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Statistical significance of a local sequence alignment depends not only on the similarity score
and on the sequence lengths, but also on a length of the alignment. Dependence of the
alignment significance on the length of the sequences has been analyzed earlier, and is based
on the idea that the longer sequences have more chances to share a local similarity with a
bigger score. To the best of our knowledge, a dependence of the statistical significance on the
length of an alignment has not been used in selecting the best aligmments. We have applied to
real proteins formulas for assessing the statistical significance of ungapped local alignments.

Let L be a length of the alignment, then the expected value of a similarity score is Sexp=<m>
* L, where <m> is the expected similarity between two randomly chosen residues. Value of
<m> can be calculated from a similarity (substitution) matrix M and amino acid frequencies P:

<m>=Lij pi*p/mij. The probability of observing a score S greater than or equal to x for an
alignment of length L is given by the normal distribution: Prob(S ~ x) =I - f N«S-Sexp)/a)=I -
f N«S-<m>*L)/am --JL),where am is a standard deviation of m. From these formula, we
conclude, that we should select the best alignment using a normalized value of the similarity
score as follows: S' =max{(S-<m>*L)/ am--JL).The proposed normalization of the similarity
score has been tested on the representative benchmark. To evaluate a performance of the
normalization, we have calculated several measures of the recognition quality. Our
normalization has improved all these measures. This procedure is important for choosing the
correct alignment for homology modelling as well as for selecting distantly related sequences
in databases.

1. Introduction

Sequence comparison based on sequence alignment is the most powerful tool for
inferring the biological function of a gene or the protein that it encodes (Pearson,
1996). A central question in sequence comparison is the statistical significance of
the observed similarity. For local alignment without gaps this problem has been
approached by several groups (Arratia et aL,1988; Karlin & Altschul, 1990). Local
similarity scores are described by the extreme value distribution. The probability of
finding a score S' > x can be calculated as: P(S'~x) = l-exp( -e-X), where S' is the
normalized similarity score S'=A*S-ln(K*m*n); m and n are the lengths of
sequences; A and K are derived from the scoring matrix and the amino acid
composition of sequences (Karlin & Altschul,1990; Altschul et aL,1994). Thus, in
this theory the statistical significance of an alignment depends only on sequence
lengths, letter distribution and scoring weights. In our work we show that it is
necessary to include the length of alignment in such estimations. It is especially
important when we try to recognize a short fragment (like a domain or EST encoded
protein sequence interrupted by frame shift error) surrounded by unrelated sequences.
Intuitively we can think that the match within such domain should be more
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significant than a longer region when both of them have the same score, because a
longer alignment can have bigger fluctuation of score values by chance. Using an
appropriate random model, we present numerical formulas for normalizing a
similarity score taking into account the length of alignment. Analysis of data base
search results on a representative set of protein sequences has proved that the
suggested normalization improve, in average, the quality of recognition.

2. Method

We will consider the random sequence model where the elements of a sequence are
chosen independently from an alphabet of a letters with respective probabilities Pi
(i= I ,..,a). The pair of letters i of the first sequence and j of the second sequence
occurs with probability Pi*Pj- Let the score for such a paring be mij. Usually the
score matrix for aligning pairs of amino acids provides negative expected pair score

<m>=LijPiPjmij, that permits to apply extreme value distribution statistics (Karlin
& Altschul, 1990). For example, Dayhoff's score matrix PAM-250 has <m>=-0.79

and standard deviation of this score O"m=--Jv= --JLij(mU-<m>)2PiPj is equal to 2.81.
For an identity matrix, when all the elements are zeros, except the diagonal ones,
which equal to 1: <m> =0.058, O"m=0.23.

For a given ungapped alignment of length L the expected aggregate score S of the
alignment is S =<m>*L. The score S, as the sum of many independent random
variables (for large enough L) yields a normal distribution N with the expectation
Sexpand the standard deviation 0".The variance V of N is the sum of variances v: V
=LL v =v*L and thus s =--JV= O"m *--JL.

The probability of observing a score S greater than or equal to x for an alignment of
length L purely by chance is given by the formula:

Prob(S ~ x) = I - f N«S-Sexp)/O")= 1 - f N«S-<m>*L)/O"m --JL).

In other words, the significance of an alignment depends on its length and to rank
the alignments properly, we should select the best alignment using normalized
similarity score on a length of alignment:
S' =max {(S-<m>*L)/O"m --JL}.

Notice that the alignment significance also depends on <m> and O"m,i.e. on the
scoring matrix and amino acid frequencies.

Let us consider some interesting properties of such normalization. Fig. 1 shows
behavior of the normalized score S' for several typical values of the raw score S. S'
has a minimum S'min at the length Lmin, which is different for different S. We can
see that for L< Lmin, the shorter the alignment, the greater its statistical
significance, and the opposite is true for L>Lmin. ;
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Figure 1. Dependence of the normalized similarity score on the length of
alignment. The dependence is particular important for short alignments. From this
plot one can see, that short alignment with a raw score of 100 can be more
statistically significance than a longer alignment with a raw score of 150.

The curves in figure 2 are steeper for the L < Lmin than they are past Lmin. In other
words, the effect of normalization is greater for small fragments of sequences. Lmin
could be calculated analytically that gives Lmin=-S/<m> (fig. 2).
For reasonable sizes of the aligned fragments with L < Lmin, not unusual for natural
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proteins (of about 100 amino acids), a raw similarity score underestimates the
relative significance of these alignments, and can lead to errors in selecting the
correct alignments, and, consequently, in detecting related sequences in databases.
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Figure 2. An expected length of the alignment (Lmin) is proportional to the raw
similarity score.

What is the threshold between significant alignments and random matches in terms
of the percentage of the identical residues in the alignment? To compute an expected

number of the identical residues we apply formula Sexp =<m>*L. A level of the
significance is expressed in the units of standart deviation Z. Thus alignment is

significant if a number of the identical residues in it S ~ Sexp + Z* a =<m>*L +
Z*--JL*am, where <m> = 0.058, am = 0.23. The same value, expressed as a

percentage of identical residues is: I = 100*S/L =<m> + Z*aml--JL.In Figu9Y3 we
plot this threshold for several significance levels. A shape of the curv~ is very
similar to the emperical plot derived by Sander&Schneider, 1991. /
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Figure 3 A threshold between significant alignments and random matches as a
function of the alignmennt length. Three curves present three levels of significance:
three, six, and nine standard deviations. Even at the very high confidance level of
nine standard deviation long ungapped alignments (>200 a.a.) with 20% identity are
significant.

In this work we have applied the statistics for ungapped alignment, but we plan to
extend the estimates for a general case as it was done for extreme value distribution
statistics (Waterman & Vingron, 1994; Altschul & Gish, 1996; Pearson, 1996),
which was initially devised for ungapped alignments. Ungapped alignments have
clear practical value, being implemented in BLAST -- a widely used program for
rapid sequence comparison (Altschul et aI., 1990).

3. Results

We have tested the performance of our normalization scheme on a benchmark, used
by Pearson to compare different methods for sequence comparison. The benchmark
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consists of 67 family representatives and a database of about 12,000 amino acid
sequences. Each family representative is compared with all the database sequences. A
recognition quality is evaluated based on the discrimination of the related sequences
from the others. An average recognition quality for all 67 sequences assesses a
quality of the method.
Because we are interested in detecting local similarities with variable alignment
length, we have chosen this benchmark, in which query sequences contain only a
fragment of the real protein sequence, whereas the rest of the sequence is random.
Random parts of the sequences were generated according to the amino acid
distribution in the whole database.

3.J Measuring the quality of recognition

For each query sequences three measures of the recognition quality were used: (i) an
equivalence number, (ii) a separation score (S-score), and (iii) an error score.
Equivalence number has been used by Pearson in his benchmark and is the number
of false positives ( or the number of false negatives) when the threshold value of the
similarity score is chosen to make these numbers equal. In the case of perfect
recognition, the equivalence number is zero, in the worst case, it equals to the size
of a family.
Separation score shows an overall separation between a family and the rest of the
database sequences. it is computed as:
S-score =«Sf> - <So> )/0.5( O"f+ 0"0)'
where <S f> and <S 0> are average similarity scores for the family and the other
sequences; O"fand 0"0are average standard deviations of the family and of the other
sequences, respectively. The better is the separation between a family and the other
proteins, the bigger is the S-score.
While S-score characterizes the overall separation, an error score concentrates on a
twiJight zone, where related and unrelated sequences are mixed together:

E-score =«Zfp> - <Zen>)/Zeq ,
where Zeqis a threshold of similarity score corresponding to the equivalence number;
Zfp and Zen are sums of simiIarity scores of all false positives and of all false
negatives. SimiIarity scores for this formula are expressed in the units of standard
deviation (Z-scores). When all the family proteins are separated from the rest of the
database, the E-score =0, a bad separation results in the large E-score.

In Figure 4 we show two distributions for query sequence TISYO: one for raw and
another for normalized similarity scores.
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Figure 4. Distribution of the raw and normalized similarity scores for proteinase
inhibitor family (query sequence TISYO). Only a region on a border between related
proteins (black bars) and the others (white bars) is shown. Equivalence number for
the raw score equals to three, whereas for the normalized score it is zero. S- and E-
scores are also better for the normalized similarity score (table I).
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Table 1. Comparison of the discriminating power of raw and normalized similarity
scores for 67 query proteins.

PIA entry Superfamily Family Equivalence S-score E-score
size numbers

raw norm raw nor raw norm
m

ACHUA 1 acetylcholine receptor 23 0 0 3.56 3.79 0 0
AJHUQ glutamate--ammonia ligase 39 12 12 2.24 2.40 12.18 11.09
AZBR plastocyanin 38 27 27 1.05 .97 35.17 36.42
CCHU cytochrome c 142 29 21 2.70 2.86 28.88 22.18
CFKKA phycocyanin 25 1 3 1.67 1.94 0.16 0.72
CYBOA alpha-crystallin 67 14 12 3.19 3.25 12.57 10.35
CYBOB beta-crystallin 21 0 0 2.28 3.02 0 0
DEHUAA alcohol dehydrogenase 27 11 11 1.99 1.97 10.24 9.64
DEHUGL glyce raid ehyde-3- phospha te 46 1 1 5.80 5.50 0.54 0.63

dehydrogenase
DEPGLH L-Iactate dehydrogenase 26 4 4 2.06 2.10 2.68 2.99
DJHUAC herpesvirus DNA-directed DNA 23 21 21 .60 .65 17.38 17.87

polymerase
FEPE ferredoxin 2[4Fe-4S] 96 59 55 .87 .97 76.2 78.03
FOVWH3 AIDS-related virus gag 91 65 64 .96 1.04 65.14 57.72

polyprotein
GCHU glucagon 44 13 11 1.87 2.35 8.38 6.66
HAHU globin 505 50 55 3.20 2.98 71.06 69.63
HLHUB2 class I histocompatibility 71 41 41 1.51 1.52 42.95 38.46

antigen
HMIVV influenza virus hemagglutinin 85 18 18 3.05 3.03 24.31 23.22
HNNZS paramyxovirus hemagglutinin- 49 7 7 2.46 2.72 6.29 5.18

neuraminidase
HSHU1B histone H1 22 5 6 2.43 2.64 3.52 2.74
IJHUCN cadherin 28 2 2 2.23 2.46 0.97 0.88
IPHU insulin 69 4 3 2.70 4.02 3.56 3.14
IVHUI6 interferon alpha 39 1 1 5.05 5.25 0.24 0.19
K1HUAG immunoglobulin V region 280 107 91 1.96 2.06 94.07 80.2
K3HU immunoglobulin C region 74 14 16 1.75 2.15 10.66 9.73
KIBET herpesvirus thymidine kinase 27 4 3 1.99 2.22 1.47 1.26
KRHUE cytoskeletal keratin 32 5 6 2.75 2.60 4.08 4.64
LCHU prolactin 20 4 2 2.10 2.43 1.5 0.7
LNHU1 hepatic lectin 20 17 17 .72 .66 19.63 19.72
LUHU annexin I 27 0 0 4.87 4.95 0 0
LWBOA H+-transporting ATP synthase 28 11 13 2.41 2.24 3.25 6.05

lipid-binding protein
LZHU lysozyme c 28 2 2 4.31 4.46 1.95 1.82
MFNZS parainfluenza virus matrix 24 10 10 2.02 2.05 6.58 7.18

protein
MNIV2K influenza virus nonstructural 22 2 2 5.59 5.43 1.44 1.6

protein NS2
N2KF1U snake toxin 109 19 10 1.91 2.43 9.4 6.21
NKVLAH hepatitis B virus core antigen 25 2 1 3.84 4.02 0.23 0.29
NMIV influenza virus exo-alpha- 27 14 14 1.65 1.74 12.05 11.95

sialidase
NRBO pancreatic ribonuclease 40 1 0 5.41 6.05 0.12 0
NTSRIA scorpion neurotoxin 26 9 7 1.54 1.62 11.54 10.89
04HUD1 cytochrome P450 35 12 11 2.22 2.13 10.84 10.22
OKHU2C kinase-related transforming 183 61 60 1.35 1.51 34.91 34.46

protein
oaHU vertebrate rhodopsin 167 57 57 1.41 1.76 32.47 31.82
P2WL papillomavirus L2 protein 27 1 1 2.00 2.58 0.04 0.12
PEHU pepsin 20 4 4 2.55 2.64 3.4 3.52
PSHU phospholipase A2 58 31 28 1.50 1.69 21.66 18.2
PWHU6 H+-transporting ATP synthase 23 3 3 2.09 2.15 1.63 1.47

protein 6
PWHUA H+-transporting ATP synthase 46 3 4 2.76 2.84 0.82 1.38

alpha chain
QQBE1 L herpesvirus glycoprotein B 23 2 1 1.69 1.85 1.2 1.07
QRECBD inner membrane protein malK 43 37 35 .72 .92 20.62 22.83
R6HUP2 rat acidic ribosomal protein P1 41 21 23 1.46 1.41 16.82 16.72



To measure the significance of the difference between two methods, we used the
same sign-test as Pearson did. Let N I to be a number of families, for which the first
method is better, and Nz to be a number of families, for which the second method is
better. The z-value is calculated from the formula:

z = [max(N I,Nz) - J;L]/cr,

where Jl = (NI + N2)P,cr= [(Nt + N2)P(l-P)]I/Z,and P =0.5.

The average results for all three measures are in favor to the normalized
similarity score (Table 2).

Table 2. Results of the sign test for equivalence number, S-, and E-scores.

Probability

2.8'10-2

5.5'10-5

3.8'10-3
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RKMDS ribulose-bisphosphate 77 2 0 2.50 3.28 0.18 0
carboxylase small chain

SMHU2 metallothionein 21 5 5 2.97 3.25 2.74 2.26
TISYO Bowman-Birk proteinase 23 3 0 2.94 3.45 0.28 0

inhibitor
TPHUCS calmodulin 116 25 22 1.89 2.15 13.02 12.47
TRRT1 trypsin 72 31 17 1.47 2.31 20.2 9.21
TVHUM myc transforming protein 91 67 67 .83 .97 75.01 74.24
TVHURA ras transforming protein 45 5 9 2.55 2.81 2.29 3.76
TYTUY2 protamine Y2 24 17 5 2.72 3.13 4.63 0.84
UART lipocalin 21 11 11 .96 1.01 10.4 10.08
VGIHE2 coronavirus E2 glycoprotein 20 1 1 2.19 2.56 0.99 1.05
VGNZSV parainfluenza virus cell fusion 45 25 26 1.28 1.26 19.13 22.74

protein
VHIV34 influenza virus nucleoprotein 32 5 5 4.61 4.58 2.67 2.01
VPXRW rotavirus outer layer protein 35 5 5 3.05 2.92 3.58 3.34
A VP3
W2WLE papillomavirus E2 protein 27 26 26 .33 .31 31.1 28.88
W6WL 18 papillomavirus E6 protein 29 2 2 3.56 3.55 0.63 0.48
W7WLH papillomavirus E7 protein 26 0 0 3.27 3.30 0 0
S
XHHU3 antithrombin III 25 5 8 2.05 1.78 2.17 4.58
XURT8C glutathione transferase 106 81 70 1.01 1.13 83.23 71.09

Measure Number of cases when z-value
the normalized score is

better worse

Equivalence number 24 11 2.20

S-score 50 17 4.03

E-score 43 20 2.90
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4. Conclusion

We believe that the proposed normalization is especially important in the analysis of
distantly related sequences. Estmation of a given alignment significance was
presented by Waterman (1995), however in this article we propose to use itduring
the search for selecting the best alignment. To compare this alignment with any
other when searching a database we should also apply extreme value distribution
statistics. The correct estimation of the significance of their alignment is crucial for
separation related proteins from the others in the twilight zone on a boundary
between them. This zone is often saturated by alignments with approximately 'the
same scores and even a small valid score correction can essentially. improve the
recognition quality. Another possible application of this normalization is a
homology modelling, where we have to choose a correct alignment for the related
proteins. Selection the right alignment is one of the major problems for many
threading algorithms, and our normalization can also lead to better understanding of
the relationships between protein sequence, three-dimensional structure and
biological function.
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