applied the proposed method to some structural families, and we obtained

better threadings using specialized score functions.

Although we assumed a simple contact potential as a score function, the

proposed method can be generalized for more complex score functions. More-

over, the proposed method may be modi�ed in order to derive score functions

for identi�cation of transmembrane domains, sequence alignment and predic-

tion of RNA secondary structures 1.

2 Method

2.1 Score Function

In this paper, we use a simple score function. Our score function consists of

three kinds of functions: �x, �x, and �x;y. �x and �x denote the scores of a

single residue x when x is aligned into a core segment of �-helix and a core

segment of �-strand, respectively. �x;y denotes the score (the score of a con-

tact) between residues x and y, and it corresponds to a usual pairwise contact

potential. We assume that the score between x and y is 0 if the Euclidean

distance between residue positions (aligned positions) is more than D where

we use D = 7:0�A, otherwise the score between x and y is �x;y. Since there are

20 kinds of amino acids, our score function consists of 250 parameters (20 for

�x, 20 for �x, and 210 for �x;y where we assume �x;y = �y;x).

2.2 Model of Protein Threading

The model of protein threading used in this paper follows Jones et al. 9,

Bryant and Lawrence4, and Lathrop and Smith 11 (see Fig. 1). The structural

model (structural template) corresponds to an annotated backbone trace of

the secondary structure segments in the conserved core fold, where each core

is either �-helix or �-strand. Core segments are connected by variable loop (or

coil) regions. Loops are not considered part of the conserved fold. Therefore,

a structural model is represented by a sequence of residue positions in core

segments. We use positions of C� atoms for denoting residue positions.

When an amino acid sequence is threaded through the structural model,

gaps within a core segment are not allowed. That is, successive elements in a

sequence must correspond to successive positions in a core. Alignment gaps



are con�ned to the connecting non-core loop regions, and thus the loop lengths

are variable. This threading model is termed gapped alignment 4.

Here, we de�ne the threading problem in a formal way. Let P = hp1; : : : ; pni

be a sequence of positions of residues (e.g., positions of C� atoms) in core

regions of a template structure. Note that residues in loop regions are ig-

nored since the scores of these residues are always set to 0 in this paper. Let

pl1 : : : pl2�1, pl2 : : : pl3�1, � � �, plk : : : pn be core segments, where pli : : : pli+1�1
corresponds to a core segment, and l1 = 1. Let A = a1a2 : : : am (m � n) be

an amino acid sequence, which is to be threaded. Then, a threading t is a

function from f1; 2; : : : ; ng to f1; 2; : : : ;mg such that t(i) > t(i� 1) if i = lj
for some j, otherwise (i.e., both pi and pi�1 are included in the same core)

t(i) = t(i� 1) + 1. Note that this de�nition means that residue at(i) is as-

signed to position pi, the order of residues must be preserved, and successive

elements in a sequence must correspond to successive positions in a core.

Then, the total score score(t) of threading t is de�ned by

score(t) =

nX
i=1

at(i) +
X

i<j;d(i;j)�D

�at(i);at(j) ;

where d(i; j) denotes the Euclidean distance between positions pi and pj , and

x =

�
�x; if x is aligned into �-helix,

�x; if x is aligned into �-strand.

A threading t is called an optimal threading if score(t) � score(t0) holds for

any threading t0 6= t.

core

loop

A I D E M L K PV K P

Structural  Model

Amino Acid Sequence

E V

p
1

p
13

p
5

p
6

p
9

p
10

A G

t(1) t(13)
t(10)

H P D Q M

Figure 1: Model of protein threading. In this model, gaps between core segments are allowed,
whereas gaps within a core segment are not allowed.



2.3 Making and Solving Constraints

Recall that our requirement for a score function is that the optimal threading

coincides with the native threading. For that purpose, we should �nd a score

function for which the score of the native threading is minimized over all pos-

sible threadings. Of course, if multiple proteins are given, we should �nd a

score function for which the scores of all native threadings are simultaneously

minimized. Although several similar studies have been done 8;12;13. �nding

such a score function is very di�cult 1. Therefore, we develop a method which

approximately satis�es the above requirement.

For simplicity, we consider a case that only one protein data (a sequence

and its structural model) is given. But, it can be extended for a case of multiple

protein data by merging the generated constraints.

The proposed method is conceptually very simple. Lathrop and Smith

give a method to generate all possible threadings at uniformly random when

a sequence and its structural model are given 11. Based on their method, we

randomly generate N alternative threadings t1; � � � ; tN such that ti 6= t for

all i, where t denotes the native threading. Then, we make the following LP

instance (denoted by LP-A):

Maximize: gap,

Subject to: score(t) + gap < score(ti), (for all ti)

�B � �x � B; �B � �x � B, (for all x)

�B � �x;y � B, (for all x; y)

where B is a constant in order to limit the ranges of parameters (currently,

we use B = 10:0 because most of previous score functions use values between

�10:0 to 10:0). Note that score(t) is expressed by a linear combination of

parameters (�x,�x,�x;y) and thus all the above inequalities are linear. Then,

we apply an LP solver 18 to the above instance. If there exists a set of values

satisfying the above constraints, the LP solver outputs one which maximizes

gap. Note that if we could generate all possible threadings, a score function

that minimized the native threading would be derived. However, since gener-

ating all possible threadings takes too long time, we use randomly generated

threadings.

In LP-A, every constraints of score(t) + gap < score(ti) must be satis�ed

and the LP solver fails to �nd a set of values if at least one of the constraints can

not be satis�ed. Therefore, we do not use LP-A. Instead we use the following

LP instance (denoted by LP-B):



Minimize:
PN

i=1 ei,

Subject to: score(t) + gap < score(ti) + ei, (for all ti)

�B � �x � B; �B � �x � B, (for all x)

�B � �x;y � B, (for all x; y)

ei � 0, (for all i)

where gap is a constant (currently we use gap = 100:0, which was determined

from several trials). In this case, score(t)+ gap < score(ti)+ ei can always be

satis�ed by letting ei > score(t)+ gap� score(ti). Since the LP solver tries to

minimize
P

ei, it is expected that most constraints are satis�ed (by making

ei = 0). Moreover, if all the constraints can be satis�ed, the LP solver always

satis�es them by letting
P

ei = 0.

Although LP-B seems good, the number of parameters becomes very large

because there are as many parameters (ei's) as constraints. Usually, CPU time

for LP increases rapidly as the number of parameters increases. Therefore, we

should keep the number of parameters as small as possible. Thus, instead of

using distinct ei's, we use the same parameter for ei, ei+E, ei+2E , � � �, where

we currently use E = 10 (with no special reason). Note that, even in this case,

the LP solver always satis�es all the constraints if it is possible.

3 Results

3.1 Hardware and Software

Computational experiments have been done on a SUN ULTRA-1 workstation

(200MHz). All programs were written in C language. We used `LOQO' 17 as

an LP solver, where `LOQO' is based on the interior point method and can

solve very large LP instances 18. In order to evaluate the quality of derived

score functions, we implemented LS-algorithm in C language 11.

3.2 A Case of the Same Training Data Set and the Same Test Data Set

First we examined a fundamental case: the test data set is the same as the

training data set. In particular, we examined two cases: (a) using a score

function derived only from its own protein data; and (b) using a score func-

tion derived from all protein data in the data set. In each case, 500 or 1000

alternative threadings were generated per protein data. We use the following

data set (23 protein data) obtained from Protein Data Bank 2: 256b(A), 2end,

1rcb, 2mhr, 351c, 1bgc, 1ubq, 1mbd, 1lis, 1aep, 1hoe, 2hpr, 5cyt, 1bp2, 5cpv,

2mcm, 1plc, 1yat, 7rsa, 3fxn, 9rnt, 2sns, 2lzm. The results are summarized in

Table 1. In this table, the following data are shown: the number of alternative



threadings generated (per protein) for deriving a score function; the number of

proteins for which correct threadings were computed; the frequency of correct

core segments (i.e., the number of correct segments / the number of core seg-

ments). Note that we call a core segment correct if the position in the optimal

threading exactly coincides with the position in the native threading. You can

see that a correct threading is computed in most cases when we use a score

function obtained from its own protein data. Moreover, you can see that the

number of correct threadings increases as the number of generated (alterna-

tive) threadings increases. However, if we use a score function obtained from

multiple protein data, we can obtain only a few correct threadings although

we can obtain many correct core segments. Moreover, the number of cor-

rect threadings does not necessarily increase even if the number of generated

threadings increases.

Table 1: Relationship between the number of generated threadings and the number of correct

threadings.

number of generated threadings (a) (b)

500 1000 500 1000

number of correct threadings 18 21 5 4

frequency of correct segments 0.97 0.99 0.53 0.55

3.3 A General Case

In order to evaluate the quality of the score function, we derive a score function

from training data and computed self-threadings for test data. We use the

following protein data set A as test data: 256b(A), 2end, 1rcb, 2mhr, 351c,

1bgc, 1ubq, 1mbd, 1lis, 1aep, 1hoe, 2hpr, 5cyt, 1bp2, 5cpv, 2mcm, 1plc, 1yat,

7rsa, 3fxn, 9rnt, 2sns, 2lzm, and we use the following protein data set B as

training data: 3chy, 1pkp, 1aak, 8dfr, 1cde, 2cpl, 2cyp, 1f3g, 4fgf, 2act, 1dhr,

1mat, 1tie, 3est, 2ca2, 1byh, 1apa, 5tmn, 1lec, 1nar, 5cpa, 9api(A), 2had,

2cpp. Note that A and B are disjoint and all data are non-homologous. These

protein data sets are subsets of one used by Lathrop and Smith 11. It took 42

minutes (26 minutes for generating constraints and 16 minutes for solving LP)

to derive the score function, where 500 alternative threadings were generated

per protein (i.e., 12000 threadings were generated in total), and all generated

constraints were satis�ed (i.e.,
P

ei = 0). The average CPU time and the

maximum CPU time for computing an optimal threading were 9.6 minutes

and 88.5 minutes respectively. Since our implementation of LS-algorithm was

not elaborated as their implementation, it took longer time and thus we used



small protein data as test data.

As in LS-paper 11, we measured the displacement between the optimal

and the native threadings for each core segment across all self-threading trials.

Error distributions from 89 �-helix and 77 �-strand core segment threadings

are shown in Fig. 2. Note that in Fig. 2(a), frequencies of error 3; 4;�4 are

higher than those of neighbors. This reects the amphipathic periodicity of �-

helices. Fig. 2(b) also reects the periodicity of �-strands. Similar phenomena

were observed in LS-paper 11.

For �-helices, the sum of frequencies with errors between �4 and 4 (which

are considered to be near miss) is 0.798. For �-strands, the sum of the same

frequencies is 0.766. Although our test data set is a subset, these sums are as

good as those shown in LS-paper in which results across 5 score functions are

shown.

From these results, we can see that our score function is at least as good as

existing score functions. Moreover, our score function is derived only from 24

protein data, while most score functions are derived from hundreds of protein

data. From this, it is con�rmed that the proposed method requires a small

number of training data.
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Figure 2: Frequencies of alignment errors between the optimal and the native threadings for
each core segment across 23 protein data (89 �-helices and 77 �-strands). Error is computed

as the optimal threading sequence index minus the native threading sequence index.

3.4 Score Functions Specialized for Structural Families

As noted in the above, the most important advantage of the proposed method

over other methods is that it requires a small number of protein data. Using

this, we may specialize a score function for each of structural families.

To ensure this property, we compare the score function obtained in the

previous subsection with specialized score functions. We used the following

data set A (�-up-down fold family) and B (Lipocalins fold family): A = f

2hmq(A), 256b(A), 1lpe, 2tmv(P), 2gmf(A), 2lig(A), 1bbh(A), 2asr, 2mhr g

and B = f 1bbp(A), 1mup, 2hmb, 1mdc, 1opa(A), 1rbp, 1alb, 2ifb g.



For each protein data x 2 A (resp. x 2 B), we derived a (specialized) score

function from A�x (resp. B�x), and we examined self-threading for x using

this score function. As in the previous subsection, 500 alternative threadings

were generated per each protein data.

The results are summarized in Fig. 3 (�-up-down fold family) and Fig.

4 (Lipocalins fold family), where error distributions from �-helices (resp. �-

strands) are shown in Fig. 3 (resp. Fig. 4) because most core segments are

�-helices (resp. �-strands). In each �gure, Fig. (a) shows the results obtained

by using a general score function derived in the previous subsection, and Fig.

(b) shows the results obtained by using specialized score functions. Note that

in Fig. 4, only results for 1mdc, 1opa(A), 1rbp, 1alb, 2ifb are shown because

the CPU time for searching an optimal threading for each of 1bbp(A), 1mup,

2hmb exceeds the time limit (4 hours).
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Figure 3: Frequencies of alignment errors across 9 proteins from the �-up-down fold family,

where a general score function is used in (a) and specialized score functions are used in (b).
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Figure 4: Frequencies of alignment errors for each core segment across 5 proteins from the
Lipocalins fold family.

You can see that the results using specialized score functions are better

than those using the general score function in both cases. You can also see

that the di�erence is small in Fig. 3, whereas the di�erence is large in Fig. 4.

The reason why there exists such a gap is probably that the sequences in data

set B are more homologous than those in A.



Although we do not yet examine many families (because of the slow search-

ing speed), the results suggest that the proposed method may be useful for

deriving score functions specialized for structural families.

4 Conclusion

In this work, we proposed and evaluated a novel method of deriving a score

function (a contact potential). In particular, we focused on a score function

for computing nearly correct threadings.

As shown in the above, the proposed method has advantage over Boltzmann-

like statistical methods 7;14;15;16 because the proposed method can derive a

reasonable score function from fewer number of proteins. However, we have

made computational experiments using small number of data, and the form

(e.g., threshold, classi�cation of environments, e�ect of loop regions) of a score

function was not optimized. Thus, we are planning to make rigorous experi-

ments using a large number of protein data and optimize the form of a score

function.

Although similar methods have been already proposed, our method is dif-

ferent from them as described in Introduction. The most important di�erence

is that all the generated constraints are always satis�ed in our method if con-

straints can be satis�ed, because we use an elaborated LP solver. However,

for any method, it is not guaranteed that the derived score function is fully

consistent with the training data (i.e., minimizing the scores of the native con-

formations or the native threadings). Indeed, in a context of threading with a

pairwise contact potential, we have proved that deciding the existence of such

score function was computationally hard 1. However, errors produced by our

method is one-sided. That is, if the LP solver outputs "there is no feasible so-

lution satisfying all constraints", then this conclusion is always correct. Thus,

if the LP solver outputs "no feasible solution", we can conclude that there does

not exist a score function minimizing the scores of given native folds under the

same condition, where condition consists of threshold of contact distance, clas-

si�cation of environment (�,�,exposed,...), etc. Our method might be useful to

seek such conditions because the LP solver will output "no feasible solution"

even for small number of input data if the condition is not appropriate.

Of course, it may be more important to discuss about score functions

that approximately satisfy the constraints. Although we have proposed such a

method (LP-B) in this paper, the results were not satisfactory. Indeed, when

there were non-satis�ed constraints, the derived score function was not good

even if we used LP-B. Therefore, we should improve the method.

In this paper, we only examined self-threadings. In order to apply the



score function to the protein structure prediction, optimal threadings for at

least 1000 templates 5 should be computed for each amino acid sequence with

unknown structure. However, even if we use the elaborated search program
11, it will take very long time to compute 1000 optimal threadings. Therefore,

in order to apply our score function to the protein structure prediction, we

should develop much faster search algorithms.
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