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A gene finding system, GeneDecoder, based on a parsing technique using a
stochastic grammar and a dictionary of genetic words is introduced. The structure
of human genes are expressed by a stochastic grammar and a dictionary, whose
components are the genetic words consisting of genetic phonemes, built as hid-
den Markov models (HMMs). The HMMs represent the nucleotide acid bases, the
codons, and the amino acids. The genetic words in the dictionary are described
by the sequence of these HMMs and represent exons, introns, intergenic regions,
tRNA regions and signals in DNA sequences. The statistics between these regions
are expressed by the grammar, which is a stochastic network of the genetic words.
Using the same kind of technique of speech recognition by HMMs with a word dic-
tionary and a grammar, the stochastic network of genetic words enables the motif
dictionary to be used during the parsing of the DNA sequences. At the same time,
stochastic features of donor/acceptor sites, information of the di-codon statistics,
and other important features are integrated into stochastic scores during the pars-
ing. As a result, while the system parses DNA sequences and finds the exon/introri
structures, the protein motifs are automatically annotated in the regions. It helps
to identify the functions of the genes and reduces' the cost of homology search for
each hypothetical coding regions. This method is different from simply using the
information of homology search. This method uses the information of the motif
patterns during the parsing process, but searching the motif patterns after/before
finding the coding regions cannot directly affect the parsing process itself. Exper-
imental results have shown that this method reasonably finds and annotates the
motifs in the exons in the DNA sequence of human.

1 Introduction

The progress of the sequencing projects and the resulting large sequence data
demand the computational biologists to develop effective systems to detect
genes in the DNA sequences. The exact locations of the genes and the splicing
patterns are proved by experiments, but if computational gene finding system
can predict the genes correctly, time-consuming experiments may be reduced.
There have been proposed a number of systems for finding genes, for exam-
ple, GENMARK 4, FGENEIf27, GeneIIy5, GeneParse?8, Geni~l, GRAIL3o,
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GeneHackef32, HMMgenJ9,20, GENSCA~.

In this paper, we propose a gene finding system,named GeneDecoder,
using a parsing technique by a stochastic grammar for combining a protein
motif dictionary to the gene finding system based on hidden Markov models
(HMMs).

1.1 HMMs in gene findings

Because genes have a structure like a language, linguistic methods are effective
in order to understand the structure 9,28. However, the components and the
rules of the DNA language behave as though non-deterministic, it is necessary
to combine the statistics and the linguistics for the parsing .of DNA. That
is why hidden Markov models (HMM) are becoming widely used for gene
recognition 6,19,20,21,31,32.Among them, HMMgeneW developed independently
from GeneDecoder, has a similar architecture to our system.

In order to build a stochastic DNA language by using HMMs, we model
the components of the gene structure by HMMs and connect them by the rules
which represent the gene structure. From a view point of stochastic grammar,
a HMM is a stochastic regular grammar. Regular grammar can be expressed
by the networks of the symbols. A nice feature of regular grammar is its mod-
ularity. A network of the networks which represent regular grammars becomes
a regular grammar. HMMs have the same property: a network of the networks
which represent HMMs becomes an HMM. If we model the promoters, codons,
amino acids, motifs and other objects on DNA by HMMs, the networks of these
objects form a new HMM. This means we can parse the whole DNA sequence
by the combined models using a dynamic programming algorithm. However,
if we build a precise model of genome structures using many components, we
may have to adopt a pruning technique for an integrated model, because the
full parsing of a large HMM takes a long time. The situation is same in speech
recognition, when we use a word dictionary of a large vocabraty. We use word
level pruning technique of speech recognition 18 to solve this problem in gene
finding.

Because HMMs have some limitations ,to express the positional correlations
of the bases, some of the models are often made by other methods, like artificial
neural nets. Generalized HMMs, which allow such non-HMM models behave
as a part of stochastic parsing, have been proposed to combine those non-HMM
models with stochastic optimization. 21,6.
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1.2 Previous works

The authors developed GeneHacker,a gene finding system based on HMMs ,
to detect the protein coding regions of cyanobacterium (prokaryote), and achieved
the recognition accuracy 90.7% for coding regions and 88.1% for intergenic re-
gions 32. This work is continuing for other prokaryote species.

The recognition performance of that work was reasonable, although the
implementation of the models was simple. In that system, the parameters
of each HMM had been decided separately, using the concept of modularity
described in Section 1.1. That is analogous to the training of parameters with
labels in speech recognition, where the annotations of the phoneme boundaries
are used for the training of the phoneme HMMs. The main statistics between
HMMs were codon bigrams, which is a first order Markov model (not hidden
Markov model) of codons, i.e. using hexamer information by reading frames
of length three. However, it is more desirable to have stochastic models of
these proteins than to have merely the local statistics of the genes, because
the coding regions are translated into proteins and the sequences of coding
regions have the feature of the real amino acid sequences of proteins. In order
to utilize that property, it is popular to pre-process the sequence by homology
search of protein sequences. We have adopted different approach, using protein
motifs as the models of these proteins3, in order to prepare for more flexible
models of what the coded proteins are.

1.3 GeneDecoder

While continuing to increase the target of GeneHacker,prokaryote genomes,
we have expanded the system to model the exon/intron structures of eukaryote
genes. GeneDecoder, a gene recognition system for eukaryote genes, has
been built by adding several components, such as donor/acceptor site models
and intron models, and by expanding the stochastic grammar. We have also
implemented motif dictionary to GeneDecoder, while a protein motif is not
necessarily exists within each exon.

2 Data

2.1 DNA sequences

We used the multi-exon part of the non-redundant sets of human genes con-
structed by Kulp and Reese (1996) as the training/testing sets. For the purpose
of comparing the performance with other methods, we also evaluated the sys-
tem by the test set of 570 vertebrate sequences constructed by Burset and
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Guig67.
The multi-exon part of the Kulp /Reese data set consists of 9 subsets for the

training and the evaluation of gene finding systems. We tested the system for
one subset of the data, by the parameters trained from the remaining 7 subsets,
excluding the testing subset. The data of training sets determine the HMM
parameters and the test sets were used to validate the recognition ability of
the GeneOecoderwhose component HMMs are based on parameters derived
from the training set.

2.2 Protein motifs

In order to construct a motif dictionary for the gene recognition system, we ex-
tracted 1149 motif entries from PRO5ITE release 13.023,and selected 933 motif
patterns as the genetic words in the motif dictionary. We selected these pat-
terns according to an evaluation score based on the specificity of the patterns.
For example, A- [PN] -5- [VIL] is 20/1 specific ('A' and '5') in two positions,
20/2 ('[PN]') and 20/3 ('[VIL]') specific in each position. The overall specificity
is the product of these values. The higher specificity is preferable in order to
avoid the pattern match by chance.

3 System

3.1 System overview

The overview of the system is shown in Figure 1. Each component of the
diagram is a genetic word or its component phoneme HMM. Each component
HMM produces the symbols of 'A','C','G','T' during its state transitions. The
diagram shows the grammar of eukaryotic genes.

The state transition normally begins with intergenic model, then to the
start codon, first codon, internal codons (the codon bigram and the motif dic-
tionary). The reading frames are considered by three types of exon fragments
at donor/acceptor sites. The intron model behaves differently in three con-
texts, depending on how many bases of the incomplete codon are placed in the
fragment of the exon at the donor site. For example, if the number of fragment
bases are two at donor site, the intron model behaves as type two, which is
followed only by the fragment of one base at the acceptor site. If a fragment
of one base at the donor site, a fragment of two bases at the acceptor site.

While the internal codons are usually come from the codon bigram, the
motif dictionary is an alternative path in coding region. By using a motif
dictionary as a component of the internal codon model, the motif names are
annotated on the predicted coding regions.
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Figure 1: Overview ofGeneDecoder

3.2 Exon model: codon bigram and dictionary

The exon model consists of several genetic words, internal-codon, donor/acceptor
fragments which have three types each, and the motifs. The internal-codon
model consists of one HMM, the codon bigram. It consists of 61 three-state
blocks, which correspond to internal codons, and these blocks are mutually
connected for transition to form a bigram of the codons. The di-codon us-
age is known as an important statistics31. The donor/acceptor fragments have
three types, according to the reading frames of the exons. They could have the
lengths of zer%ne/two in base. However, because distributions of the base
letters in these positions are very specific, the lengths are set to three/four/five
in base.

The motif models consist of motif entries in the dictionary, where each
motif entry is a sequence of amino acid models (HMMs), which is similar to the
regular patterns in PROSITE. Figure2 shows examples of HMMs of an amino
acid and an 'or' pattern of amino acids, which are the genetic phonemes in the
dictionary. Although each motif has different sequence of genetic phonemes,
they are all treated as one node in the stochastic grammar. This reduces the
cost of the parsing in time.

Figure 1 illustrates examples of entries of the dictionary.
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Figure 2: Examples of HMMs of an amino acid and 'or' patterns of amino acids: The states
expressed by the double circles are special state of null output.

Table 1: An example of a dictionary

genetic word
S'intergenic
3'intergenic
start-part
internal-codon

stop-part
exon-donor- fragment3
exon-donor-fragment4
exon-donor-fragmentS
exon-accep tor- fragment 3
ex on- acceptor- fragment S
exon- accep tor- fragment4
intron
intron
LEUCINE ZIPPER
DEAD ATP HELICASE
RIBOSOMAL S11
GLFV DEHYDROGENASE
N4 MTASE
CARBAMOYLTRANSFERASE
SUBTILASE SER
ATPASE El E2
RUBISCO LARGE
FUMARATE LYASES
TRP SYNTHASE BETA
TIM

......
,

............
oo....

sequence of genetic phonemes
S'intergenic-main S'intergenic-tail
3'intergenic-head 3'intergenic-main
startcodon firstcodon

codon-bigram
lastcodon stopcodon
exon-donor- fragment3
exon-donor- fragment4
exon-donor-fragmentS
exon-acceptor- fragment 3
exon-accep tor- fr agmen t S
exon-accep tor- fragmen t4
intronhead introncenter introntail
intronhead introncenter branch-point branch-tail
L I I I I I I L I I I I I I L I I I I I I L

orLIVKF orLIVKF D E A D orRKEN I orLIVMFYGSTN

orDNE V T PI orPA I orDN

orLIV I I G G orSAG K I orGY I I I orDNS orPL

orLIVKF T S P P orFY

FlorEK I S orGT R T
G T S I orSA I P I I orSTAVC orAG

D K T G T orLIVM orTI

G I orDN F I KID E

G S I I K I I KIN

orLIVM I H I G orSTA H KIN

orAV YEP orLIVM V orSA I G T G

oo oo oo...oo oo.....

oo.oo................................

...........................................

"""""""""""""""""oo""" .
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3.3 Intron model and splice site

While the intron model behaves three ways, the intron model itself has fixed

sequence of genetic phonemes, as is listed in Tablel. It consists of intronhead,
introncenter and introntail. Intronhead and the introntail are the fixed-length
HMMs, which are equivalent of weight matrices of the probabilities, whose
lengths are 7 and 17 respectively. Introncenter is a complex of a third order
Markov model and a fixed-length HMMs which include branch point model.
The third order Markov model is implemented as an HMM, by assigning dif-
ferent states for all second order contexts of the bases. The pattern of the
branch point model was built by the motif extraction module of YEBIS 31.
It works as follows: (1) selection of significant subsequences; (2) classification
of the subsequences into groups of patterns; (3) assignment of characteristic
base length for each group; (4) determination of HMM for each group; Finally,
the method can generate HMMs each of which describe a pattern in the data.
The resulting branch point model is left-to-right HMMs of six states, whose
consensus pattern is 'CCTGAC'.

GeneDecoder has no separate splice site model. Splice site statistics
are distributed in the donor/acceptor fragment models of exons and the fixed
length part of the intron models. Because they are left-to-right HMMs, it can
be said that GeneDecoder is using a weight matrix for the detection of the
candidate of the splice site.

3.4 Intergenic model

The intergenic model is a combination of fixed length model adjacent to first/last
exons and a third order Markov model. The implementation of these models
are almost same as the intron model.

3.5 Training

The training of the models has been performed simply calculating the statistics
of the annotated regions of the training data set. No time-consuming Baum-
Welch training of the parameters of HMMs is necessary.

3.6 Parsing

The recognition process is exactly the same as the dynamic programming pars-
ing of the speech, using a grammar defined on these genetic words. We use word
level pruning and N-best parsing techniqueg-8 for this parsing. Having protein
models with the system is different from the popular technique of homology
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search of the hypothetical coding regions. The latter searches the database
before or after the system decides the candidate of the coding regions, but the
former uses the information of the database during the process of deciding the
candidate of the coding regions.

4 Results

The recognitions results for BursetjGuigo set of 570 vertebrate genes are shown
in Table2. The training set was chosen from KulpjReese set of human genes.
The data is not completely independent, so human genes tend to be predicted
with high accuracies. The performance of GeneDecoder is not higher than
GENSCAN, HMMgene and newer version of Genie. Except these new gene
finding systems, GeneDecoder performs relatively well, although the implemen-
tation is quite simple and not using homology searches by protein sequences.
Among those 570 genes, 123 genes were correctly predicted with their complete
exonjintron structures. .

Table3 shows the performance for KulpjReese set of human genes.

5 Discussion

Gene recognition byGeneDecoderwas tested for the data described in Sec-
tion 2.1, using the motif dictionary with 933-word vocabulary. In the coding
sequences of BursetjGuig'o data, which are annotated as 'CDS' in GenBank,
there are 241 hits of 97 motifs using the dictionary described in 2.2. Among
them, 167 hits are correctly annotated by GeneDecoder. There are 74 hits
are missed by the system because those motifs are not completely included in
the exons. Because GeneDecoder searches the motifs only within the ex-
ons, it could not be avoided using current set of motif dictionary. We may
need to construct a new motif dictionary, which has the entries of the protein
motifs within the exons. There are also 79 false hits of motifs because of the

miss-alignments of the exonjintron structures. Because a hit of a motif forms
strong bias for the region to be a part of the exon, those false hits prevent
the improvement of the recognition accuracy by the motif dictionary. Further
study is needed to solve this problem.

While the motif dictionary itself should be improved, an obvious extension
of the motif dictionary is having cDNA data as the entries of the dictionary.
Having the protein database as the entries of the dictionary, however, may
not be a good approach for using homology information of proteins. Ho-

mology searches can be pe~rformed as pre-jpost- process of the system. By
pre-processing, we get scores of homology search for each region and we can
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Table 2: Performance comparison for BursetjGuig6 set of 570 vertebrate genes

Sn and Sp are the sensitivity and specificity respectively. Accuracy per nu-
cleotide shows base level performance, number of bases which was correctly
predicted as exon or non-exon is counted. Accuracy per exon shows exon level
performance, where Sn, Sp and Avg are counted for exactly corrected exons
only. AC and CC are Approximate Correlation and Correlation Coefficient
respectively. For precise definition, see Burge (19971 for example. The result
of GENSCAN>, HMMgenEfo and GeniEf2 are from the references. The other
results are from Burset and GuigB'.

Table 3: Performance comparison for KulpjReese set of human genes: Tested on only multi-
exon part of the data set

Accuracy per nucleotide Accuracy per exon

Program Sn Sp AC CC Sn Sp Avg. ME WE

GeneDecoder 0.87 0.82 0.81 0.81 0.62 0.51 0.57 0.13 0.11

GENSCAN 0.93 0.93 0.91 0.92 0.78 0.81 0.80 0.09 0.05

HMMgene 0.88 0.94 n/a n/a 0.74 0.78 n/a 0.13 0.08

Genie 0.87 0.88 0.85 n/a 0.69 0.70 0.69 0.10 0.15
GeneID 0.63 0.81 0.67 0.65 0.44 0.46 0.45 0.28 0.24

GenLang 0.72 0.79 0.69 0.71 0.51 0.52 0.52 0.21 0.22

GeneParser2 0.66 0.79 0.67 0.65 0.35 0.40 0.37 0.34 0.17

GRAIL2 0.72 0.87 0.75 0.76 0.36 0.43 0.40 0.25 0.11

SORFIND 0.71 0.85 0.73 0.72 0.42 0.47 0.45 0.24 0.14

Xpound 0.61 0.87 0.68 0.69 0.15 0.18 0.17 0.33 0.13

GeneID+ 0.91 0.91 0.88 0.88 0.73 0.70 0.71 0.07 0.13

GeneParser3 0.86 0.91 0.86 0.85 0.56 0.58 0.57 0.14 0.09

Accuracy per nucleotide Accuracy per exon

Program Sn Sp AC CC Sn Sp Avg. ME WE

PartO 0.88 0.76 0.79 0.79 0.60 0.50 0.55 0.13 0.11

Part! 0.90 0.76 0.81 0.81 0.68 0.55 0.61 0.14 0.11

Part2 0.87 0.82 0.82 0.83 0.59 0.48 0.54 0.17 0.14

Part3 0.85 0.74 0.76 0.76 0.51 0.42 0.56 0.21 0.17

Part4 0.92 0.87 0.87 0.87 0.64 0.58 0.61 0.12 0.11

Part5 0.82 0.66 0.70 0.77 0.50 0.37 0.49 0.19 0.14

Part6 0.69 0.57 0.61 0.60 0.44 0.33 0.39 0.29 0.22

Part 7 0.94 0.72 0.80 0.79 0.65 0.50 0.57 0.06 0.04

Part8 0.90 0.63 0.74 0.73 0.61 0.42 0.52 0.11 0.07

Average 0.87 0.72 0.77 0.77 0.58 0.45 0.52 0.16 0.12

Genie 0.74 0.81 0.74 n/a 0.59 0.59 0.59 0.17 0.21

HMMgene 0.82 0.94 n/a n/a 0.64 0.79 n/a 0.23 0.06
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integrate these scores into the stochastic parsing. On the other hand, parsing
with N-best prediction enables homology searches to be post-processes.

The splice site sensor is equivalent to a weight matrix in current imple-
mentation. It may be necessary to adopt more complicated sensors, such as
artificial neural nets. It can be also integrated into GeneDecoder by a pre-
jpost- process technique.

The promoter model is under construction. The authors have proposed a
method for such DNA motif constructiOliH.

6 Conclusions

We have developed a gene recognition system, named GeneDecoder,which
consists of HMM-based components and a stochastic grammar. The perfor-
mance of the recognition is reasonable as a system without homology search.

The motif patterns of PROSITE was used as the entries of the dictionary.
The motifs are represented as the genetic words in the motif dictionary, and
each genetic words are expressed by the sequence of phonemes, which is the
HMMs of amino acids on the alphabet of 'A','C','G','T'. The system works
just as the speech recognition system, parsing the DNA sequences into genetic
words. As a result, this system annotates the position of the motifs, which is
defined in the dictionary, in the protein coding regions.
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